

Supplement of

Multiyear emissions of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue as well as their key driving forces in China

Yi Cheng et al.

Correspondence to: Shaofei Kong (kongshaofei@cug.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Sect. S1: The online carbonaceous aerosol analyzer (OCAA) was developed by the Key Laboratory of 1 Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of 2 Sciences (Ding et al., 2014). Repeated testing of standard samples showed a relative standard deviation of 1.5% 3 for the analysis of OCAA. When the sampling flow is 8 L min⁻¹ and the sampling time is 30 min, the OCAA 4 5 can detect the lowest concentration of particulate matter containing carbon as 0.23 µgC m⁻³. The time resolution of the OCAA is 1 or 2 h. In addition, the OCAA can be set to a single sampling time as needed. The 6 pure substance sucrose of OC was used to configure a series of sucrose solutions with different concentrations. 7 The sucrose solutions with the same volume and different concentrations were used for OCAA analysis. The 8 9 ratio of peak area between sucrose solution and internal standard was taken as the ordinate, and the carbon 10 content of sucrose solution was taken as the abscissa to obtain the standard curve for instrument calibration.

12 Sect. S2: POI data came from the Open Platform of Amap (https://lbs.amap.com/). Amap is a leading provider of digital mapping, navigation, and location service in China. We have extracted the POI data by the keywords 13 of fireworks, barbecue, restaurants, and temples, and eliminated the points with irrelevant keywords (Wu et 14 al., 2021). The extraction was performed on Python 3.8 platform with the Requests library and Pandas library. 15 We got 430,343 barbecue restaurants, 1,986,674 common restaurants, 70,766 temples, and 73,523 fireworks 16 shops. The POI data were divided among 366 cities in China. Each point of POI contains latitude, longitude, 17 name, category, and address. Unfortunately, they do not contain more detailed information on sale volume, 18 19 turnover, etc.

Sect. S3: To understand the consumption of sacrificial incenses, joss paper, and fireworks, we have organized 21 household investigations in China. We have investigated the population during the Chinese New Year, address 22 (in the urban or rural region), the time when local fireworks were prohibited, the date or festivals of setting 23 off fireworks, the date or festivals of burning joss paper and sacrificial incense, the quantities of fireworks, 24 joss paper, and sacrificial incense that per capita consumed each year. We did not design the questionnaire to 25 ask about the gender, or nationality of the respondents, but in the process of the questionnaire, we tried to ask 26 27 the older person of each family. Our questionnaire was based on provinces (27 provinces were covered), and the distribution of the questionnaire is shown in Figure S15. Since the burning of fireworks is concentrated 28 during the Chinese New Year, and the population migration during the Chinese New Year is huge in China. 29 The registration or permanent population commonly mentioned in the questionnaire was not applicable in our 30 work. Some families did not give accurate data on the consumption of fireworks, but the approximate volume 31 of fireworks or the number of Xiang of firecrackers (firecrackers are made of thousands of small units 32 connected in series, each unit can be called "Xiang" in Chinese; we thought the firecrackers were also a kind 33 34 of fireworks). The consumption of this family was estimated according to the local quality of unit volume or Xiang. Similar situations can be observed for the sacrificial incense and joss paper. In addition to the festivals 35 36 like Chinese New Year or Lantern festivals, some respondents also gave the dates of marriage, funeral, childbirth, and housewarming, that would burn fireworks. Given that these were only relatively occasions, 37 38 thus these dates were considered as other days than the festivals mentioned in Sect. S5 and Figure 7. In addition, in the survey, we found that some residents were not clear about the specific quality of fireworks set 39 40 off at each festival, but would flexibly be changed according to the quantity of fireworks or firecrackers purchased in the year (such as the number of fireworks boxes and the number of whole rolls of firecrackers). 41 Therefore, we considered the proportion of the occurrence number for each festival to the number for all dates 42 in the questionnaire as the proportion of fireworks set off during the festival in the whole year. For example, 43 if the word "Chinese Spring Festival" appeared 100 times in the questionnaire of a province, and the word 44 "Chinese Spring Festival", "Chinese New Year's eve", "Lantern Festival", and other possible words, have 45 appeared 250 times, then we consider that the fireworks set off during the Spring Festival in this province 46 47 account for 100/250=40% of the whole year. Finally, 2461 valid questionnaires were collected.

Sect. S4: The emissions were spatially allocated by using two datasets: a population distribution data (www.worldpop.org) and a land-use data (Gong et al., 2019, 2020). The urban region and rural region were distinguished by the land-use data. According to the distribution of rural regions and urban regions, the population distribution data was divided into the rural and the urban population. But the result was contradictory to the census. The rural population was about four times the level of the urban population. Thus, data from the statistical yearbook (366 cities) was used to correct this bias.

Sect. S5: Chinese New Year's Eve (CNE, the last day of one lunar year) and Chinese Spring Festival (CSF, 56 the first day of the next lunar year) are the Chinese Lunar New Year, and they are also the most important 57 traditional festivals in China. The Spring Lantern Festival (LF) falls on the 15th day of the first lunar month in 58 China. CNE, CSF, and LF are three traditional Chinese festivals when fireworks were set off for celebration. 59 The fireworks burning has also led to explosions in the concentration of air pollutants (Yang et al., 2014; Zhao 60 et al., 2017; Wu et al., 2018; Yao et al., 2019). The Qingming Festival (QF) and Zhongyuan Festival (ZF) are 61 62 traditional sacrificial festivals. In those days, people sweep tombs and worship their ancestors by burning joss paper and sacrificial incense. These festivals also prevail in Sinosphere. The burning of joss paper and 63 sacrificial incense has attracted the attention of the scientific community, and it's also the source of air 64 pollutants in certain periods (Chiang & Liao, 2006; Wei et al., 2018; Chen et al., 2019; Zhang et al., 2019). 65 66

67 Sect. S6: The surge in ACS_{BrC} emission in 2014 might be out of the ordinary. We attempted to use the PM_{2.5} concentration dataset (Wei et al., 2020, 2021) to verify the accuracy of the inventory. The ACS_{BrC} emissions 68 mainly came from fireworks burning (Figure S8), and most of the fireworks were burnt in rural regions during 69 the Chinese New Year (Section 3.3.3). We conducted a correlation analysis between the FMS ACS_{BrC} 70 emissions and PM_{2.5} concentration in non-urban regions for the New Year's Eve. The results were shown in 71 Figure S16. There was a positive correlation (r=0.59, p<0.01) between the ACS_{BrC} emissions and PM_{2.5} 72 concentration. The correlation (r=0.85, p<0.05) was even higher if we focus only on the period after 2013. 73 Thus, the emission surge in 2014 was possible. However, more accurate verification is still needed to be carried 74 75 out by chemical transport models in the future.

Sect. S7: As shown in Table S3, there existed a correlation between the activity data and the emissions. Population data was the basic data of the emissions for all FMS, thus the correlations between population and emissions of each city were positive (r > 0.47, p < 0.01). The other activity data for FMS were also correlated. For example, the total emissions of SI and JP in each city were positively related to the number of temples, which lead to their spatial distribution of emissions being coincidental with that of temples to a certain extent. This phenomenon also existed for other FMS.

84

Figure S1 Pictures of materials used in this study (1: red incense (RI), 2: environmental incense (EI), 3: high incense (HI), 4: red print paper (RP), 5: large sacrificial paper (LP), 6: small sacrificial paper (SP), 7: firecrackers (FC), 8: fountain fireworks (FF), 9: handheld fireworks (HF), 10: handheld fountain (HT), 11: spin fireworks (SF). Pictures of meats used in barbecue and cooking experiments, including chicken (CK), beef (BF), lamb (LB), pork (PK), cooking of meat (MT1), cooking of meat and pepper (MT2), cooking of meat and garlic (MT3), cooking of meat, pepper, and garlic (MT4), were not present.

Figure S2 Structure of the combustion and dilution sampling system adopted in this study

Figure S3 The distribution of temples, firework shops, barbecue restaurants, and common restaurants in China. The blue dots represent points of interest, and the red dots in the first picture are cradles of Chinese Buddhism.

Figure S4 Contributions (%) of BC and BrC to the total light absorption in different wavelengths.

Figure S5 AEF_{BrC} and AEF_{BC} of FM in different wavelengths.

Figure S6 The distribution of total consumption amounts of sacrificial incense, joss paper, fireworks, and pork in 366 cities of China

Figure S7 The distribution of per capita consumption amounts of sacrificial incense, joss paper, fireworks, and pork in 366 cities of China

Figure S8 Contribution of different sources to the total CA emissions from FMS of China in 2018 (SI: sacrificial incense; JP: joss paper; FW: fireworks; BBQ: barbecue; RC: residential cooking; CI: catering industry).

Figure S9 The seven geographical regions in China

Figure S10 Distribution of OC emission intensities from different sources in 2018. Colorbar shows the emissions in each grid.

Figure S11 Distribution of OC emission intensities from different sources in 2018. Each point represents a restaurant that deals in barbecue or cooking. Colorbar shows the emission from each point.

Figure S12 Monthly OC and EC emissions from residential sources (residential and commercial sources) in MEIC inventory (Li et al., 2017) and PKU inventory (Wang et al., 2014; Huang et al., 2015).

Figure S13 Monthly variation of CA emission from FMS from 2000 to 2018 in this study (OC, EC, BC: t, ACS_{BrC} : Gm²).

Figure S14 Number of cities that implemented emission control policies of FMS in 2000–2018. The blue dash line represents the pronouncement time of the Air Pollution Prevention and Control Action Plan on September 10, 2013.

Figure S15 The distribution of questionnaire numbers obtained in each province.

Figure S16 $PM_{2.5}$ concentration and ACS_{BrC} emission from FMS in rural China in 2000–2018 and the correlation between them.

Sources	CV	References
Sacrificial incense	-50-50%	Subject judgment
Joss paper	-50-50%	Subject judgment
Barbecue	-20-20%	(Wu et al., 2021)
Cooking	-20-20%	(Wu et al., 2021)
Fireworks	-50-50%	Subject judgment

 Table S1 The coefficients of activity data for FMS.

	OC	EC	BC	ACS _{BrC}
2000	-16.7-17.2%	-109-112%	-40.4-42.4%	-110-117%
2001	-16.4-16.8%	-110-112%	-40.0-43.1%	-112-113%
2002	-16.6-17.0%	-110-108%	-40.3-41.7%	-113-112%
2003	-16.0-16.8%	-110-109%	-42.3-43.9%	-114-116%
2004	-16.1-17.1%	-109-112%	-42.9-44.4%	-113-116%
2005	-16.0-16.9%	-108-111%	-42.9-43.1%	-113-115%
2006	-16.2-17.2%	-109-112%	-42.7-44.3%	-113-114%
2007	-16.2-16.5%	-108-114%	-42.9-44.6%	-111-116%
2008	-16.3-17.0%	-109-111%	-41.1-42.0%	-111-116%
2009	-16.5-17.3%	-103-108%	-39.9-40.8%	-110-115%
2010	-16.1-17.2%	-103-108%	-39.6-40.4%	-112-111%
2011	-16.4-17.0%	-102-106%	-38.5-40.7%	-110-114%
2012	-16.7-17.1%	-100-104%	-39.2-39.1%	-109-115%
2013	-16.6-17.4%	-99.6-102%	-37.9-39.8%	-109-112%
2014	-16.2-16.9%	-105-107%	-39.1-42.2%	-110-117%
2015	-16.7-17.4%	-96.6-101%	-37.0-37.9%	-111-112%
2016	-16.8-17.5%	-95.7-101%	-37.0-38.0%	-109-112%
2017	-17.0 - 17.7%	-97.8-99.3%	-36.5-37.9%	-109-115%
2018	-17.6-17.8%	-85.9-91.4%	-35.7-35.1%	-105-107%

Table S2 Uncertainties of CA emission inventories of FMS.

Source	Activity data	r^{**}
SI	POI of temples	0.36
JP	POI of temples	0.44
FW	POI of firework shops	0.53
BBQ	POI of BBQ restaurants	0.68
CI	POI of restaurants	0.67
BBQ	meat consumptions	0.85
CI	meat consumptions	0.87
RC	meat consumptions	0.78

 Table S3 Correlations of the OC emissions and activity data at a city level in 2018

**: *p*<0.01

Source	Pollutant	Emission factors	Experiments	References	
	PM _{2.5}	$2.5-3 \text{ g kg}^{-1}$	Severing et a showhen using US EDA method 1	Jilla & Kura. (2017)	
	СО	$110-120 \text{ g kg}^{-1}$	Sampling at a chamber using US EPA method 1.		
	PM _{2.5}	7.7–205.4 g kg ⁻¹	Chamber experiments with 10 incenses.	Lee & Wang. (2004)	
	PM _{2.5}	11.09–23.38 g kg ⁻¹	Chamber experiments with 4 incenses.	Kuo et al. (2016)	
	PM _{2.5}	$5.0-55.7 \mathrm{~g~kg^{-1}}$	23 tests were conducted in a specifically designed chamber,		
	PM_{10}	$5.4-49.4 \text{ g kg}^{-1}$	and particles were collected on filters.	Jetter et al. (2002)	
Sacrificial	PM _{2.5}	0.444.5 g kg ⁻¹		See & Balasubramanian. (2011)	
incenses	OC	$0.01 - 1.79 \mathrm{~g~kg^{-1}}$	6 brands of Singaporean incenses were burned. Filter		
	EC	$0.26-29.5 \text{ g kg}^{-1}$	samples were collected in a combustion chamber.		
	mercury	9.78–13.82 ng g^{-1}	Sampling at a traditional temple in China.	Shen et al. (2017)	
	PAHs 8.81–9.14 mg kg	0.01.0.14 11	Considering the impact of additions on PAHs emissions	Yang et al. (2013)	
		8.81–9.14 mg kg ⁻¹	from incenses.		
	OC	$21.4-49.2 \text{ mg kg}^{-1}$		This study	
	BC 1.07–2	$1.07 3.09 \text{ mg kg}^{-1}$	-		
	PAHs	$67.3-74.6 \text{ mg kg}^{-1}$	Sampling at two paper furnaces at temples.	Yang et al. (2005)	
	mercury	$4.67 - 13.16 \text{ ng g}^{-1}$	Sampling at a traditional temple in China.	Shen et al. (2017)	
Joss paper	PM _{2.5}	$4.23 \pm 0.71 \text{ g kg}^{-1}$		Zhang et al. (2019)	
	OC	$1.26{\pm}0.42~{\rm g~kg^{-1}}$	Four types of sacrificial offerings were burned in an		
	EC	$0.63{\pm}0.28~{ m g~kg^{-1}}$	incinerator. Particles were sampled using a dilution tunnel.		

Tabel S4 Emission factors of FMS in the literatures.

	OC 14.6–7		$4.6-75.5 \text{ mg kg}^{-1}$		
BC $1.65-6.27 \text{ mg kg}^{-1}$		$1.65-6.27 \text{ mg kg}^{-1}$	-	This study	
	TSP	$67 - 140 \text{ g kg}^{-1}$	Einstein die als als als (41.2 m^3) Einstein		
	Κ	$23-45 \text{ g kg}^{-1}$	Fireworks were burned in a block room (41.2 m ⁻). Fireworks	Croteau et al. (2010)	
	Mg	$1.3-6.8 \text{ g kg}^{-1}$	were put on preweigned aluminum foll and then ignited.		
Fireworks	PM ₁₀	54–429 g kg ^{-1}	Fireworks were burned in a sampling chamber with four ventilators.	Camilleri & Vella. (2016)	
	PM _{2.5}	200–325 g kg^{-1}	7 tomos of forested in a management showh or	Keller & Schragen. (2021)	
	PM ₁₀	134–281 g kg ^{-1}	/ types of fireworks were tested in a measurement chamber.		
	OC	$5.86 - 124 \text{ mg kg}^{-1}$		This study	
	EC	$2.89-37.3 \text{ mg kg}^{-1}$	-		
	PM _{2.5}	2.06±3.03 mg min ⁻¹	15 Chinese dishes, and considering influences of oil	Zhao et al. (2018)	
		temperature, meat type, cooking method, and so on.			
	PM _{2.5}	$4.88 \pm 3.43 \text{ g h}^{-1}$	Sampling particle and VOCs in 18 traditional cuisine	Lin et al. (2021)	
	OC	$0.42 7.28 \text{ g h}^{-1}$	restaurants in Beijing.		
Castring	Carbonyl compounds	$0.70 1.53 \ \mu g \ kg^{-1}$	Laboratory tests, and considering cooking styles.	Xiang et al. (2017)	
Cooking	VOCs	$12-38 \text{ mg kg}^{-1}$	Laboratory sampling with a dilution system.	Cheng et al. (2016)	
	VOCs	11.15–189.8 g h^{-1}	Sampling at restaurants of seven cuisine types.	Wang et al. (2018a)	
	Carbonyl compounds	90.4–274 $\mu g \ kg^{-1}$	Test by US EPA Test Method 5G.	Que et al. (2019)	
	PM	16.8–22.3 mg min ⁻¹	Chamber samplings of PM.	Wang et al. (2018b)	
	PAHs	79.9–270.6 ng min ⁻¹	Sampling at a residential kitchen in Beijing.	Zhao et al. (2019)	

		PM _{2.5}	$19-39 \text{ mg kg}^{-1}$	Laboratory tests, direct sampling of particles without cooling and dilution process.	Wang et al. (2015)
		PM _{2.5}	$0.1-9.2 \text{ g kg}^{-1}$	Laboratory tests, and the sampling system were devised according to the restaurant facility.	Lin et al. (2019)
		OC	$124-203 \text{ mg kg}^{-1}$	_	This study
		BC	$1.34-1.79 \text{ mg kg}^{-1}$		This study
		PM _{2.5}	$15.48 \pm 7.22 \text{ g h}^{-1}$	Sampling particle and VOCs in 18 traditional cuisine	I in et al. (2021)
		OC	$4.31 - 32.1 \text{ g h}^{-1}$	restaurants in Beijing.	$\operatorname{Lin}\operatorname{ct}\operatorname{al.}(2021)$
		Carbonyl compounds	$1.60 \ \mu g \ kg^{-1}$	Laboratory tests, and considering cooking styles.	Xiang et al., 2017)
		DM.	$8.5.270 \text{ mg min}^{-1}$	Laboratory tests, grilling meat 12 min on 550-600 °C.	Amouei Torkmahalleh et
			8. <i>3</i> –270 mg mm	Considering the influences of the burner, pan, meat, and salt.	al. (2018)
	Barbecue	Carbonyl compounds	$191 \mu \mathrm{g \ kg^{-1}}$	Test by US EPA Test Method 5G	Que et al. (2019)
		VOCs	41 mg kg^{-1}	Laboratory sampling with a dilution system.	Cheng et al. (2016)
		DM.	$21 \text{ mg} \text{ trg}^{-1}$	Laboratory tests, direct sampling of particles without	Wang at al. (2015)
P1V12.5		P 1V12.5		cooling and dilution process.	wang et al. (2013)
		OC	$21.5-50.5 \text{ mg kg}^{-1}$		This study
		BC	$1.66-191 \text{ mg kg}^{-1}$	-	This study

Sources	Region	Pollutant	Time	Emission amount	References
Total	China	00	2000 2014	2345–3587 Gg	$\mathbf{H}_{\mathbf{v}} = \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{c} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} c$
Residential & commercial	China	UC	2000–2014	1675–2931 Gg	Huang et al. (2015)
Total	China	PC	2000 2014	1455–1624 Gg	Wang at al. (2014)
Residential & commercial	China	BC	2000–2014	1061–1589 Gg	wang et al. (2014)
Total		OC		2080–3190 Gg	
Total	China	BC	2008 2017	1253–1728 Gg	$\mathbf{Li} \text{ at al} (2017)$
Pagidantial	China	OC	2008-2017	1689–2512 Gg	L1 et al. (2017)
Kesidentiai		BC		626–828 Gg	
Cooking in restaurants	China	VOCs	-	66245 t	Wang et al. (2018a)
Household cooking	Individual household	PM _{2.5}	-	12.4 kg	Wang et al. (2015)
Household cooking	Daijing	PM _{2.5}	2015	3.99 Gg	C_{01} at al. (2018)
Household cooking	Beijing	NMVOCs	2013	4.02 Gg	Cal et al. (2018)
		PM _{2.5}		38.2 Gg	
Catering industry	China	OC	2017	26.8 Gg	Jin et al. (2021)
		BC		0.8 Gg	
Barbecue	Individual household	PM _{2.5}	-	3.8 kg	Wang et al. (2015)
Sacrificial incense				0.54–1.43 t	
Joss paper				38.5–105 t	
Fireworks		OC		267–674 t	
Barbecue				14.8–35.3 t	
Cooking	China		2000 2018	4418–7443 t	This study
Sacrificial incense	China		2000-2018	0.03–0.08 t	This study
Joss paper				3.49–9.50 t	
Fireworks		EC		76.3–193 t	
Barbecue				47.3–109 t	
Cooking				41.3–69.6 t	

Table S5 Emission amounts of air pollutants from FMS or other sources.

Reference

- Amouei Torkmahalleh, M., Ospanova, S., Baibatyrova, A., Nurbay, S., Zhanakhmet, G., & Shah, D. (2018). Contributions of burner, pan, meat and salt to PM emission during grilling. *Environmental Research*, 164, 11–17. https://doi.org/10.1016/j.envres.2018.01.044
- Cai, S., Li, Q., Wang, S., Chen, J., Ding, D., Zhao, B., et al. (2018). Pollutant emissions from residential combustion and reduction strategies estimated via a village-based emission inventory in Beijing. *Environmental Pollution*, 238, 230–237. https://doi.org/10.1016/j.envpol.2018.03.036
- Camilleri, R., & Vella, A. J. (2016). Emission factors for aerial pyrotechnics and use in assessing environmental impact of firework displays: Case study from Malta. *Propellants, Explosives, Pyrotechnics*, 41(2), 273–280. https://doi.org/10.1002/prep.201500205
- Chen, P.-Y., Tan, P.-H., Chou, C. C.-K., Lin, Y.-S., Chen, W.-N., & Shiu, C.-J. (2019). Impacts of holiday characteristics and number of vacation days on "holiday effect" in Taipei: Implications on ozone control strategies. *Atmospheric Environment*, 202, 357–369. https://doi.org/10.1016/j.atmosenv.2019.01.029
- Cheng, S., Wang, G., Lang, J., Wen, W., Wang, X., & Yao, S. (2016). Characterization of volatile organic compounds from different cooking emissions. *Atmospheric Environment*, 145, 299–307. https://doi.org/10.1016/j.atmosenv.2016.09.037
- Chiang, K.-C., & Liao, C.-M. (2006). Heavy incense burning in temples promotes exposure risk from airborne PMs and carcinogenic PAHs. *Science of the Total Environment*, 372(1), 64–75. https://doi.org/10.1016/j.scitotenv.2006.08.012
- Croteau, G., Dills, R., Beaudreau, M., & Davis, M. (2010). Emission factors and exposures from ground-level pyrotechnics. *Atmospheric Environment*, 44(27), 3295–3303. https://doi.org/10.1016/j.atmosenv.2010.05.048
- Ding, Q., Liu, J., Lu, Y., Wang, Y., Lu, F., & Shi, J. (2014). Research and development of an on-line carbonaceous aerosol analyzer (In Chinese). *Chinese Journal of Scientific Instrument*, 35(06), 1246–

1253. https://doi.org/10.19650/j.cnki.cjsi.2014.06.007

- Gong, P., Li, X., & Zhang, W. (2019). 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. *Science Bulletin*, 64(11), 756–763. https://doi.org/10.1016/j.scib.2019.04.024
- Gong, P., Chen, B., Li, X., Liu, H., Wang, J., Bai, Y., et al. (2020). Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. *Science Bulletin*, 65(3), 182–187. https://doi.org/10.1016/j.scib.2019.12.007
- Huang, Y., Shen, H., Chen, Y., Zhong, Q., Chen, H., Wang, R., et al. (2015). Global organic carbon emissions from primary sources from 1960 to 2009. *Atmospheric Environment*, 122, 505–512. https://doi.org/10.1016/j.atmosenv.2015.10.017
- Jetter, J. J., Guo, Z., McBrian, J. A., & Flynn, M. R. (2002). Characterization of emissions from burning incense. *Science of the Total Environment*, 295(1–3), 51–67. https://doi.org/10.1016/S0048-9697(02)00043-8
- Jilla, A., & Kura, B. (2017). Particulate matter and carbon monoxide emission factors from incense burning. Environment Pollution and Climate Change, 01(04). https://doi.org/10.4172/2573-458X.1000140
- Jin, W., Zhi, G., Zhang, Y., Wang, L., Guo, S., Zhang, Y., et al. (2021). Toward a national emission inventory for the catering industry in China. *Science of the Total Environment*, 754, 142184. https://doi.org/10.1016/j.scitotenv.2020.142184
- Keller, F., & Schragen, C. (2021). Determination of particulate matter emission factors of common pyrotechnic articles. *Propellants, Explosives, Pyrotechnics, 46*(5), 825–842. https://doi.org/10.1002/prep.202000292
- Kuo, S.-C., Tsai, Y. I., & Sopajaree, K. (2016). Emission characteristics of carboxylates in PM_{2.5} from incense burning with the effect of light on acetate. *Atmospheric Environment*, 138, 125–134. https://doi.org/10.1016/j.atmosenv.2016.05.004

Lee, S.-C., & Wang, B. (2004). Characteristics of emissions of air pollutants from burning of incense in a large

environmental chamber. *Atmospheric Environment*, 38(7), 941–951. https://doi.org/10.1016/j.atmosenv.2003.11.002

- Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., et al. (2017). Anthropogenic emission inventories in China: a review. *National Science Review*, 4(6), 834–866. https://doi.org/10.1093/nsr/nwx150
- Lin, P., He, W., Nie, L., Schauer, J. J., Wang, Y., Yang, S., & Zhang, Y. (2019). Comparison of PM_{2.5} emission rates and source profiles for traditional Chinese cooking styles. *Environmental Science and Pollution Research*, 26, 21239–21252. https://doi.org/10.1007/s11356-019-05193-z
- Lin, P., Gao, J., He, W., Nie, L., Schauer, J. J., Yang, S., et al. (2021). Estimation of commercial cooking emissions in real-world operation: Particulate and gaseous emission factors, activity influencing and modelling. *Environmental Pollution*, 289, 117847. https://doi.org/10.1016/j.envpol.2021.117847
- Que, D. E., Hou, W.-C., Lin, S.-L., Tsai, Y.-I., Lu, I.-C., Wang, L.-C., et al. (2019). Emission of carbonyl compounds from cooking oil fumes in the night market areas. *Aerosol and Air Quality Research*, 19(7), 1566–1578. https://doi.org/10.4209/aaqr.2019.06.0289
- See, S. W., & Balasubramanian, R. (2011). Characterization of fine particle emissions from incense burning. Building and Environment, 46, 1074–1080. https://doi.org/10.1016/j.buildenv.2010.11.006
- Shen, H., Tsai, C.-M., Yuan, C.-S., Jen, Y.-H., & Ie, I.-R. (2017). How incense and joss paper burning during the worship activities influences ambient mercury concentrations in indoor and outdoor environments of an Asian temple? *Chemosphere*, 167, 530–540. https://doi.org/10.1016/j.chemosphere.2016.09.159
- Wang, G., Cheng, S., Wei, W., Wen, W., Wang, X., & Yao, S. (2015). Chemical characteristics of fine particles emitted from different Chinese cooking styles. *Aerosol and Air Quality Research*, 15(6), 2357–2366. https://doi.org/10.4209/aaqr.2015.02.0079
- Wang, H., Xiang, Z., Wang, L., Jing, S., Lou, S., Tao, S., et al. (2018a). Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. *Science of the Total Environment*, 621, 1300–1309. https://doi.org/10.1016/j.scitotenv.2017.10.098

- Wang, L., Zheng, X., Stevanovic, S., Wu, X., Xiang, Z., Yu, M., & Liu, J. (2018b). Characterization particulate matter from several Chinese cooking dishes and implications in health effects. *Journal of Environmental Sciences*, 72, 98–106. https://doi.org/10.1016/j.jes.2017.12.015
- Wang, R., Tao, S., Balkanski, Y., Ciais, P., Boucher, O., Liu, J., et al. (2014). Exposure to ambient black carbon derived from a unique inventory and high-resolution model. *Proceedings of the National Academy of Sciences*, 111(7), 2459–2463. https://doi.org/10.1073/pnas.1318763111
- Wei, C.-F., Chen, M.-H., Lin, C.-C., Guo, Y. L., Lin, S.-J., Hsieh, W.-S., & Chen, P.-C. (2018). Household incense burning and infant gross motor development: Results from the Taiwan Birth Cohort Study. *Environment International*, 115, 110–116. https://doi.org/10.1016/j.envint.2018.03.005
- Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., et al. (2020). Improved 1 km resolution PM_{2.5} estimates across China using enhanced space–time extremely randomized trees. *Atmospheric Chemistry and Physics*, 20(6), 3273–3289. https://doi.org/10.5194/acp-20-3273-2020
- Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., et al. (2021). Reconstructing 1-km-resolution highquality PM_{2.5} data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. *Remote Sensing of Environment*, 252, 112136. https://doi.org/10.1016/j.rse.2020.112136
- Wu, C., Wang, G., Wang, J., Li, J., Ren, Y., Zhang, L., et al. (2018). Chemical characteristics of haze particles in Xi'an during Chinese Spring Festival: Impact of fireworks burning. *Journal of Environmental Sciences*, 71, 179–187. https://doi.org/10.1016/j.jes.2018.04.008
- Wu, J., Kong, S., Zeng, X., Cheng, Y., Yan, Q., Zheng, H., et al. (2021). First high-resolution emission inventory of levoglucosan for biomass burning and non-biomass burning sources in China. *Environmental Science & Technology*, 55(3), 1497–1507. https://doi.org/10.1021/acs.est.0c06675
- Xiang, Z., Wang, H., Stevanovic, S., Jing, S., Lou, S., Tao, S., et al. (2017). Assessing impacts of factors on carbonyl compounds emissions produced from several typical Chinese cooking. *Building and Environment*, 125, 348–355. https://doi.org/10.1016/j.buildenv.2017.08.045

Yang, C.-R., Ko, T.-H., Lin, Y.-C., Lee, S.-Z., Chang, Y.-F., & Hsueh, H.-T. (2013). Oyster shell reduces PAHs

and particulate matter from incense burning. *Environmental Chemistry Letters*, 11(1), 33–40. https://doi.org/10.1007/s10311-012-0374-2

- Yang, H.-H., Jung, R.-C., Wang, Y.-F., & Hsieh, L.-T. (2005). Polycyclic aromatic hydrocarbon emissions from joss paper furnaces. *Atmospheric Environment*, 39(18), 3305–3312. https://doi.org/10.1016/j.atmosenv.2005.01.052
- Yang, L., Gao, X., Wang, X., Nie, W., Wang, J., Gao, R., et al. (2014). Impacts of firecracker burning on aerosol chemical characteristics and human health risk levels during the Chinese New Year Celebration in Jinan, China. Science of the Total Environment, 476–477, 57–64. https://doi.org/10.1016/j.scitotenv.2013.12.110
- Yao, L., Wang, D., Fu, Q., Qiao, L., Wang, H., Li, L., et al. (2019). The effects of firework regulation on air quality and public health during the Chinese Spring Festival from 2013 to 2017 in a Chinese megacity. *Environment International*, 126, 96–106. https://doi.org/10.1016/j.envint.2019.01.037
- Zhang, S., Zhong, L., Chen, X., Liu, Y., Zhai, X., Xue, Y., et al. (2019). Emissions characteristics of hazardous air pollutants from the incineration of sacrificial offerings. *Atmosphere*, 10(6), 332. https://doi.org/10.3390/atmos10060332
- Zhao, S., Chen, L., Yan, J., & Chen, H. (2017). Characterization of lead-containing aerosol particles in Xiamen during and after Spring Festival by single-particle aerosol mass spectrometry. *Science of the Total Environment*, 580, 1257–1267. https://doi.org/10.1016/j.scitotenv.2016.12.086
- Zhao, Y., Chen, C., & Zhao, B. (2018). Is oil temperature a key factor influencing air pollutant emissions from Chinese cooking? *Atmospheric Environment*, *193*, 190–197. https://doi.org/10.1016/j.atmosenv.2018.09.012
- Zhao, Y., Chen, C., & Zhao, B. (2019). Emission characteristics of PM_{2.5}-bound chemicals from residential Chinese cooking. *Building and Environment*, *149*, 623–629. https://doi.org/10.1016/j.buildenv.2018.12.060