Articles | Volume 14, issue 10
https://doi.org/10.5194/essd-14-4757-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4757-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multiyear emissions of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue as well as their key driving forces in China
Yi Cheng
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan, China
Department of Environment Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan, China
Shaofei Kong
CORRESPONDING AUTHOR
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan, China
Department of Environment Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan, China
Liquan Yao
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan, China
Department of Environment Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan, China
Huang Zheng
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan, China
Department of Environment Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan, China
Jian Wu
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan, China
Department of Environment Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan, China
Qin Yan
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan, China
Department of Environment Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan, China
Shurui Zheng
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan, China
Department of Environment Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan, China
Yao Hu
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan, China
Department of Environment Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan, China
Zhenzhen Niu
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan, China
Department of Environment Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan, China
Yingying Yan
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan, China
Zhenxing Shen
Department of Environmental Science and Engineering, School of
Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
Guofeng Shen
Laboratory for Earth Surface Process, College of Urban and
Environmental Sciences, Peking University, Beijing, China
Dantong Liu
Department of Atmospheric Science, School of Earth Science,
Zhejiang University, Hangzhou, China
Shuxiao Wang
State Key Joint Laboratory of Environmental Simulation and
Pollution Control, School of Environment, Tsinghua University, Beijing,
China
Shihua Qi
Department of Environment Science and Engineering, School of
Environmental Studies, China University of Geosciences, Wuhan, China
Related authors
Zhenzhen Niu, Shaofei Kong, Qin Yan, Yi Cheng, Huang Zheng, Yao Hu, Jian Wu, Xujing Qin, Haoyu Dong, Weisi Jiang, Yingying Yan, Wei Liu, Feng Ding, Yongqing Bai, and Shihua Qi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-354, https://doi.org/10.5194/essd-2025-354, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Trichlorofluoromethane (CFC-11) is usually recognized from CFC-11 production and use sources. In this study, we established CFC-11 emission inventory from coal combustion in China during 2000~2021. We found that CFC-11 emissions from coal combustion exhibited fluctuations and an overall upward trend, peaking in 2016, and Hebei and Shandong provinces had higher emissions. The CFC-11 emissions from coal combustion in the coastal regions might influence the monitored CFC-11 concentrations.
Siyuan Li, Dantong Liu, Shaofei Kong, Yangzhou Wu, Kang Hu, Huang Zheng, Yi Cheng, Shurui Zheng, Xiaotong Jiang, Shuo Ding, Dawei Hu, Quan Liu, Ping Tian, Delong Zhao, and Jiujiang Sheng
Atmos. Chem. Phys., 22, 6937–6951, https://doi.org/10.5194/acp-22-6937-2022, https://doi.org/10.5194/acp-22-6937-2022, 2022
Short summary
Short summary
The understanding of secondary organic aerosols is hindered by the aerosol–gas evolution by different oxidation mechanisms. By concurrently measuring detailed mass spectra of aerosol and gas phases in a megacity online, we identified the primary and secondary source sectors and investigated the transformation between gas and aerosol phases influenced by photooxidation and moisture. The results will help us to understand the respective evolution of major sources in a typical urban environment.
Wei Feng, Xiangyu Zhang, Zhijuan Shao, Guofeng Shen, Hong Liao, Yuhang Wang, and Mingjie Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-2106, https://doi.org/10.5194/egusphere-2025-2106, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In this work, the relative differences in particle concentrations of water-soluble organic molecular markers (WSOMMs) between the collocated filter samples represent the uncertainties in the measurements. The comparisons between the measurements of chemically treated and untreated backup filter samples indicate that the WSOMMs detected on the backup filters may originate from heterogeneous reactions on the filter surfaces, but are not caused by the adsorption of gaseous molecules.
Yuying Cui, Qingru Wu, Shuxiao Wang, Kaiyun Liu, Shengyue Li, Zhezhe Shi, Daiwei Ouyang, Zhongyan Li, Qinqin Chen, Changwei Lü, Fei Xie, Yi Tang, Yan Wang, and Jiming Hao
Earth Syst. Sci. Data, 17, 3315–3328, https://doi.org/10.5194/essd-17-3315-2025, https://doi.org/10.5194/essd-17-3315-2025, 2025
Short summary
Short summary
We develop P-CAME, a long-term gridded emission inventory for China spanning from 1978 to 2021. P-CAME enhances the accuracy of emissions mapping, identifies potential pollution hotspots, and aligns with observed Hg0 concentration trends. With its improved spatial resolution and reliable long-term trends, P-CAME offers valuable support for global emissions modeling, legacy impact studies, and evaluations of the Minamata Convention.
Zhenzhen Niu, Shaofei Kong, Qin Yan, Yi Cheng, Huang Zheng, Yao Hu, Jian Wu, Xujing Qin, Haoyu Dong, Weisi Jiang, Yingying Yan, Wei Liu, Feng Ding, Yongqing Bai, and Shihua Qi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-354, https://doi.org/10.5194/essd-2025-354, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Trichlorofluoromethane (CFC-11) is usually recognized from CFC-11 production and use sources. In this study, we established CFC-11 emission inventory from coal combustion in China during 2000~2021. We found that CFC-11 emissions from coal combustion exhibited fluctuations and an overall upward trend, peaking in 2016, and Hebei and Shandong provinces had higher emissions. The CFC-11 emissions from coal combustion in the coastal regions might influence the monitored CFC-11 concentrations.
Chenjie Yu, Paola Formenti, Joel F. de Brito, Astrid Bauville, Antonin Bergé, Hichem Bouzidi, Mathieu Cazaunau, Manuela Cirtog, Claudia Di Biagio, Ludovico Di Antonio, Cécile Gaimoz, Franck Maisonneuve, Pascal Zapf, Tobias Seubert, Simone T. Andersen, Patrick Dewald, Gunther N. T. E. Türk, John N. Crowley, Alexandre Kukui, Chaoyang Xue, Cyrielle Denjean, Olivier Garrouste, Jean-Claude Etienne, Huihui Wu, James D. Allan, Dantong Liu, Yangzhou Wu, Christopher Cantrell, and Vincent Michoud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2667, https://doi.org/10.5194/egusphere-2025-2667, 2025
Short summary
Short summary
We presented a field measurement in a Paris suburban forest region to characterise the impacts of photochemical aging process on aerosol physical chemical properties. Photochemical production of organic aerosols increased forest fine particle mass and significantly enhanced absorption of short-wavelength sunlight. This study highlights the critical need to incorporate light absorbing carbonaceous particles formation mechanisms into models to accurately simulate their direct radiative impacts.
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025, https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Short summary
This study combines machine learning with concentration-weighted trajectory analysis to quantify regional transport PM2.5. From 2013–2020, local emissions dominated Beijing's pollution events. The Air Pollution Prevention and Control Action Plan reduced regional transport pollution, but the eastern region showed the smallest decrease. Beijing should prioritize local emission reduction while considering the east region's contributions in future strategies.
Huang Zheng, Shaofei Kong, Deping Ding, Marjan Savadkoohi, Congbo Song, Mingming Zheng, and Roy Harrison
EGUsphere, https://doi.org/10.5194/egusphere-2025-2113, https://doi.org/10.5194/egusphere-2025-2113, 2025
Short summary
Short summary
This study analyzes 13 years of BC data in China, uncovering patterns in its concentration and sources. Spatial-temporal variations and trends of BC are reported. Our analysis revealed that the reduction rates of BC and its sources varied across different station types, with spatial differences in the drivers of reduction. These long-term observations provide valuable insights to enhance understanding of pollution trends and improve models for predicting air quality.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Liyan Liu, Hongmei Xu, Mengyun Yang, Abdullah Akhtar, Jian Sun, and Zhenxing Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1821, https://doi.org/10.5194/egusphere-2025-1821, 2025
Short summary
Short summary
Atmospheric microplastics and plasticizers can disperse into ecosystem and directly enter the human body, causing multiple adverse effects. The fingerprint markers of microplastics sources are very lacking. We examine the concentration, size distribution, eco-health risks and production of reactive oxygen species of microplastics from five typical sources, especially neglected rural sources. Our results could provide a scientific foundation for developing efficient management strategies.
Zeqi Li, Bin Zhao, Shengyue Li, Zhezhe Shi, Dejia Yin, Qingru Wu, Fenfen Zhang, Xiao Yun, Guanghan Huang, Yun Zhu, and Shuxiao Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-104, https://doi.org/10.5194/essd-2025-104, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This study uses an ensemble machine learning model to predict long-term, high-resolution cooking activity data, establishing China’s first county-level cooking emission inventory spanning 1990–2021. It covers key pollutants such as polycyclic aromatic hydrocarbons. It reveals emissions’ long-term spatiotemporal trends and driving factors, such as population migration and economic growth, offering efficient control strategies. This dataset is crucial for air pollution and health impact studies.
Yuzhi Jin, Jiandong Wang, Chao Liu, David C. Wong, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
Atmos. Chem. Phys., 25, 2613–2630, https://doi.org/10.5194/acp-25-2613-2025, https://doi.org/10.5194/acp-25-2613-2025, 2025
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full accounting for it. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing bare and coated BC species and their conversion. The WRF-CMAQ-BCG model introduces the capability to simulate BC mixing states and bare and coated BC wet deposition, and it improves the accuracy of BC mass concentration and aerosol optics.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025, https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of the BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with a characteristic time of less than 1 d. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Yuanmou Du, Dantong Liu, Delong Zhao, Mengyu Huang, Ping Tian, Dian Wen, Wei Xiao, Wei Zhou, Hui He, Baiwan Pan, Dongfei Zuo, Xiange Liu, Yingying Jing, Rong Zhang, Jiujiang Sheng, Fei Wang, Yu Huang, Yunbo Chen, and Deping Ding
Atmos. Chem. Phys., 24, 13429–13444, https://doi.org/10.5194/acp-24-13429-2024, https://doi.org/10.5194/acp-24-13429-2024, 2024
Short summary
Short summary
By conducting in situ measurements, we investigated ice production processes in stratiform clouds with embedded convection over the North China Plain. The results show that the ice number concentration is strongly related to the distance to the cloud top, and the level with a larger distance to the cloud top has more graupel falling from upper levels, which promotes collision and coalescence between graupel and droplets and enhances secondary ice production.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech., 17, 2401–2413, https://doi.org/10.5194/amt-17-2401-2024, https://doi.org/10.5194/amt-17-2401-2024, 2024
Short summary
Short summary
Infrared spectroscopy is a cost-effective measurement technique to characterize the chemical composition of organic aerosol emissions. This technique differentiates the organic matter emission factor from different fuel sources by their characteristic functional groups. Comparison with collocated measurements suggests that polycyclic aromatic hydrocarbon concentrations in emissions estimated by conventional chromatography may be substantially underestimated.
Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood
Atmos. Chem. Phys., 24, 1345–1360, https://doi.org/10.5194/acp-24-1345-2024, https://doi.org/10.5194/acp-24-1345-2024, 2024
Short summary
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
Da Gao, Bin Zhao, Shuxiao Wang, Yuan Wang, Brian Gaudet, Yun Zhu, Xiaochun Wang, Jiewen Shen, Shengyue Li, Yicong He, Dejia Yin, and Zhaoxin Dong
Atmos. Chem. Phys., 23, 14359–14373, https://doi.org/10.5194/acp-23-14359-2023, https://doi.org/10.5194/acp-23-14359-2023, 2023
Short summary
Short summary
Surface PM2.5 concentrations can be enhanced by aerosol–radiation interactions (ARIs) and aerosol–cloud interactions (ACIs). In this study, we found PM2.5 enhancement induced by ACIs shows a significantly smaller decrease ratio than that induced by ARIs in China with anthropogenic emission reduction from 2013 to 2021, making ACIs more important for enhancing PM2.5 concentrations. ACI-induced PM2.5 enhancement needs to be emphatically considered to meet the national PM2.5 air quality standard.
Zeqi Li, Shuxiao Wang, Shengyue Li, Xiaochun Wang, Guanghan Huang, Xing Chang, Lyuyin Huang, Chengrui Liang, Yun Zhu, Haotian Zheng, Qian Song, Qingru Wu, Fenfen Zhang, and Bin Zhao
Earth Syst. Sci. Data, 15, 5017–5037, https://doi.org/10.5194/essd-15-5017-2023, https://doi.org/10.5194/essd-15-5017-2023, 2023
Short summary
Short summary
This study developed the first full-volatility organic emission inventory for cooking sources in China, presenting high-resolution cooking emissions during 2015–2021. It identified the key subsectors and hotspots of cooking emissions, analyzed emission trends and drivers, and proposed future control strategies. The dataset is valuable for accurately simulating organic aerosol formation and evolution and for understanding the impact of organic emissions on air pollution and climate change.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Qian Li, Dantong Liu, Xiaotong Jiang, Ping Tian, Yangzhou Wu, Siyuan Li, Kang Hu, Quan Liu, Mengyu Huang, Ruijie Li, Kai Bi, Shaofei Kong, Deping Ding, and Chenjie Yu
Atmos. Chem. Phys., 23, 9439–9453, https://doi.org/10.5194/acp-23-9439-2023, https://doi.org/10.5194/acp-23-9439-2023, 2023
Short summary
Short summary
By attributing the shortwave absorption from black carbon, primary organic aerosol and secondary organic aerosol in a suburban environment, we firstly observed that the photochemically produced nitrogen-containing secondary organic aerosol may contribute to the enhancement of brown carbon absorption, partly compensating for some bleaching effect on the absorption of primary organic aerosol, hereby exerting radiative impacts.
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023, https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
Short summary
This study for the first time found large amounts of liquid–liquid phase separation particles with soot redistributing in organic coatings instead of sulfate cores in the eastern Tibetan Plateau atmosphere. The particle size and the ratio of the organic matter coating thickness to soot size are two of the major possible factors that likely affect the soot redistribution process. The soot redistribution process promoted the morphological compaction of soot particles.
Yuyang Li, Jiewen Shen, Bin Zhao, Runlong Cai, Shuxiao Wang, Yang Gao, Manish Shrivastava, Da Gao, Jun Zheng, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 23, 8789–8804, https://doi.org/10.5194/acp-23-8789-2023, https://doi.org/10.5194/acp-23-8789-2023, 2023
Short summary
Short summary
We set up a new parameterization for 1.4 nm particle formation rates from sulfuric acid–dimethylamine (SA–DMA) nucleation, fully including the effects of coagulation scavenging and cluster stability. Incorporating the new parameterization into 3-D chemical transport models, we achieved better consistencies between simulation results and observation data. This new parameterization provides new insights into atmospheric nucleation simulations and its effects on atmospheric pollution or health.
Ruosi Liang, Yuzhong Zhang, Wei Chen, Peixuan Zhang, Jingran Liu, Cuihong Chen, Huiqin Mao, Guofeng Shen, Zhen Qu, Zichong Chen, Minqiang Zhou, Pucai Wang, Robert J. Parker, Hartmut Boesch, Alba Lorente, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 8039–8057, https://doi.org/10.5194/acp-23-8039-2023, https://doi.org/10.5194/acp-23-8039-2023, 2023
Short summary
Short summary
We compare and evaluate East Asian methane emissions inferred from different satellite observations (GOSAT and TROPOMI). The results show discrepancies over northern India and eastern China. Independent ground-based observations are more consistent with TROPOMI-derived emissions in northern India and GOSAT-derived emissions in eastern China.
Yaqin Gao, Hongli Wang, Lingling Yuan, Shengao Jing, Bin Yuan, Guofeng Shen, Liang Zhu, Abigail Koss, Yingjie Li, Qian Wang, Dan Dan Huang, Shuhui Zhu, Shikang Tao, Shengrong Lou, and Cheng Huang
Atmos. Chem. Phys., 23, 6633–6646, https://doi.org/10.5194/acp-23-6633-2023, https://doi.org/10.5194/acp-23-6633-2023, 2023
Short summary
Short summary
A near-complete speciation of reactive organic gases from residential combustion was developed to get more insights into their atmospheric effects. Oxygenated species, higher hydrocarbons and nitrogen-containing species played larger roles in these emissions compared with common hydrocarbons. Based on the near-complete speciation, these emissions were largely underestimated, leading to more underestimation of their hydroxyl radical reactivity and secondary organic aerosol formation potential.
Shengyue Li, Shuxiao Wang, Qingru Wu, Yanning Zhang, Daiwei Ouyang, Haotian Zheng, Licong Han, Xionghui Qiu, Yifan Wen, Min Liu, Yueqi Jiang, Dejia Yin, Kaiyun Liu, Bin Zhao, Shaojun Zhang, Ye Wu, and Jiming Hao
Earth Syst. Sci. Data, 15, 2279–2294, https://doi.org/10.5194/essd-15-2279-2023, https://doi.org/10.5194/essd-15-2279-2023, 2023
Short summary
Short summary
This study compiled China's emission inventory of air pollutants and CO2 during 2005–2021 (ABaCAS-EI v2.0) based on unified emission-source framework. The emission trends and its drivers are analyzed. Key sectors and regions with higher synergistic reduction potential of air pollutants and CO2 are identified. Future control measures are suggested. The dataset and analyses provide insights into the synergistic reduction of air pollutants and CO2 emissions for China and other developing countries.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Diwei Wang, Zhenxing Shen, Qian Zhang, Yali Lei, Tian Zhang, Shasha Huang, Jian Sun, Hongmei Xu, and Junji Cao
Atmos. Chem. Phys., 22, 14893–14904, https://doi.org/10.5194/acp-22-14893-2022, https://doi.org/10.5194/acp-22-14893-2022, 2022
Short summary
Short summary
The optical properties and molecular structure of atmospheric brown carbon (BrC) in winter of several megacities in China were analyzed, and the source contribution of brown carbon was improved by using positive matrix factorization coupled with a multilayer perceptron neural network. These results can provide a basis for the more effective control of BrC to reduce its impacts on regional climates and human health.
Xiao He, Xuan Zheng, Shaojun Zhang, Xuan Wang, Ting Chen, Xiao Zhang, Guanghan Huang, Yihuan Cao, Liqiang He, Xubing Cao, Yuan Cheng, Shuxiao Wang, and Ye Wu
Atmos. Chem. Phys., 22, 13935–13947, https://doi.org/10.5194/acp-22-13935-2022, https://doi.org/10.5194/acp-22-13935-2022, 2022
Short summary
Short summary
With the use of two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC ToF-MS), we successfully give a comprehensive characterization of particulate intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emitted from heavy-duty diesel vehicles. I/SVOCs are speciated, identified, and quantified based on the patterns of the mass spectrum, and the gas–particle partitioning is fully addressed.
Lulu Cui, Di Wu, Shuxiao Wang, Qingcheng Xu, Ruolan Hu, and Jiming Hao
Atmos. Chem. Phys., 22, 11931–11944, https://doi.org/10.5194/acp-22-11931-2022, https://doi.org/10.5194/acp-22-11931-2022, 2022
Short summary
Short summary
A 1-year campaign was conducted to characterize VOCs at a Beijing urban site during different episodes. VOCs from fuel evaporation and diesel exhaust, particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene, and 1-hexene, were the main contributors. VOCs from diesel exhaust as well as coal and biomass combustion were found to be the dominant contributors for SOAFP, particularly the VOC species toluene, 1-hexene, xylenes, ethylbenzene, and styrene.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Siyuan Li, Dantong Liu, Shaofei Kong, Yangzhou Wu, Kang Hu, Huang Zheng, Yi Cheng, Shurui Zheng, Xiaotong Jiang, Shuo Ding, Dawei Hu, Quan Liu, Ping Tian, Delong Zhao, and Jiujiang Sheng
Atmos. Chem. Phys., 22, 6937–6951, https://doi.org/10.5194/acp-22-6937-2022, https://doi.org/10.5194/acp-22-6937-2022, 2022
Short summary
Short summary
The understanding of secondary organic aerosols is hindered by the aerosol–gas evolution by different oxidation mechanisms. By concurrently measuring detailed mass spectra of aerosol and gas phases in a megacity online, we identified the primary and secondary source sectors and investigated the transformation between gas and aerosol phases influenced by photooxidation and moisture. The results will help us to understand the respective evolution of major sources in a typical urban environment.
Jiandong Wang, Jia Xing, Shuxiao Wang, Rohit Mathur, Jiaping Wang, Yuqiang Zhang, Chao Liu, Jonathan Pleim, Dian Ding, Xing Chang, Jingkun Jiang, Peng Zhao, Shovan Kumar Sahu, Yuzhi Jin, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 22, 5147–5156, https://doi.org/10.5194/acp-22-5147-2022, https://doi.org/10.5194/acp-22-5147-2022, 2022
Short summary
Short summary
Aerosols reduce surface solar radiation and change the photolysis rate and planetary boundary layer stability. In this study, the online coupled meteorological and chemistry model was used to explore the detailed pathway of how aerosol direct effects affect secondary inorganic aerosol. The effects through the dynamics pathway act as an equally or even more important route compared with the photolysis pathway in affecting secondary aerosol concentration in both summer and winter.
Chenjie Yu, Dantong Liu, Kang Hu, Ping Tian, Yangzhou Wu, Delong Zhao, Huihui Wu, Dawei Hu, Wenbo Guo, Qiang Li, Mengyu Huang, Deping Ding, and James D. Allan
Atmos. Chem. Phys., 22, 4375–4391, https://doi.org/10.5194/acp-22-4375-2022, https://doi.org/10.5194/acp-22-4375-2022, 2022
Short summary
Short summary
In this study, we applied a new technique to investigate the aerosol properties on both a mass and number basis and CCN abilities in Beijing suburban regions. The size-resolved aerosol chemical compositions and CCN activation measurement enable a detailed analysis of BC-containing particle hygroscopicity and its size-dependent contribution to the CCN activation. The results presented in this study will affect future models and human health studies.
Xiaoyun Sun, Tianliang Zhao, Yongqing Bai, Shaofei Kong, Huang Zheng, Weiyang Hu, Xiaodan Ma, and Jie Xiong
Atmos. Chem. Phys., 22, 3579–3593, https://doi.org/10.5194/acp-22-3579-2022, https://doi.org/10.5194/acp-22-3579-2022, 2022
Short summary
Short summary
This study revealed the impact of anthropogenic emissions and meteorological conditions on PM2.5 decline in the regional transport of air pollutants over a receptor region in central China. The meteorological drivers led to upwind accelerating and downward offsetting of the effects of emission reductions over the receptor region in regional PM2.5 transport, and the contribution of gaseous precursor emissions to PM2.5 pollution was enhanced with reduced anthropogenic emissions in recent years.
Kelvin H. Bates, Daniel J. Jacob, Ke Li, Peter D. Ivatt, Mat J. Evans, Yingying Yan, and Jintai Lin
Atmos. Chem. Phys., 21, 18351–18374, https://doi.org/10.5194/acp-21-18351-2021, https://doi.org/10.5194/acp-21-18351-2021, 2021
Short summary
Short summary
Simple aromatic compounds (benzene, toluene, xylene) have complex gas-phase chemistry that is inconsistently represented in atmospheric models. We compile recent experimental and theoretical insights to develop a new mechanism for gas-phase aromatic oxidation that is sufficiently compact for use in multiscale models. We compare our new mechanism to chamber experiments and other mechanisms, and implement it in a global model to quantify the impacts of aromatic oxidation on tropospheric chemistry.
Dawei Hu, M. Rami Alfarra, Kate Szpek, Justin M. Langridge, Michael I. Cotterell, Claire Belcher, Ian Rule, Zixia Liu, Chenjie Yu, Yunqi Shao, Aristeidis Voliotis, Mao Du, Brett Smith, Greg Smallwood, Prem Lobo, Dantong Liu, Jim M. Haywood, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 21, 16161–16182, https://doi.org/10.5194/acp-21-16161-2021, https://doi.org/10.5194/acp-21-16161-2021, 2021
Short summary
Short summary
Here, we developed new techniques for investigating these properties in the laboratory and applied these to BC and BrC from different sources, including diesel exhaust, inverted propane flame and wood combustion. These have allowed us to quantify the changes in shape and chemical composition of different soots according to source and variables such as the moisture content of wood.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Dongfei Zuo, Deping Ding, Yichen Chen, Ling Yang, Delong Zhao, Mengyu Huang, Ping Tian, Wei Xiao, Wei Zhou, Yuanmou Du, and Dantong Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-221, https://doi.org/10.5194/amt-2021-221, 2021
Publication in AMT not foreseen
Short summary
Short summary
According to the echo attenuation analysis of mixed precipitation, the melting layer is found to be the key factor affecting the attenuation correction. This study hereby proposes an adaptive echo attenuation correction method based on the melting layer, and uses the ground-based S-band radar to extract the echo on the aircraft trajectory to verify the correction results. The results show that the echo attenuation correction value above the melting layer is related to the flight position.
Lin Huang, Song Liu, Zeyuan Yang, Jia Xing, Jia Zhang, Jiang Bian, Siwei Li, Shovan Kumar Sahu, Shuxiao Wang, and Tie-Yan Liu
Geosci. Model Dev., 14, 4641–4654, https://doi.org/10.5194/gmd-14-4641-2021, https://doi.org/10.5194/gmd-14-4641-2021, 2021
Short summary
Short summary
Accurate estimation of emissions is a prerequisite for effectively controlling air pollution, but current methods lack either sufficient data or a representation of nonlinearity. Here, we proposed a novel deep learning method to model the dual relationship between emissions and pollutant concentrations. Emissions can be updated by back-propagating the gradient of the loss function measuring the deviation between simulations and observations, resulting in better model performance.
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Yingying Yan, Yue Zhou, Shaofei Kong, Jintai Lin, Jian Wu, Huang Zheng, Zexuan Zhang, Aili Song, Yongqing Bai, Zhang Ling, Dantong Liu, and Tianliang Zhao
Atmos. Chem. Phys., 21, 3143–3162, https://doi.org/10.5194/acp-21-3143-2021, https://doi.org/10.5194/acp-21-3143-2021, 2021
Short summary
Short summary
We analyze the effectiveness of emission reduction for local and upwind regions during winter haze episodes controlled by the main potential synoptic patterns over central China, a regional pollutant transport hub with sub-basin topography. Our results provide an opportunity to effectively mitigate haze pollution via local emission control actions in coordination with regional collaborative actions according to different synoptic patterns.
Sunling Gong, Hongli Liu, Bihui Zhang, Jianjun He, Hengde Zhang, Yaqiang Wang, Shuxiao Wang, Lei Zhang, and Jie Wang
Atmos. Chem. Phys., 21, 2999–3013, https://doi.org/10.5194/acp-21-2999-2021, https://doi.org/10.5194/acp-21-2999-2021, 2021
Short summary
Short summary
Surface concentrations of PM2.5 in China have had a declining trend since 2013 across the country. This research found that the control measures of emission reduction are the dominant factors in the PM2.5 declining trends in various regions. The contribution by the meteorology to the surface PM2.5 concentrations from 2013 to 2019 was not found to show a consistent trend, fluctuating positively or negatively by about 5% on the annual average and 10–20% for the fall–winter heavy-pollution seasons.
Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qi Yuan, Dantong Liu, Yele Sun, Pingqing Fu, Zongbo Shi, and Weijun Li
Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, https://doi.org/10.5194/acp-21-2251-2021, 2021
Short summary
Short summary
We found that large numbers of light-absorbing primary organic particles with high viscosity, especially tarballs, from domestic coal and biomass burning occurred in rural and even urban hazes in the winter of North China. For the first time, we characterized the atmospheric aging process of these burning-related primary organic particles by microscopic analysis and further evaluated their light absorption enhancement resulting from the “lensing effect” of secondary inorganic coatings.
Jiarui Wu, Naifang Bei, Yuan Wang, Xia Li, Suixin Liu, Lang Liu, Ruonan Wang, Jiaoyang Yu, Tianhao Le, Min Zuo, Zhenxing Shen, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 21, 2229–2249, https://doi.org/10.5194/acp-21-2229-2021, https://doi.org/10.5194/acp-21-2229-2021, 2021
Short summary
Short summary
A source-oriented version of the WRF-Chem model is developed to conduct source identification of wintertime PM2.5 in the North China Plain. Trans-boundary transport of air pollutants generally dominates the haze pollution in Beijing and Tianjin. The air quality in Hebei, Shandong, and Shanxi is generally controlled by local emissions. Primary aerosol species, such as EC and POA, are generally controlled by local emissions, while secondary aerosol shows evident regional characteristics.
Shuo Ding, Dantong Liu, Kang Hu, Delong Zhao, Ping Tian, Fei Wang, Ruijie Li, Yichen Chen, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 681–694, https://doi.org/10.5194/acp-21-681-2021, https://doi.org/10.5194/acp-21-681-2021, 2021
Short summary
Short summary
In this study, we for the first time characterized the detailed black carbon (BC) microphysics at a mountain site located at the top of the planetary boundary layer (PBL) influenced by surface emission over the North China Plain. We investigated the optical and hygroscopic properties of BC at this level as influenced by microphysical properties. Such information will constrain the impacts of BC in influencing the PBL dynamics and low-level cloud formation over anthropogenically polluted regions.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Jia Xing, Siwei Li, Yueqi Jiang, Shuxiao Wang, Dian Ding, Zhaoxin Dong, Yun Zhu, and Jiming Hao
Atmos. Chem. Phys., 20, 14347–14359, https://doi.org/10.5194/acp-20-14347-2020, https://doi.org/10.5194/acp-20-14347-2020, 2020
Short summary
Short summary
Quantifying emission changes is a prerequisite for assessment of control effectiveness in improving air quality. However, traditional bottom-up methods usually take months to perform and limit timely assessments. A novel method was developed by using a response model that provides real-time estimation of emission changes based on air quality observations. It was successfully applied to quantify emission changes on the North China Plain due to the COVID-19 pandemic shutdown.
Mingjie Xie, Zhenzhen Zhao, Amara L. Holder, Michael D. Hays, Xi Chen, Guofeng Shen, James J. Jetter, Wyatt M. Champion, and Qin'geng Wang
Atmos. Chem. Phys., 20, 14077–14090, https://doi.org/10.5194/acp-20-14077-2020, https://doi.org/10.5194/acp-20-14077-2020, 2020
Short summary
Short summary
This study investigated the composition, structures, and light absorption of N-containing aromatic compounds (NACs) in PM2.5 emitted from burning red oak and charcoal in a variety of cookstoves. The results suggest that the identified NACs might have substantial fractions remaining in the gas phase. In comparison to other sources, cookstove emissions from red oak or charcoal fuels did not exhibit unique NAC structural features but had distinct NAC composition.
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
Yongqing Bai, Tianliang Zhao, Yue Zhou, Jie Xiong, Weiyang Hu, Yao Gu, Lin Liu, Shaofei Kong, and Huang Zheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-708, https://doi.org/10.5194/acp-2020-708, 2020
Revised manuscript not accepted
Short summary
Short summary
Heavy air pollution over central China with regional transport of PM2.5 during January of 2015-2019 were studied by using MV-EOF with multi-source observation data. It is revealed that the 3-D meteorological structure biulding a receptor region in regional transport of air pollutants over China for improving our our understanding on meteorological mechanism of regional transport of source-receptor air pollutants.
Wanyu Zhao, Hong Ren, Kimitaka Kawamura, Huiyun Du, Xueshun Chen, Siyao Yue, Qiaorong Xie, Lianfang Wei, Ping Li, Xin Zeng, Shaofei Kong, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 10331–10350, https://doi.org/10.5194/acp-20-10331-2020, https://doi.org/10.5194/acp-20-10331-2020, 2020
Short summary
Short summary
Our observations provide detailed information on the abundance and vertical distribution of dicarboxylic acids, oxoacids and α-dicarbonyls in PM2.5 collected at three heights based on a 325 m meteorological tower in Beijing in summer. Our results demonstrate that organic acids at the ground surface are largely associated with local traffic emissions, while long-range atmospheric transport followed by photochemical ageing contributes more in the urban boundary layer than the ground surface.
Cited articles
Amap: Amap Web service API, https://lbs.amap.com/, last access 6 April 2021.
Amouei Torkmahalleh, M., Ospanova, S., Baibatyrova, A., Nurbay, S.,
Zhanakhmet, G., and Shah, D.: Contributions of burner, pan, meat and salt to
PM emission during grilling, Environ. Res., 164, 11–17,
https://doi.org/10.1016/j.envres.2018.01.044, 2018.
Batis, C., Sotres-Alvarez, D., Gordon-Larsen, P., Mendez, M. A., Adair, L.,
and Popkin, B.: Longitudinal analysis of dietary patterns in Chinese adults
from 1991 to 2009, Br. J. Nutr., 111, 1441–1451,
https://doi.org/10.1017/S0007114513003917, 2014.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Camilleri, R. and Vella, A. J.: Emission factors for aerial pyrotechnics and
use in assessing environmental impact of firework displays: Case study from
Malta, Prop. Explos. Pyrotech., 41, 273–280,
https://doi.org/10.1002/prep.201500205, 2016.
Cao, X., Zhang, X., Tong, D. Q., Chen, W., Zhang, S., Zhao, H., and Xiu, A.:
Review on physicochemical properties of pollutants released from fireworks:
Environmental and health effects and prevention, Environ. Rev., 26,
133–155, https://doi.org/10.1139/er-2017-0063, 2018.
Chen, Y., Zhi, G., Feng, Y., Liu, D., Zhang, G., Li, J., Sheng, G., and Fu,
J.: Measurements of black and organic carbon emission factors for household
coal combustion in China: Implication for emission reduction, Environ. Sci.
Technol., 43, 9495–9500, https://doi.org/10.1021/es9021766, 2009.
Chen, Y., Tian, C., Feng, Y., Zhi, G., Li, J., and Zhang, G.: Measurements
of emission factors of PM2.5, OC, EC, and BC for household stoves of
coal combustion in China, Atmos. Environ., 109, 190–196,
https://doi.org/10.1016/j.atmosenv.2015.03.023, 2015.
Cheng, S., Wang, G., Lang, J., Wen, W., Wang, X., and Yao, S.:
Characterization of volatile organic compounds from different cooking
emissions, Atmos. Environ., 145, 299–307,
https://doi.org/10.1016/j.atmosenv.2016.09.037, 2016.
Cheng, Y., Kong, S., Yan, Q., Liu, H., Wang, W., Chen, K., Yin, Y., Zheng,
H., Wu, J., Yao, L., Zeng, X., Zheng, S., Wu, F., Niu, Z., Zhang, Y., Yan,
Y., Zheng, M., and Qi, S.: Size-segregated emission factors and health risks
of PAHs from residential coal flaming/smoldering combustion, Environ. Sci.
Pollut. Res., 26, 31793–31803, https://doi.org/10.1007/s11356-019-06340-2,
2019.
Cheng, Y., Kong, S., Yao, L., Zheng, H., Wu, J., Yan, Q., Zheng, S., Hu, Y.,
Niu, Z., Yan, Y., Shen, Z., Shen, G., Liu, D., Wang, S., and Qi, S.:
Multi-year emission of carbonaceous aerosols from cooking, fireworks
burning, sacrificial incenses, joss paper burning, and barbecue and the key
driving forces in China, Figshare [data set],
https://doi.org/10.6084/m9.figshare.19999991.v2, 2022.
Chiang, K.-C. and Liao, C.-M.: Heavy incense burning in temples promotes
exposure risk from airborne PMs and carcinogenic PAHs, Sci. Total Environ.,
372, 64–75, https://doi.org/10.1016/j.scitotenv.2006.08.012, 2006.
CNKI: China's economic and social big data research platform, https://data.cnki.net, last access: 21 October 2020.
Corbin, J. C., Pieber, S. M., Czech, H., Zanatta, M., Jakobi, G.,
Massabò, D., Orasche, J., El Haddad, I., Mensah, A. A., Stengel, B.,
Drinovec, L., Mocnik, G., Zimmermann, R., Prévôt, A. S. H., and
Gysel, M.: Brown and black carbon emitted by a marine engine operated on
heavy fuel oil and distillate fuels: Optical properties, size distributions,
and emission factors, J. Geophys. Res.-Atmos., 123, 6175–6195,
https://doi.org/10.1029/2017JD027818, 2018.
Croteau, G., Dills, R., Beaudreau, M., and Davis, M.: Emission factors and
exposures from ground-level pyrotechnics, Atmos. Environ., 44, 3295–3303,
https://doi.org/10.1016/j.atmosenv.2010.05.048, 2010.
Ding, J., Guo, J., Wang, L., Chen, Y., Hu, B., Li, Y., Huang, R., Cao, J.,
Zhao, Y., Geiser, M., Miao, Q., Liu, Y., and Chen, C.: Cellular responses to
exposure to outdoor air from the Chinese Spring Festival at the air–liquid
interface, Environ. Sci. Technol., 53, 9128–9138,
https://doi.org/10.1021/acs.est.9b00399, 2019.
Ding, Q., Liu, J., Lu, Y., Wang, Y., Lu, F., and Shi, J.: Research and
development of an on-line carbonaceous aerosol analyzer (In Chinese), Chin.
J. Sci. Instrum., 35, 1246–1253,
https://doi.org/10.19650/j.cnki.cjsi.2014.06.007, 2014.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Fan, S., Li, Y., and Liu, C.: Are environmentally friendly fireworks really
“green” for air quality? A study from the 2019 National Day fireworks
display in Shenzhen, Environ. Sci. Technol., 55, 3520–3529,
https://doi.org/10.1021/acs.est.0c03521, 2021.
Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13, 8607–8621, https://doi.org/10.5194/acp-13-8607-2013, 2013.
Gong, P., Li, X., and Zhang, W.: 40-Year (1978–2017) human settlement
changes in China reflected by impervious surfaces from satellite remote
sensing, Sci. Bull., 64, 756–763,
https://doi.org/10.1016/j.scib.2019.04.024, 2019 (data available at: http://data.ess.tsinghua.edu.cn/, last access: 15 March 2021).
Gong, P., Chen, B., Li, X., Liu, H., Wang, J., Bai, Y., Chen, J., Chen, X.,
Fang, L., Feng, S., Feng, Y., Gong, Y., Gu, H., Huang, H., Huang, X., Jiao,
H., Kang, Y., Lei, G., Li, A., Li, X., Li, X., Li, Y., Li, Z., Li, Z., Liu,
C., Liu, C., Liu, M., Liu, S., Mao, W., Miao, C., Ni, H., Pan, Q., Qi, S.,
Ren, Z., Shan, Z., Shen, S., Shi, M., Song, Y., Su, M., Ping Suen, H., Sun,
B., Sun, F., Sun, J., Sun, L., Sun, W., Tian, T., Tong, X., Tseng, Y., Tu,
Y., Wang, H., Wang, L., Wang, X., Wang, Z., Wu, T., Xie, Y., Yang, J., Yang,
J., Yuan, M., Yue, W., Zeng, H., Zhang, K., Zhang, N., Zhang, T., Zhang, Y.,
Zhao, F., Zheng, Y., Zhou, Q., Clinton, N., Zhu, Z., and Xu, B.: Mapping
essential urban land use categories in China (EULUC-China): Preliminary
results for 2018, Sci. Bull., 65, 182–187,
https://doi.org/10.1016/j.scib.2019.12.007, 2020 (data available at: http://data.ess.tsinghua.edu.cn/, last access: 15 March 2021).
Ho, C.-C., Chan, C.-C., Chio, C.-P., Lai, Y.-C., Chang-Chien, G.-P., Chow,
J. C., Watson, J. G., Chen, L.-W. A., Chen, P.-C., and Wu, C.-F.: Source
apportionment of mass concentration and inhalation risk with long-term
ambient PCDD/Fs measurements in an urban area, J. Hazard. Mater., 317,
180–187, https://doi.org/10.1016/j.jhazmat.2016.05.059, 2016.
Hu, R., Wang, S., Zheng, H., Zhao, B., Liang, C., Chang, X., Jiang, Y., Yin, R., Jiang, J., and Hao, J.: Variations and sources of organic aerosol in winter Beijing under markedly reduced anthropogenic activities during COVID-2019, Environ. Sci. Technol., 56, 6956–6967, https://doi.org/10.1021/acs.est.1c05125, 2021.
Huang, D. D., Zhu, S., An, J., Wang, Q., Qiao, L., Zhou, M., He, X., Ma, Y.,
Sun, Y., Huang, C., Yu, J. Z., and Zhang, Q.: Comparative assessment of
cooking emission contributions to urban organic aerosol using online
molecular tracers and Aerosol Mass Spectrometry measurements, Environ. Sci.
Technol., 55, 14526–14535, https://doi.org/10.1021/acs.est.1c03280, 2021.
Huang, R.-J., Wang, Y., Cao, J., Lin, C., Duan, J., Chen, Q., Li, Y., Gu, Y., Yan, J., Xu, W., Fröhlich, R., Canonaco, F., Bozzetti, C., Ovadnevaite, J., Ceburnis, D., Canagaratna, M. R., Jayne, J., Worsnop, D. R., El-Haddad, I., Prévôt, A. S. H., and O'Dowd, C. D.: Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China, Atmos. Chem. Phys., 19, 2283–2298, https://doi.org/10.5194/acp-19-2283-2019, 2019.
Huang, Y., Shen, H., Chen, Y., Zhong, Q., Chen, H., Wang, R., Shen, G., Liu,
J., Li, B., and Tao, S.: Global organic carbon emissions from primary
sources from 1960 to 2009, Atmos. Environ., 122, 505–512,
https://doi.org/10.1016/j.atmosenv.2015.10.017, 2015.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., Petrescu, A. M. R., Solazzo, E., and Oreggioni, G. D.: EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012, Earth Syst. Sci. Data, 11, 959–1002, https://doi.org/10.5194/essd-11-959-2019, 2019.
Jetter, J. J., Guo, Z., McBrian, J. A., and Flynn, M. R.: Characterization
of emissions from burning incense, Sci. Total Environ., 295, 51–67,
https://doi.org/10.1016/S0048-9697(02)00043-8, 2002.
Jilla, A. and Kura, B.: Particulate matter and carbon monoxide emission factors from incense burning, Environ. Pollut. Clim. Chang., 1, 1000140, https://doi.org/10.4172/2573-458X.1000140, 2017.
Jin, W., Zhi, G., Zhang, Y., Wang, L., Guo, S., Zhang, Y., Xue, Z., Zhang,
X., Du, J., Zhang, H., Ren, Y., Xu, P., Ma, J., Zhao, W., Wang, L., and Fu,
R.: Toward a national emission inventory for the catering industry in China,
Sci. Total Environ., 754, 142184,
https://doi.org/10.1016/j.scitotenv.2020.142184, 2021.
Keller, F. and Schragen, C.: Determination of particulate matter emission
factors of common pyrotechnic articles, Prop. Explos. Pyrotech., 46,
825–842, https://doi.org/10.1002/prep.202000292, 2021.
Kong, S. F., Li, L., Li, X. X., Yin, Y., Chen, K., Liu, D. T., Yuan, L., Zhang, Y. J., Shan, Y. P., and Ji, Y. Q.: The impacts of firework burning at the Chinese Spring Festival on air quality: insights of tracers, source evolution and aging processes, Atmos. Chem. Phys., 15, 2167–2184, https://doi.org/10.5194/acp-15-2167-2015, 2015.
Kuo, S.-C., Tsai, Y. I., and Sopajaree, K.: Emission characteristics of
carboxylates in PM2.5 from incense burning with the effect of light on
acetate, Atmos. Environ., 138, 125–134,
https://doi.org/10.1016/j.atmosenv.2016.05.004, 2016.
Lai, Y. and Brimblecombe, P.: Changes in air pollution and attitude to
fireworks in Beijing, Atmos. Environ., 231, 117549,
https://doi.org/10.1016/j.atmosenv.2020.117549, 2020.
Lao, J.-Y., Xie, S.-Y., Wu, C.-C., Bao, L.-J., Tao, S., and Zeng, E. Y.:
Importance of dermal absorption of polycyclic aromatic hydrocarbons derived
from barbecue fumes, Environ. Sci. Technol., 52, 8330–8338,
https://doi.org/10.1021/acs.est.8b01689, 2018.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric
brown carbon, Chem. Rev., 115, 4335–4382,
https://doi.org/10.1021/cr5006167, 2015.
Lee, S.-C. and Wang, B.: Characteristics of emissions of air pollutants from
burning of incense in a large environmental chamber, Atmos. Environ., 38,
941–951, https://doi.org/10.1016/j.atmosenv.2003.11.002, 2004.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: A review, Natl. Sci. Rev., 4, 834–866,
https://doi.org/10.1093/nsr/nwx150, 2017.
Liakakou, E., Kaskaoutis, D. G., Grivas, G., Stavroulas, I., Tsagkaraki, D.,
Paraskevopoulou, D., Bougiatioti, A., Dumka, U. C., Gerasopoulos, E., and
Mihalopoulos, N.: Long-term brown carbon spectral characteristics in a
Mediterranean city (Athens), Sci. Total Environ., 708, 135019,
https://doi.org/10.1016/j.scitotenv.2019.135019, 2020.
Lin, M.-D., Rau, J.-Y., Tseng, H.-H., Wey, M.-Y., Chu, C.-W., Lin, Y.-H.,
Wei, M.-C., and Lee, C.-H.: Characterizing PAH emission concentrations in
ambient air during a large-scale joss paper open-burning event, J. Hazard.
Mater., 156, 223–229, https://doi.org/10.1016/j.jhazmat.2007.12.015, 2008.
Lin, P., He, W., Nie, L., Schauer, J. J., Wang, Y., Yang, S., and Zhang, Y.:
Comparison of PM2.5 emission rates and source profiles for
traditional Chinese cooking styles, Environ. Sci. Pollut. Res., 26,
21239–21252, https://doi.org/10.1007/s11356-019-05193-z, 2019.
Lin, P., Gao, J., He, W., Nie, L., Schauer, J. J., Yang, S., Xu, Y., and
Zhang, Y.: Estimation of commercial cooking emissions in real-world
operation: Particulate and gaseous emission factors, activity influencing
and modelling, Environ. Pollut., 289, 117847,
https://doi.org/10.1016/j.envpol.2021.117847, 2021.
Liu, J., Zhang, F., Xu, W., Chen, L., Ren, J., Jiang, S., Sun, Y., and Li, Z.: A large impact of cooking organic aerosol (COA) on particle hygroscopicity and CCN activity in urban atmosphere, J. Geophys. Res.-Atmos., 126, e2020JD033628, https://doi.org/10.1029/2020JD033628, 2021.
Liu, Z., Guan, D., Wei, W., Davis, S. J., Ciais, P., Bai, J., Peng, S.,
Zhang, Q., Hubacek, K., Marland, G., Andres, R. J., Crawford-Brown, D., Lin,
J., Zhao, H., Hong, C., Boden, T. A., Feng, K., Peters, G. P., Xi, F., Liu,
J., Li, Y., Zhao, Y., Zeng, N., and He, K.: Reduced carbon emission
estimates from fossil fuel combustion and cement production in China,
Nature, 524, 335–338, https://doi.org/10.1038/nature14677, 2015.
Lui, K. H., Bandowe, B. A. M., Ho, S. S. H., Chuang, H.-C., Cao, J.-J.,
Chuang, K.-J., Lee, S. C., Hu, D., and Ho, K. F.: Characterization of
chemical components and bioreactivity of fine particulate matter
(PM2.5) during incense burning, Environ. Pollut., 213, 524–532,
https://doi.org/10.1016/j.envpol.2016.02.053, 2016.
Martinsson, J., Eriksson, A. C., Nielsen, I. E., Malmborg, V. B., Ahlberg,
E., Andersen, C., and Lindgren, R.: Impacts of combustion conditions and
photochemical processing on the light absorption of biomass combustion
aerosol, Environ. Sci. Technol., 49, 14663–14671,
https://doi.org/10.1021/acs.est.5b03205, 2015.
McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., Zheng, B., Crippa, M., Brauer, M., and Martin, R. V.: A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS), Earth Syst. Sci. Data, 12, 3413–3442, https://doi.org/10.5194/essd-12-3413-2020, 2020.
Meng, W., Zhong, Q., Chen, Y., Shen, H., Yun, X., Smith, K. R., Li, B., Liu,
J., Wang, X., Ma, J., Cheng, H., Zeng, E. Y., Guan, D., Russell, A. G., and
Tao, S.: Energy and air pollution benefits of household fuel policies in
northern China, P. Natl. Acad. Sci. USA, 116, 16773–16780,
https://doi.org/10.1073/pnas.1904182116, 2019.
Ministry of Emergency Management of the PRC: Statistical data, https://www.mem.gov.cn/gk/tjsj/, last access: 8 September 2020.
National Bureau of Statistics: National data, https://data.stats.gov.cn/, last access: 2 December 2020.
National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention: Nutrition Data Yearbook, https://www.chinanutri.cn/, last access: 31 August 2021.
Pang, N., Gao, J., Zhao, P., Wang, Y., Xu, Z., and Chai, F.: The impact of
fireworks control on air quality in four Northern Chinese cities during the
Spring Festival, Atmos. Environ., 244, 117958,
https://doi.org/10.1016/j.atmosenv.2020.117958, 2021.
Park, R. J., Kim, M. J., Jeong, J. I., Youn, D., and Kim, S.: A contribution
of brown carbon aerosol to the aerosol light absorption and its radiative
forcing in East Asia, Atmos. Environ., 44, 1414–1421,
https://doi.org/10.1016/j.atmosenv.2010.01.042, 2010.
Peng, L., Zhang, Q., Yao, Z., Mauzerall, D. L., Kang, S., Du, Z., Zheng, Y.,
Xue, T., and He, K.: Underreported coal in statistics: A survey-based solid
fuel consumption and emission inventory for the rural residential sector in
China, Appl. Energy, 235, 1169–1182,
https://doi.org/10.1016/j.apenergy.2018.11.043, 2019.
Que, D. E., Hou, W.-C., Lin, S.-L., Tsai, Y.-I., Lu, I.-C., Wang, L.-C.,
Young, L.-H., Yu, K.-L. J., Lai, C.-Y., Chao, H.-R., Hsu, Y.-C., Cui, K.,
Chen, S., Tayo, L. L., and Arcega, R. D.: Emission of carbonyl compounds
from cooking oil fumes in the night market areas, Aerosol Air Qual. Res.,
19, 1566–1578, https://doi.org/10.4209/aaqr.2019.06.0289, 2019.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156,
2008.
Saito, E., Tanaka, N., Miyazaki, A., and Tsuzaki, M.: Concentration and
particle size distribution of polycyclic aromatic hydrocarbons formed by
thermal cooking, Food Chem., 153, 285–291,
https://doi.org/10.1016/j.foodchem.2013.12.055, 2014.
Saleh, R., Hennigan, C. J., McMeeking, G. R., Chuang, W. K., Robinson, E. S., Coe, H., Donahue, N. M., and Robinson, A. L.: Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions, Atmos. Chem. Phys., 13, 7683–7693, https://doi.org/10.5194/acp-13-7683-2013, 2013.
See, S. W. and Balasubramanian, R.: Characterization of fine particle
emissions from incense burning, Build. Environ., 46, 1074–1080,
https://doi.org/10.1016/j.buildenv.2010.11.006, 2011.
Shen, G., Xue, M., Chen, Y., Yang, C., Li, W., Shen, H., Huang, Y., Zhang,
Y., Chen, H., Zhu, Y., Wu, H., Ding, A., and Tao, S.: Comparison of
carbonaceous particulate matter emission factors among different solid fuels
burned in residential stoves, Atmos. Environ., 89, 337–345,
https://doi.org/10.1016/j.atmosenv.2014.01.033, 2014.
Shen, H., Tsai, C.-M., Yuan, C.-S., Jen, Y.-H., and Ie, I.-R.: How incense
and joss paper burning during the worship activities influences ambient
mercury concentrations in indoor and outdoor environments of an Asian
temple?, Chemosphere, 167, 530–540,
https://doi.org/10.1016/j.chemosphere.2016.09.159, 2017.
Shi, Y., Zhang, N., Gao, J., Li, X., and Cai, Y.: Effect of fireworks
display on perchlorate in air aerosols during the Spring Festival, Atmos.
Environ., 45, 1323–1327, https://doi.org/10.1016/j.atmosenv.2010.11.056,
2011.
Sun, J., Zhi, G., Hitzenberger, R., Chen, Y., Tian, C., Zhang, Y., Feng, Y., Cheng, M., Zhang, Y., Cai, J., Chen, F., Qiu, Y., Jiang, Z., Li, J., Zhang, G., and Mo, Y.: Emission factors and light absorption properties of brown carbon from household coal combustion in China, Atmos. Chem. Phys., 17, 4769–4780, https://doi.org/10.5194/acp-17-4769-2017, 2017.
Sun, Y., He, Y., Kuang, Y., Xu, W., Song, S., Ma, N., Tao, J., Cheng, P., Wu, C., Su, H., Cheng, Y., Xie, C., Chen, C., Lei, L., Qiu, Y., Fu, P., Croteau, P., and Worsnop, D. R.: Chemical differences between PM1 and PM2.5 in highly polluted environment and implications in air pollution studies, Geophys. Res. Lett., 47, e2019GL086288, https://doi.org/10.1029/2019GL086288, 2020.
Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys., 13, 4577–4592, https://doi.org/10.5194/acp-13-4577-2013, 2013.
Tanda, S., Licbinsky, R., Hegrova, J., and Goessler, W.: Impact of New
Year's Eve fireworks on the size resolved element distributions in airborne
particles, Environ. Int., 128, 371–378,
https://doi.org/10.1016/j.envint.2019.04.071, 2019.
Tian, J., Wang, Q., Ni, H., Wang, M., Zhou, Y., Han, Y., Shen, Z.,
Pongpiachan, S., Zhang, N., Zhao, Z., Zhang, Q., Zhang, Y., Long, X., and
Cao, J.: Emission characteristics of primary brown carbon absorption from
biomass and coal burning: Development of an optical emission inventory for
China, J. Geophys. Res.-Atmos., 124, 1879–1893,
https://doi.org/10.1029/2018JD029352, 2019.
Tong, D., Cheng, J., Liu, Y., Yu, S., Yan, L., Hong, C., Qin, Y., Zhao, H., Zheng, Y., Geng, G., Li, M., Liu, F., Zhang, Y., Zheng, B., Clarke, L., and Zhang, Q.: Dynamic projection of anthropogenic emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios, Atmos. Chem. Phys., 20, 5729–5757, https://doi.org/10.5194/acp-20-5729-2020, 2020.
Vecchi, R., Bernardoni, V., Cricchio, D., D'Alessandro, A., Fermo, P.,
Lucarelli, F., Nava, S., Piazzalunga, A., and Valli, G.: The impact of
fireworks on airborne particles, Atmos. Environ., 42, 1121–1132,
https://doi.org/10.1016/j.atmosenv.2007.10.047, 2008.
Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A. H., and
Friedlander, S. K.: Residential biofuels in South Asia: Carbonaceous aerosol
emissions and climate impacts, Science, 307, 1454–1456,
https://doi.org/10.1126/science.1104359, 2005.
Wang, G., Cheng, S., Wei, W., Wen, W., Wang, X., and Yao, S.: Chemical
characteristics of fine particles emitted from different Chinese cooking
styles, Aerosol Air Qual. Res., 15, 2357–2366,
https://doi.org/10.4209/aaqr.2015.02.0079, 2015.
Wang, H., Xiang, Z., Wang, L., Jing, S., Lou, S., Tao, S., Liu, J., Yu, M.,
Li, L., Lin, L., Chen, Y., Wiedensohler, A., and Chen, C.: Emissions of
volatile organic compounds (VOCs) from cooking and their speciation: A case
study for Shanghai with implications for China, Sci. Total Environ., 621,
1300–1309, https://doi.org/10.1016/j.scitotenv.2017.10.098, 2018.
Wang, L., Xiang, Z., Stevanovic, S., Ristovski, Z., Salimi, F., Gao, J.,
Wang, H., and Li, L.: Role of Chinese cooking emissions on ambient air
quality and human health, Sci. Total Environ., 589, 173–181,
https://doi.org/10.1016/j.scitotenv.2017.02.124, 2017.
Wang, L., Zheng, X., Stevanovic, S., Wu, X., Xiang, Z., Yu, M., and Liu, J.:
Characterization particulate matter from several Chinese cooking dishes and
implications in health effects, J. Environ. Sci., 72, 98–106,
https://doi.org/10.1016/j.jes.2017.12.015, 2018.
Wang, Q., Sun, Y., Jiang, Q., Du, W., Sun, C., Fu, P., and Wang, Z.:
Chemical composition of aerosol particles and light extinction apportionment
before and during the heating season in Beijing, China, J. Geophys. Res.-Atmos., 120, 12708–12722, https://doi.org/10.1002/2015JD023871, 2015.
Wang, R., Tao, S., Wang, W., Liu, J., Shen, H., Shen, G., Wang, B., Liu, X.,
Li, W., Huang, Y., Zhang, Y., Lu, Y., Chen, H., Chen, Y., Wang, C., Zhu, D.,
Wang, X., Li, B., Liu, W., and Ma, J.: Black carbon emissions in China from
1949 to 2050, Environ. Sci. Technol., 46, 7595–7603,
https://doi.org/10.1021/es3003684, 2012.
Wang, R., Tao, S., Shen, H., Huang, Y., Chen, H., Balkanski, Y., Boucher,
O., Ciais, P., Shen, G., Li, W., Zhang, Y., Chen, Y., Lin, N., Su, S., Li,
B., Liu, J., and Liu, W.: Trend in global black carbon emissions from 1960
to 2007, Environ. Sci. Technol., 48, 6780–6787,
https://doi.org/10.1021/es5021422, 2014.
Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., Liu, D., and Clarke, A. D.: Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon, Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014, 2014.
Wang, Y., Wang, Q., Ye, J., Li, L., Zhou, J., Ran, W., Zhang, R., Wu, Y.,
and Cao, J.: Chemical composition and sources of submicron aerosols in
winter at a regional site in Beijing-Tianjin-Hebei region: Implications for
the Joint Action Plan, Sci. Total Environ., 719, 137547,
https://doi.org/10.1016/j.scitotenv.2020.137547, 2020.
Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., Guo, J., Peng, Y., Li, J., Lyapustin, A., Liu, L., Wu, H., and Song, Y.: Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees, Atmos. Chem. Phys., 20, 3273–3289, https://doi.org/10.5194/acp-20-3273-2020, 2020.
Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., and
Cribb, M.: Reconstructing 1-km-resolution high-quality PM2.5 data
records from 2000 to 2018 in China: Spatiotemporal variations and policy
implications, Remote Sens. Environ., 252, 112136,
https://doi.org/10.1016/j.rse.2020.112136, 2021.
WorldPop and Center for International Earth Science Information Network (CIESIN): Global High Resolution Population Denominators Project, Funded by The Bill and Melinda Gates Foundation (OPP1134076), https://doi.org/10.5258/SOTON/WP00674, 2018.
Wu, C., Bao, L., Guo, Y., Li, S., and Zeng, E. Y.: Barbecue fumes: An
overlooked source of health hazards in outdoor settings, Environ. Sci.
Technol., 49, 10607–10615, https://doi.org/10.1021/acs.est.5b01494, 2015.
Wu, J., Kong, S., Wu, F., Cheng, Y., Zheng, S., Yan, Q., Zheng, H., Yang, G., Zheng, M., Liu, D., Zhao, D., and Qi, S.: Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation, Atmos. Chem. Phys., 18, 11623–11646, https://doi.org/10.5194/acp-18-11623-2018, 2018.
Wu, J., Kong, S., Wu, F., Cheng, Y., Zheng, S., Qin, S., Liu, X., Yan, Q., Zheng, H., Zheng, M., Yan, Y., Liu, D., Ding, S., Zhao, D., Shen, G., Zhao, T., and Qi, S.: The moving of high emission for biomass burning in China: View from multi-year emission estimation and human-driven forces, Environ. Int., 142, 105812, https://doi.org/10.1016/j.envint.2020.105812, 2020.
Wu, J., Kong, S., Zeng, X., Cheng, Y., Yan, Q., Zheng, H., Yan, Y., Zheng,
S., Liu, D., Zhang, X., Fu, P., Wang, S., and Qi, S.: First high-resolution
emission inventory of levoglucosan for biomass burning and non-biomass
burning sources in China, Environ. Sci. Technol., 55, 1497–1507,
https://doi.org/10.1021/acs.est.0c06675, 2021.
Xiang, Z., Wang, H., Stevanovic, S., Jing, S., Lou, S., Tao, S., Li, L.,
Liu, J., Yu, M., and Wang, L.: Assessing impacts of factors on carbonyl
compounds emissions produced from several typical Chinese cooking, Build.
Environ., 125, 348–355, https://doi.org/10.1016/j.buildenv.2017.08.045,
2017.
Xu M., Chao X., Zhang B., Liu S., Yin J., and Gan S.: Study on the
investigation, analysis and countermeasures for the current status of mutton
sheep industry in Xinjiang (In Chinese), Acta Ecologiae Animalis Domastici,
39, 85–89, 2018.
Yan, Q., Kong, S., Yan, Y., Liu, H., Wang, W., Chen, K., Yin, Y., Zheng, H.,
Wu, J., Yao, L., Zeng, X., Cheng, Y., Zheng, S., Wu, F., Niu, Z., Zhang, Y.,
Zheng, M., Zhao, D., Liu, D., and Qi, S.: Emission and simulation of primary
fine and submicron particles and water-soluble ions from domestic coal
combustion in China, Atmos. Environ., 224, 117308,
https://doi.org/10.1016/j.atmosenv.2020.117308, 2020.
Yang, C.-R., Ko, T.-H., Lin, Y.-C., Lee, S.-Z., Chang, Y.-F., and Hsueh,
H.-T.: Oyster shell reduces PAHs and particulate matter from incense
burning, Environ. Chem. Lett., 11, 33–40,
https://doi.org/10.1007/s10311-012-0374-2, 2013.
Yang, H.-H., Jung, R.-C., Wang, Y.-F., and Hsieh, L.-T.: Polycyclic aromatic
hydrocarbon emissions from joss paper furnaces, Atmos. Environ., 39,
3305–3312, https://doi.org/10.1016/j.atmosenv.2005.01.052, 2005.
Yao, L., Wang, D., Fu, Q., Qiao, L., Wang, H., Li, L., Sun, W., Li, Q.,
Wang, L., Yang, X., Zhao, Z., Kan, H., Xian, A., Wang, G., Xiao, H., and
Chen, J.: The effects of firework regulation on air quality and public
health during the Chinese Spring Festival from 2013 to 2017 in a Chinese
megacity, Environ. Int., 126, 96–106,
https://doi.org/10.1016/j.envint.2019.01.037, 2019.
Zhang, A., Wang, Y., Zhang, Y., Weber, R. J., Song, Y., Ke, Z., and Zou, Y.: Modeling the global radiative effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black carbon, Atmos. Chem. Phys., 20, 1901–1920, https://doi.org/10.5194/acp-20-1901-2020, 2020.
Zhang, L., Gao, Y., Wu, S., Zhang, S., Smith, K. R., Yao, X., and Gao, H.:
Global impact of atmospheric arsenic on health risk: 2005 to 2015, P.
Natl. Acad. Sci. USA, 117, 13975–13982,
https://doi.org/10.1073/pnas.2002580117, 2020a.
Zhang, L., Luo, Z., Du, W., Li, G., Shen, G., Cheng, H., and Tao, S.: Light
absorption properties and absorption emission factors for indoor biomass
burning, Environ. Pollut., 267, 115652,
https://doi.org/10.1016/j.envpol.2020.115652, 2020b.
Zhang, L., Luo, Z., Li, Y., Chen, Y., Du, W., Li, G., Cheng, H., Shen, G.,
and Tao, S.: Optically measured black and particulate brown carbon emission
factors from real-world residential combustion predominantly affected by
fuel differences, Environ. Sci. Technol., 55, 169–178,
https://doi.org/10.1021/acs.est.0c04784, 2021.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air
quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116,
24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, S., Zhong, L., Chen, X., Liu, Y., Zhai, X., Xue, Y., Wang, W., Liu,
J., and Xu, K.: Emissions characteristics of hazardous air pollutants from
the incineration of sacrificial offerings, Atmosphere, 10, 332,
https://doi.org/10.3390/atmos10060332, 2019.
Zhang, Y., Kong, S., Sheng, J., Zhao, D., Ding, D., Yao, L., Zheng, H., Wu,
J., Cheng, Y., Yan, Q., Niu, Z., Zheng, S., Wu, F., Yan, Y., Liu, D., and
Qi, S.: Real-time emission and stage-dependent emission factors/ratios of
specific volatile organic compounds from residential biomass combustion in
China, Atmos. Res., 248, 105189,
https://doi.org/10.1016/j.atmosres.2020.105189, 2021.
Zhang, Z., Zhu, W., Hu, M., Liu, K., Wang, H., Tang, R., Shen, R., Yu, Y., Tan, R., Song, K., Li, Y., Zhang, W., Zhang, Z., Xu, H., Shuai, S., Li, S., Chen, Y., Li, J., Wang, Y., and Guo, S.: Formation and evolution of secondary organic aerosols derived from urban-lifestyle sources: vehicle exhaust and cooking emissions, Atmos. Chem. Phys., 21, 15221–15237, https://doi.org/10.5194/acp-21-15221-2021, 2021.
Zhao, Y., Chen, C., and Zhao, B.: Is oil temperature a key factor
influencing air pollutant emissions from Chinese cooking?, Atmos. Environ.,
193, 190–197, https://doi.org/10.1016/j.atmosenv.2018.09.012, 2018.
Zhao, Y., Chen, C., and Zhao, B.: Emission characteristics of
PM2.5-bound chemicals from residential Chinese cooking, Build.
Environ., 149, 623–629, https://doi.org/10.1016/j.buildenv.2018.12.060,
2019.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zhong, Q., Shen, H., Yun, X., Chen, Y., Ren, Y., Xu, H., Shen, G., Du, W., Meng, J., Li, W., Ma, J., and Tao, S.: Global Sulfur Dioxide Emissions and the Driving Forces, Environ. Sci. Technol., 54, 65086517, https://doi.org/10.1021/acs.est.9b07696, 2020.
Zhu, W., Guo, S., Zhang, Z., Wang, H., Yu, Y., Chen, Z., Shen, R., Tan, R., Song, K., Liu, K., Tang, R., Liu, Y., Lou, S., Li, Y., Zhang, W., Zhang, Z., Shuai, S., Xu, H., Li, S., Chen, Y., Hu, M., Canonaco, F., and Prévôt, A. S. H.: Mass spectral characterization of secondary organic aerosol from urban cooking and vehicular sources, Atmos. Chem. Phys., 21, 15065–15079, https://doi.org/10.5194/acp-21-15065-2021, 2021a.
Zhu, W., Zhou, M., Cheng, Z., Yan, N., Huang, C., Qiao, L., Wang, H., Liu,
Y., Lou, S., and Guo, S.: Seasonal variation of aerosol compositions in
Shanghai, China: Insights from particle aerosol mass spectrometer
observations, Sci. Total Environ., 771, 144948,
https://doi.org/10.1016/j.scitotenv.2021.144948, 2021b.
Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik, G., Hüglin, C., Baltensperger, U., Szidat, S., and Prévôt, A. S. H.: Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol, Atmos. Chem. Phys., 17, 4229–4249, https://doi.org/10.5194/acp-17-4229-2017, 2017.
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
This work establishes the first emission inventory of carbonaceous aerosols from cooking,...
Altmetrics
Final-revised paper
Preprint