Articles | Volume 14, issue 7
https://doi.org/10.5194/essd-14-3379-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3379-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
British Antarctic Survey's aerogeophysical data: releasing 25 years of airborne gravity, magnetic, and radar datasets over Antarctica
British Antarctic Survey, Cambridge, UK
British Antarctic Survey, Cambridge, UK
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Tom A. Jordan
British Antarctic Survey, Cambridge, UK
Fausto Ferraccioli
British Antarctic Survey, Cambridge, UK
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale,
Trieste, Italy
Carl Robinson
British Antarctic Survey, Cambridge, UK
Hugh F. J. Corr
British Antarctic Survey, Cambridge, UK
Helen J. Peat
British Antarctic Survey, Cambridge, UK
Robert G. Bingham
School of GeoSciences, University of Edinburgh, Edinburgh, UK
David G. Vaughan
British Antarctic Survey, Cambridge, UK
Related authors
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2349, https://doi.org/10.5194/egusphere-2024-2349, 2024
Short summary
Short summary
We use radar technology to study the internal architecture of the ice sheet in western DML, East Antarctica. We identified and dated nine internal reflection horizons (IRHs), revealing important information about the ice sheet's history and dynamics. Some IRHs can be linked to past volcanic eruptions and are of similar age to IRHs detected in other parts of Antarctica. Our findings enhance our understanding of ice sheet behaviour and aid in developing better models for predicting future changes.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Tancrède P. M. Leger, Andrew S. Hein, Ángel Rodés, Robert G. Bingham, Irene Schimmelpfennig, Derek Fabel, Pablo Tapia, and ASTER Team
Clim. Past, 19, 35–59, https://doi.org/10.5194/cp-19-35-2023, https://doi.org/10.5194/cp-19-35-2023, 2023
Short summary
Short summary
Over the past 800 thousand years, variations in the Earth’s orbit and tilt have caused antiphased solar insolation intensity in the Northern and Southern Hemispheres. Paradoxically, glacial records suggest that global ice sheets have responded synchronously to major cold glacial and warm interglacial episodes. To address this puzzle, we present a new detailed glacier chronology that estimates the timing of multiple Patagonian ice-sheet waxing and waning cycles over the past 300 thousand years.
Dominic A. Hodgson, Tom A. Jordan, Neil Ross, Teal R. Riley, and Peter T. Fretwell
The Cryosphere, 16, 4797–4809, https://doi.org/10.5194/tc-16-4797-2022, https://doi.org/10.5194/tc-16-4797-2022, 2022
Short summary
Short summary
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula resulting in the collapse of the overlying ice into the newly formed subglacial cavity. It provides evidence of an active hydrological network under the region's glaciers and close coupling between surface climate processes and the base of the ice.
Angelika Humbert, Julia Christmann, Hugh F. J. Corr, Veit Helm, Lea-Sophie Höyns, Coen Hofstede, Ralf Müller, Niklas Neckel, Keith W. Nicholls, Timm Schultz, Daniel Steinhage, Michael Wolovick, and Ole Zeising
The Cryosphere, 16, 4107–4139, https://doi.org/10.5194/tc-16-4107-2022, https://doi.org/10.5194/tc-16-4107-2022, 2022
Short summary
Short summary
Ice shelves are normally flat structures that fringe the Antarctic continent. At some locations they have channels incised into their underside. On Filchner Ice Shelf, such a channel is more than 50 km long and up to 330 m high. We conducted field measurements of basal melt rates and found a maximum of 2 m yr−1. Simulations represent the geometry evolution of the channel reasonably well. There is no reason to assume that this type of melt channel is destabilizing ice shelves.
Helen Ockenden, Robert G. Bingham, Andrew Curtis, and Daniel Goldberg
The Cryosphere, 16, 3867–3887, https://doi.org/10.5194/tc-16-3867-2022, https://doi.org/10.5194/tc-16-3867-2022, 2022
Short summary
Short summary
Hills and valleys hidden under the ice of Thwaites Glacier have an impact on ice flow and future ice loss, but there are not many three-dimensional observations of their location or size. We apply a mathematical theory to new high-resolution observations of the ice surface to predict the bed topography beneath the ice. There is a good correlation with ice-penetrating radar observations. The method may be useful in areas with few direct observations or as a further constraint for other methods.
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022, https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
Short summary
Radio waves transmitted through ice split up and inform us about the ice sheet interior and orientation of single ice crystals. This can be used to infer how ice flows and improve projections on how it will evolve in the future. Here we used an inverse approach and developed a new algorithm to infer ice properties from observed radar data. We applied this technique to the radar data obtained at two EPICA drilling sites, where ice cores were used to validate our results.
Ole Zeising, Daniel Steinhage, Keith W. Nicholls, Hugh F. J. Corr, Craig L. Stewart, and Angelika Humbert
The Cryosphere, 16, 1469–1482, https://doi.org/10.5194/tc-16-1469-2022, https://doi.org/10.5194/tc-16-1469-2022, 2022
Short summary
Short summary
Remote-sensing-derived basal melt rates of ice shelves are of great importance due to their capability to cover larger areas. We performed in situ measurements with a phase-sensitive radar on the southern Filchner Ice Shelf, showing moderate melt rates and low small-scale spatial variability. The comparison with remote-sensing-based melt rates revealed large differences caused by the estimation of vertical strain rates from remote sensing velocity fields that modern fields can overcome.
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021, https://doi.org/10.5194/tc-15-1517-2021, 2021
Short summary
Short summary
Support Force Glacier rapidly flows into Filcher Ice Shelf of Antarctica. As we know little about this glacier and its subglacial drainage, we used seismic energy to map the transition area from grounded to floating ice where a drainage channel enters the ocean cavity. Soft sediments close to the grounding line are probably transported by this drainage channel. The constant ice thickness over the steeply dipping seabed of the ocean cavity suggests a stable transition and little basal melting.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Neil Ross, Hugh Corr, and Martin Siegert
The Cryosphere, 14, 2103–2114, https://doi.org/10.5194/tc-14-2103-2020, https://doi.org/10.5194/tc-14-2103-2020, 2020
Short summary
Short summary
Using airborne ice-penetrating radar we investigated the physical properties and structure of the West Antarctic Ice Sheet. Ice deep beneath the Institute Ice Stream has prominent layers with physical properties distinct from those around them and which are heavily folded like geological layers. In turn, these folds influence the present-day flow of the ice sheet, with implications for how computer models are used to simulate ice sheet flow and behaviour in a warming world.
Dominic A. Hodgson, Tom A. Jordan, Jan De Rydt, Peter T. Fretwell, Samuel A. Seddon, David Becker, Kelly A. Hogan, Andrew M. Smith, and David G. Vaughan
The Cryosphere, 13, 545–556, https://doi.org/10.5194/tc-13-545-2019, https://doi.org/10.5194/tc-13-545-2019, 2019
Short summary
Short summary
The Brunt Ice Shelf in Antarctica is home to Halley VIa, the latest in a series of six British research stations that have occupied the ice shelf since 1956. A recent rapid growth of rifts in the Brunt Ice Shelf signals the onset of its largest calving event since records began. Here we consider whether this calving event will lead to a new steady state for the ice shelf or an unpinning from the bed, which could predispose it to accelerated flow or collapse.
Frazer D. W. Christie, Robert G. Bingham, Noel Gourmelen, Eric J. Steig, Rosie R. Bisset, Hamish D. Pritchard, Kate Snow, and Simon F. B. Tett
The Cryosphere, 12, 2461–2479, https://doi.org/10.5194/tc-12-2461-2018, https://doi.org/10.5194/tc-12-2461-2018, 2018
Short summary
Short summary
With a focus on the hitherto little-studied Marie Byrd Land coastline linking Antarctica's more comprehensively studied Amundsen and Ross Sea Embayments, this paper uses both satellite remote sensing (Landsat, ASTER, ICESat, and CryoSat2) and climate and ocean records (i.e. ERA-Interim, Met Office EN4 data) to examine links between ice recession, inter-decadal atmosphere-ocean forcing and other influences acting upon the Pacific-facing coastline of West Antarctica.
Damon Davies, Robert G. Bingham, Edward C. King, Andrew M. Smith, Alex M. Brisbourne, Matteo Spagnolo, Alastair G. C. Graham, Anna E. Hogg, and David G. Vaughan
The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018, https://doi.org/10.5194/tc-12-1615-2018, 2018
Short summary
Short summary
This paper investigates the dynamics of ice stream beds using repeat geophysical surveys of the bed of Pine Island Glacier, West Antarctica; 60 km of the bed was surveyed, comprising the most extensive repeat ground-based geophysical surveys of an Antarctic ice stream; 90 % of the surveyed bed shows no significant change despite the glacier increasing in speed by up to 40 % over the last decade. This result suggests that ice stream beds are potentially more stable than previously suggested.
Hafeez Jeofry, Neil Ross, Hugh F. J. Corr, Jilu Li, Mathieu Morlighem, Prasad Gogineni, and Martin J. Siegert
Earth Syst. Sci. Data, 10, 711–725, https://doi.org/10.5194/essd-10-711-2018, https://doi.org/10.5194/essd-10-711-2018, 2018
Short summary
Short summary
Accurately characterizing the complexities of the ice-sheet dynamic specifically close to the grounding line across the Weddell Sea (WS) sector in the ice-sheet models provides challenges to the scientific community. Our main objective is to comprehend these complexities, adding accuracy to the projection of future ice-sheet dynamics. Therefore, we have developed a new bed elevation digital elevation model across the WS sector, which will be of value to ice-sheet modelling experiments.
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Matt A. King, Keith W. Nicholls, Keith Makinson, and Hugh F. J. Corr
Earth Syst. Sci. Data, 9, 849–860, https://doi.org/10.5194/essd-9-849-2017, https://doi.org/10.5194/essd-9-849-2017, 2017
Short summary
Short summary
Tides can affect the flow of ice at hourly to yearly timescales. In some cases the ice responds at a different frequency than is found in the tidal forcing; for example, on Rutford Ice Stream the strongest response is at a fortnightly period. A new compilation of GPS data across the Ronne Ice Shelf and adjoining ice streams shows that this fortnightly modulation in ice flow is found across the entire region. Measurements of this kind can provide insights into ice rheology and basal processes.
Duncan A. Young, Jason L. Roberts, Catherine Ritz, Massimo Frezzotti, Enrica Quartini, Marie G. P. Cavitte, Carly R. Tozer, Daniel Steinhage, Stefano Urbini, Hugh F. J. Corr, Tas van Ommen, and Donald D. Blankenship
The Cryosphere, 11, 1897–1911, https://doi.org/10.5194/tc-11-1897-2017, https://doi.org/10.5194/tc-11-1897-2017, 2017
Short summary
Short summary
To find records of the greenhouse gases found in key periods of climate transition, we need to find sites of unmelted old ice at the base of the Antarctic ice sheet for ice core retrieval. A joint US–Australian–EU team performed a high-resolution survey of such a site (1 km line spacing) near Concordia Station in East Antarctica, using airborne ice-penetrating radar. We found promising targets in rough subglacial terrain, surrounded by subglacial lakes restricted below a minimum hydraulic head.
Angus Atkinson, Simeon L. Hill, Evgeny A. Pakhomov, Volker Siegel, Ricardo Anadon, Sanae Chiba, Kendra L. Daly, Rod Downie, Sophie Fielding, Peter Fretwell, Laura Gerrish, Graham W. Hosie, Mark J. Jessopp, So Kawaguchi, Bjørn A. Krafft, Valerie Loeb, Jun Nishikawa, Helen J. Peat, Christian S. Reiss, Robin M. Ross, Langdon B. Quetin, Katrin Schmidt, Deborah K. Steinberg, Roshni C. Subramaniam, Geraint A. Tarling, and Peter Ward
Earth Syst. Sci. Data, 9, 193–210, https://doi.org/10.5194/essd-9-193-2017, https://doi.org/10.5194/essd-9-193-2017, 2017
Short summary
Short summary
KRILLBASE is a data rescue and compilation project to improve the availability of information on two key Southern Ocean zooplankton: Antarctic krill and salps. We provide a circumpolar database that combines 15 194 scientific net hauls (1926 to 2016) from 10 countries. These data provide a resource for analysing the distribution and abundance of krill and salps throughout the Southern Ocean to support ecological and biogeochemical research as well as fisheries management and conservation.
S. L. Cornford, D. F. Martin, A. J. Payne, E. G. Ng, A. M. Le Brocq, R. M. Gladstone, T. L. Edwards, S. R. Shannon, C. Agosta, M. R. van den Broeke, H. H. Hellmer, G. Krinner, S. R. M. Ligtenberg, R. Timmermann, and D. G. Vaughan
The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015, https://doi.org/10.5194/tc-9-1579-2015, 2015
Short summary
Short summary
We used a high-resolution ice sheet model capable of resolving grounding line dynamics (BISICLES) to compute responses of the major West Antarctic ice streams to projections of ocean and atmospheric warming. This is computationally demanding, and although other groups have considered parts of West Antarctica, we think this is the first calculation for the whole region at the sub-kilometer resolution that we show is required.
K. C. Rose, N. Ross, T. A. Jordan, R. G. Bingham, H. F. J. Corr, F. Ferraccioli, A. M. Le Brocq, D. M. Rippin, and M. J. Siegert
Earth Surf. Dynam., 3, 139–152, https://doi.org/10.5194/esurf-3-139-2015, https://doi.org/10.5194/esurf-3-139-2015, 2015
Short summary
Short summary
We use ice-penetrating-radar data to identify a laterally continuous, gently sloping topographic block, comprising two surfaces separated by a distinct break in slope, preserved beneath the Institute and Möller ice streams, West Antarctica. We interpret these features as extensive erosion surfaces, showing that ancient (pre-glacial) surfaces can be preserved at low elevations beneath ice sheets. Different erosion regimes (e.g. fluvial and marine) may have formed these surfaces.
A. P. Wright, A. M. Le Brocq, S. L. Cornford, R. G. Bingham, H. F. J. Corr, F. Ferraccioli, T. A. Jordan, A. J. Payne, D. M. Rippin, N. Ross, and M. J. Siegert
The Cryosphere, 8, 2119–2134, https://doi.org/10.5194/tc-8-2119-2014, https://doi.org/10.5194/tc-8-2119-2014, 2014
T. Howard, A. K. Pardaens, J. L. Bamber, J. Ridley, G. Spada, R. T. W. L. Hurkmans, J. A. Lowe, and D. Vaughan
Ocean Sci., 10, 473–483, https://doi.org/10.5194/os-10-473-2014, https://doi.org/10.5194/os-10-473-2014, 2014
M. J. Siegert, N. Ross, H. Corr, B. Smith, T. Jordan, R. G. Bingham, F. Ferraccioli, D. M. Rippin, and A. Le Brocq
The Cryosphere, 8, 15–24, https://doi.org/10.5194/tc-8-15-2014, https://doi.org/10.5194/tc-8-15-2014, 2014
P. Dutrieux, D. G. Vaughan, H. F. J. Corr, A. Jenkins, P. R. Holland, I. Joughin, and A. H. Fleming
The Cryosphere, 7, 1543–1555, https://doi.org/10.5194/tc-7-1543-2013, https://doi.org/10.5194/tc-7-1543-2013, 2013
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
F. Gillet-Chaulet, O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve, and D. G. Vaughan
The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, https://doi.org/10.5194/tc-6-1561-2012, 2012
Related subject area
Domain: ESSD – Land | Subject: Geophysics and geodesy
cigFacies: a massive-scale benchmark dataset of seismic facies and its application
Synthetic ground motions in heterogeneous geologies from various sources: the HEMEWS-3D database
GravIS: mass anomaly products from satellite gravimetry
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years of satellite geodesy data and a hybrid processing chain
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Enriching the GEOFON seismic catalog with automatic energy magnitude estimations
AIUB-GRACE gravity field solutions for G3P: processing strategies and instrument parameterization
GPS displacement dataset for the study of elastic surface mass variations
Global Navigation Satellite System (GNSS) time series and velocities about a slowly convergent margin processed on high-performance computing (HPC) clusters: products and robustness evaluation
TRIMS LST: a daily 1 km all-weather land surface temperature dataset for China's landmass and surrounding areas (2000–2022)
Comprehensive data set of in situ hydraulic stimulation experiments for geothermal purposes at the Äspö Hard Rock Laboratory (Sweden)
An earthquake focal mechanism catalog for source and tectonic studies in Mexico from February 1928 to July 2022
Global physics-based database of injection-induced seismicity
The Weisweiler passive seismological network: optimised for state-of-the-art location and imaging methods
A global historical twice-daily (daytime and nighttime) land surface temperature dataset produced by Advanced Very High Resolution Radiometer observations from 1981 to 2021
Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database
DL-RMD: a geophysically constrained electromagnetic resistivity model database (RMD) for deep learning (DL) applications
The ULR-repro3 GPS data reanalysis and its estimates of vertical land motion at tide gauges for sea level science
In situ stress database of the greater Ruhr region (Germany) derived from hydrofracturing tests and borehole logs
The European Preinstrumental Earthquake Catalogue EPICA, the 1000–1899 catalogue for the European Seismic Hazard Model 2020
Rescue and quality control of historical geomagnetic measurement at Sheshan observatory, China
A newly integrated ground temperature dataset of permafrost along the China–Russia crude oil pipeline route in Northeast China
In situ observations of the Swiss periglacial environment using GNSS instruments
Permafrost changes in the northwestern Da Xing'anling Mountains, Northeast China, in the past decade
Hui Gao, Xinming Wu, Xiaoming Sun, Mingcai Hou, Hang Gao, Guangyu Wang, and Hanlin Sheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-337, https://doi.org/10.5194/essd-2024-337, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We propose three strategies of field seismic data curation, knowledge-guided synthesization, and GAN-based generation to construct a massive-scale, feature-rich and high-realism benchmark dataset of seismic facies and evaluate its effectiveness in training a deep learning model for automatic seismic facies classification.
Fanny Lehmann, Filippo Gatti, Michaël Bertin, and Didier Clouteau
Earth Syst. Sci. Data, 16, 3949–3972, https://doi.org/10.5194/essd-16-3949-2024, https://doi.org/10.5194/essd-16-3949-2024, 2024
Short summary
Short summary
Numerical simulations are a promising approach to characterizing the intensity of ground motion in the presence of geological uncertainties. However, the computational cost of 3D simulations can limit their usability. We present the first database of seismic-induced ground motion generated by an earthquake simulator for a collection of 30 000 heterogeneous geologies. The HEMEWS-3D dataset can be helpful for geophysicists, seismologists, and machine learning scientists, among others.
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-347, https://doi.org/10.5194/essd-2024-347, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The satellite missions GRACE and GRACE-FO are unique observing systems to quantify global mass changes at the Earth’s surface from space. Time series of these mass changes are of high value for various applications, e.g., in hydrology, glaciology, and oceanography. GravIS provides easy access to user-friendly, regularly updated mass anomaly products. The associated portal visualizes and describes these data, aiming to highlight their significance for understanding changes in the climate system.
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data, 16, 3261–3281, https://doi.org/10.5194/essd-16-3261-2024, https://doi.org/10.5194/essd-16-3261-2024, 2024
Short summary
Short summary
The satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE) and its follower GRACE-FO play a vital role in monitoring mass transportation on Earth. Based on the latest observation data derived from GRACE and GRACE-FO and an updated data processing chain, a new monthly temporal gravity field series, HUST-Grace2024, was determined.
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024, https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary
Short summary
We present the geophysical data set acquired close to Ny-Ålesund (Svalbard islands) for the characterization of glacial and hydrological processes and features. The data have been organized in a repository that includes both raw and processed (filtered) data and some representative results of 2D models of the subsurface. This data set can foster multidisciplinary scientific collaborations among many disciplines: hydrology, glaciology, climatology, geology, geomorphology, etc.
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024, https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
Short summary
The size of an earthquake is often described by a single number called the magnitude. Among the possible magnitude scales, the seismic moment (Mw) and the radiated energy (Me) scales are based on physical parameters describing the rupture process. Since these two magnitude scales provide complementary information that can be used for seismic hazard assessment and for seismic risk mitigation, we complement the Mw catalog disseminated by the GEOFON Data Centre with Me values.
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Athina Peidou, Donald F. Argus, Felix W. Landerer, David N. Wiese, and Matthias Ellmer
Earth Syst. Sci. Data, 16, 1317–1332, https://doi.org/10.5194/essd-16-1317-2024, https://doi.org/10.5194/essd-16-1317-2024, 2024
Short summary
Short summary
This study recommends a framework for preparing and processing vertical land displacements derived from GPS positioning for future integration with Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) measurements. We derive GPS estimates that only reflect surface mass signals and evaluate them against GRACE (and GRACE-FO). We also quantify uncertainty of GPS vertical land displacement estimates using various uncertainty quantification methods.
Lavinia Tunini, Andrea Magrin, Giuliana Rossi, and David Zuliani
Earth Syst. Sci. Data, 16, 1083–1106, https://doi.org/10.5194/essd-16-1083-2024, https://doi.org/10.5194/essd-16-1083-2024, 2024
Short summary
Short summary
This study presents 20-year time series of more than 350 GNSS stations located in NE Italy and surroundings, together with the outgoing velocities. An overview of the input data, station information, data processing and solution quality is provided. The documented dataset constitutes a crucial and complete source of information about the deformation of an active but slowly converging margin over the last 2 decades, also contributing to the regional seismic hazard assessment of NE Italy.
Wenbin Tang, Ji Zhou, Jin Ma, Ziwei Wang, Lirong Ding, Xiaodong Zhang, and Xu Zhang
Earth Syst. Sci. Data, 16, 387–419, https://doi.org/10.5194/essd-16-387-2024, https://doi.org/10.5194/essd-16-387-2024, 2024
Short summary
Short summary
This paper reported a daily 1 km all-weather land surface temperature (LST) dataset for Chinese land mass and surrounding areas – TRIMS LST. The results of a comprehensive evaluation show that TRIMS LST has the following special features: the longest time coverage in its class, high image quality, and good accuracy. TRIMS LST has already been released to the scientific community, and a series of its applications have been reported by the literature.
Arno Zang, Peter Niemz, Sebastian von Specht, Günter Zimmermann, Claus Milkereit, Katrin Plenkers, and Gerd Klee
Earth Syst. Sci. Data, 16, 295–310, https://doi.org/10.5194/essd-16-295-2024, https://doi.org/10.5194/essd-16-295-2024, 2024
Short summary
Short summary
We present experimental data collected in 2015 at Äspö Hard Rock Laboratory. We created six cracks in a rock mass by injecting water into a borehole. The cracks were monitored using special sensors to study how the water affected the rock. The goal of the experiment was to figure out how to create a system for generating heat from the rock that is better than what has been done before. The data collected from this experiment are important for future research into generating energy from rocks.
Quetzalcoatl Rodríguez-Pérez and F. Ramón Zúñiga
Earth Syst. Sci. Data, 15, 4781–4801, https://doi.org/10.5194/essd-15-4781-2023, https://doi.org/10.5194/essd-15-4781-2023, 2023
Short summary
Short summary
We present a comprehensive catalog of focal mechanisms for earthquakes in Mexico and neighboring areas spanning February 1928 to July 2022. The catalog comprises a wide range of earthquake magnitudes and depths and includes data from diverse geological environments. We collected and revised focal mechanism data from various sources and methods. The catalog is a valuable resource for future studies on earthquake source mechanisms, tectonics, and seismic hazard in the region.
Iman R. Kivi, Auregan Boyet, Haiqing Wu, Linus Walter, Sara Hanson-Hedgecock, Francesco Parisio, and Victor Vilarrasa
Earth Syst. Sci. Data, 15, 3163–3182, https://doi.org/10.5194/essd-15-3163-2023, https://doi.org/10.5194/essd-15-3163-2023, 2023
Short summary
Short summary
Induced seismicity has posed significant challenges to secure deployment of geo-energy projects. Through a review of published documents, we present a worldwide, multi-physical database of injection-induced seismicity. The database contains information about in situ rock, tectonic and geologic characteristics, operational parameters, and seismicity for various subsurface energy-related activities. The data allow for an improved understanding and management of injection-induced seismicity.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Jia-Hao Li, Zhao-Liang Li, Xiangyang Liu, and Si-Bo Duan
Earth Syst. Sci. Data, 15, 2189–2212, https://doi.org/10.5194/essd-15-2189-2023, https://doi.org/10.5194/essd-15-2189-2023, 2023
Short summary
Short summary
The Advanced Very High Resolution Radiometer (AVHRR) is the only sensor that has the advantages of frequent revisits (twice per day), relatively high spatial resolution (4 km at the nadir), global coverage, and easy access prior to 2000. This study developed a global historical twice-daily LST product for 1981–2021 based on AVHRR GAC data. The product is suitable for detecting and analyzing climate changes over the past 4 decades.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Muhammad Rizwan Asif, Nikolaj Foged, Thue Bording, Jakob Juul Larsen, and Anders Vest Christiansen
Earth Syst. Sci. Data, 15, 1389–1401, https://doi.org/10.5194/essd-15-1389-2023, https://doi.org/10.5194/essd-15-1389-2023, 2023
Short summary
Short summary
To apply a deep learning (DL) algorithm to electromagnetic (EM) methods, subsurface resistivity models and/or the corresponding EM responses are often required. To date, there are no standardized EM datasets, which hinders the progress and evolution of DL methods due to data inconsistency. Therefore, we present a large-scale physics-driven model database of geologically plausible and EM-resolvable subsurface models to incorporate consistency and reliability into DL applications for EM methods.
Médéric Gravelle, Guy Wöppelmann, Kevin Gobron, Zuheir Altamimi, Mikaël Guichard, Thomas Herring, and Paul Rebischung
Earth Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023, https://doi.org/10.5194/essd-15-497-2023, 2023
Short summary
Short summary
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS Service. It implements advances in data modelling and corrections, extending the record length by about 7 years. A 28 % reduction in station velocity uncertainties is achieved over the previous solution. These estimates of vertical land motion at the coast supplement data from satellite altimetry or tide gauges for an improved understanding of sea level changes and their impacts along coastal areas.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Andrea Rovida, Andrea Antonucci, and Mario Locati
Earth Syst. Sci. Data, 14, 5213–5231, https://doi.org/10.5194/essd-14-5213-2022, https://doi.org/10.5194/essd-14-5213-2022, 2022
Short summary
Short summary
EPICA is the 1000–1899 catalogue compiled for the European Seismic Hazard Model 2020 and contains 5703 earthquakes with Mw ≥ 4.0. It relies on the data of the European Archive of Historical Earthquake Data (AHEAD), both macroseismic intensities from historical seismological studies and parameters from regional catalogues. For each earthquake, the most representative datasets were selected and processed in order to derive harmonised parameters, both from intensity data and parametric catalogues.
Suqin Zhang, Changhua Fu, Jianjun Wang, Guohao Zhu, Chuanhua Chen, Shaopeng He, Pengkun Guo, and Guoping Chang
Earth Syst. Sci. Data, 14, 5195–5212, https://doi.org/10.5194/essd-14-5195-2022, https://doi.org/10.5194/essd-14-5195-2022, 2022
Short summary
Short summary
The Sheshan observatory has nearly 150 years of observation history, and its observation data have important scientific value. However, with time, these precious historical data face the risk of damage and loss. We have carried out a series of rescues on the historical data of the Sheshan observatory. New historical datasets were released, including the quality-controlled absolute hourly mean values of three components (D, H, and Z) from 1933 to 2019.
Guoyu Li, Wei Ma, Fei Wang, Huijun Jin, Alexander Fedorov, Dun Chen, Gang Wu, Yapeng Cao, Yu Zhou, Yanhu Mu, Yuncheng Mao, Jun Zhang, Kai Gao, Xiaoying Jin, Ruixia He, Xinyu Li, and Yan Li
Earth Syst. Sci. Data, 14, 5093–5110, https://doi.org/10.5194/essd-14-5093-2022, https://doi.org/10.5194/essd-14-5093-2022, 2022
Short summary
Short summary
A permafrost monitoring network was established along the China–Russia crude oil pipeline (CRCOP) route at the eastern flank of the northern Da Xing'anling Mountains in Northeast China. The resulting datasets fill the gaps in the spatial coverage of mid-latitude mountain permafrost databases. Results show that permafrost warming has been extensively observed along the CRCOP route, and local disturbances triggered by the CRCOPs have resulted in significant permafrost thawing.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Xiaoli Chang, Huijun Jin, Ruixia He, Yanlin Zhang, Xiaoying Li, Xiaoying Jin, and Guoyu Li
Earth Syst. Sci. Data, 14, 3947–3959, https://doi.org/10.5194/essd-14-3947-2022, https://doi.org/10.5194/essd-14-3947-2022, 2022
Short summary
Short summary
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he, Mangui, and Yituli’he, a wide range of mean annual ground temperatures at the depth of 20 m (−2.83 to −0.49 ℃) and that of annual maximum thawing depth (about 1.1 to 7.0 m) have been revealed. This study demonstrates that most trajectories of permafrost changes in Northeast China are ground warming and permafrost degradation, except that the shallow permafrost is cooling in Yituli’he.
Cited articles
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby,
B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., and Greku, R.: The
International Bathymetric Chart of the Southern Ocean (IBCSO) Version
1.0 – A new bathymetric compilation covering circum-Antarctic waters,
Geophys. Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013.
Ashmore, D. W. and Bingham, R. G.: Antarctic subglacial hydrology: current
knowledge and future challenges, Antarct. Sci., 26, 758–773, https://doi.org/10.1017/S0954102014000546, 2014.
Ashmore, D. W., Bingham, R. G., Hindmarsh, R. C., Corr, H. F., and Joughin, I. R.:
The relationship between sticky spots and radar reflectivity beneath an
active West Antarctic ice stream, Ann. Glaciol., 55, 29–38, https://doi.org/10.3189/2014AoG67A052, 2014.
Ashmore, D. W., Bingham, R. G., Ross, N., Siegert, M. J., Jordan, T. A., and
Mair, D. W.: Englacial architecture and age-depth constraints across the West
Antarctic Ice Sheet, Geophys. Res. Lett., 47, e2019GL086663, https://doi.org/10.1029/2019GL086663, 2020.
Bamber, J. L., Ferraccioli, F., Joughin, I., Shepherd, T., Rippin, D. M.,
Siegert, M. J., and Vaughan, D. G.: East Antarctic ice stream tributary
underlain by major sedimentary basin, Geology, 34, 33–36, https://doi.org/10.1130/G22160.1, 2006.
Becker, D., Nielsen, J. E., Ayres-Sampaio, D., Forsberg, R., Becker, M., and
Bastos, L.: Drift reduction in strapdown airborne gravimetry using a simple
thermal correction, J. Geodesy, 89, 1133–1144, https://doi.org/10.1007/s00190-015-0839-8, 2015.
Bell, R.: Processed Ice Penetrating Radar Altimeter Data from the Gamburtsev Mountainsin Antarctica acquired during the GAMBIT Twin Otter expedition AGAP_GAMBIT (2008), Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.1594/IEDA/313685, 2011.
Bell, R. E., Blankenship, D. D., Finn, C. A., Morse, D. L., Scambos, T. A.,
Brozena, J. M., and Hodge, S. M.: Influence of subglacial geology on the onset
of a West Antarctic ice stream from aerogeophysical observations, Nature,
394, 58–62, https://doi.org/10.1038/27883, 1998.
Bell, R. E., Studinger, M., Fahnestock, M. A., and Shuman, C. A.: Tectonically
controlled subglacial lakes on the flanks of the Gamburtsev Subglacial
Mountains, East Antarctica, Geophys. Res. Lett., 33, L02504, https://doi.org/10.1029/2005GL025207, 2006.
Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I.,
Damaske, D., Frearson, N., Jordan, T., Rose, K., and Studinger, M.:
Widespread persistent thickening of the East Antarctic Ice Sheet by freezing
from the base, Science, 331, 1592–1595, https://doi.org/10.1126/science.1200109, 2011.
Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie,
D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat image
mosaic of Antarctica, Remote Sens. Environ., 112, 4214–4226, https://doi.org/10.1016/j.rse.2008.07.006, 2008.
Bindschadler, R., Choi, H., Wichlacz, A., Bingham, R., Bohlander, J., Brunt, K., Corr, H., Drews, R., Fricker, H., Hall, M., Hindmarsh, R., Kohler, J., Padman, L., Rack, W., Rotschky, G., Urbini, S., Vornberger, P., and Young, N.: Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year, The Cryosphere, 5, 569–588, https://doi.org/10.5194/tc-5-569-2011, 2011.
Bingham, R. G., Siegert, M. J., Young, D. A., and Blankenship, D. D.: Organized
flow from the South Pole to the Filchner-Ronne ice shelf: An assessment of
balance velocities in interior East Antarctica using radio echo sounding
data, J. Geophys. Res.-Earth, 112, F03S26, https://doi.org/10.1029/2006JF000556, 2007.
Bingham, R. G., Ferraccioli, F., King, E. C., Larter, R. D., Pritchard, H. D.,
Smith, A. M., and Vaughan, D. G.: Inland thinning of West Antarctic Ice Sheet
steered along subglacial rifts, Nature, 487, 468–471, https://doi.org/10.1038/nature11292, 2012.
Bingham, R. G., Rippin, D. M., Karlsson, N. B., Corr, H. F., Ferraccioli, F.,
Jordan, T. A., Le Brocq, A. M., Rose, K. C., Ross, N., and Siegert, M. J.:
Ice-flow structure and ice dynamic changes in the Weddell Sea sector of West
Antarctica from radar-imaged internal layering, J. Geophys. Res.-Earth,
120, 655–670, https://doi.org/10.1002/2014JF003291, 2015.
Blankenship, D. D., Morse, D. L., Finn, C. A., Bell, R. E., Peters, M. E., Kempf,
S. D., Hodge, S. M., Studinger, M., Behrendt, J. C., and Brozena, J. M.: Geologic
controls on the initiation of rapid basal motion for West Antarctic ice
streams: A geophysical perspective including new airborne radar sounding and
laser altimetry results, in: The West Antarctic Ice Sheet: Behavior and
Environment, edited by: Alley, R. B. and Bindschadle, R. A., Antarctic Research Series, 77, 105–121, https://doi.org/10.1029/AR077p0105,
2001.
Blankenship, D. D., Kempf, S. D., Young, D. A., Richter, T. G., Schroeder,
D. M., Greenbaum, J. S., van Ommen, T., Warner, R. C., Roberts, J. L.,
Young, N. W., Lemeur, E., Siegert, M. J., and Holt, J. W.: IceBridge HiCARS
1 L1B Time-Tagged Echo Strength Profiles, Version 1. Boulder, Colorado USA,
NASA National Snow and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/W2KXX0MYNJ9G, 2017.
Bodart, J. A.: Calculate englacial layer continuity from BAS airborne radar data, v1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.6858932, 2022.
Bodart, J. A., Bingham, R. G., Ashmore, D. W., Karlsson, N. B., Hein, A. S., and
Vaughan, D. G.: Age-depth stratigraphy of Pine Island Glacier inferred from
airborne radar and ice-core chronology, J. Geophys. Res.-Earth, 126,
e2020JF005927, https://doi.org/10.1029/2020JF005927, 2021.
Bozzo, E. and Ferraccioli, F.: The Italian-British Antarctic geophysical and
geological survey in northern Victoria Land 2005–2006-towards the
International Polar Year 2007-08, https://nora.nerc.ac.uk/id/eprint/15403 (last access: 18 July 2022), 2007.
British Antarctic Survey (BAS): Discovery Metadata System, https://data.bas.ac.uk, last access: 18 July 2022.
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference, Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, 2015.
Castelletti, D., Schroeder, D. M., Mantelli, E., and Hilger, A.: Layer
optimized SAR processing and slope estimation in radar sounder data, J.
Glaciol., 65, 983–988, https://doi.org/10.1017/jog.2019.72, 2019.
Cavitte, M. G. P., Parrenin, F., Ritz, C., Young, D. A., Van Liefferinge, B., Blankenship, D. D., Frezzotti, M., and Roberts, J. L.: Accumulation patterns around Dome C, East Antarctica, in the last 73 kyr, The Cryosphere, 12, 1401–1414, https://doi.org/10.5194/tc-12-1401-2018, 2018.
Chu, W., Hilger, A. M., Culberg, R., Schroeder, D. M., Jordan, T. M., Seroussi,
H., Young, D. A., Blankenship, D. D., and Vaughan, D. G.: Multi-system synthesis
of radar sounding observations of the Amundsen Sea sector from the 2004–2005
field season, J. Geophys. Res.-Earth, 126, e2021JF006296, https://doi.org/10.1029/2021JF006296, 2021.
Constantino, R. R., Tinto, K. J., Bell, R. E., Porter, D. F., and Jordan, T. A.:
Seafloor depth of George VI Sound, Antarctic Peninsula, from inversion of
aerogravity data. Geophys. Res. Lett., 47, e2020GL088654, https://doi.org/10.1029/2020GL088654, 2020.
Corr, H. and Popple, M.: Airborne radio echo sounding on the Evans flowline,
Ronne Ice Shelf, Filchner-Ronne Ice Shelf Programme Report, 8, 9–11,
http://nora.nerc.ac.uk/id/eprint/515954 (last access: 18 July 2022), 1994.
Corr, H. F. and Vaughan, D. G.: A recent volcanic eruption beneath the West
Antarctic ice sheet, Nat. Geosci., 1, 122–125, https://doi.org/10.1038/ngeo106, 2008.
Corr, H. F., Ferraccioli, F., Frearson, N., Jordan, T., Robinson, C.,
Armadillo, E., Caneva, G., Bozzo, E., and Tabacco, I.: Airborne radio-echo
sounding of the Wilkes Subglacial Basin, the Transantarctic Mountains and
the Dome C region, Terra Ant. Rep., 13, 55–63, https://nora.nerc.ac.uk/id/eprint/13578 (last access: 18 July 2022), 2007.
Creyts, T. T., Ferraccioli, F., Bell, R. E., Wolovick, M., Corr, H., Rose,
K. C., Frearson, N., Damaske, D., Jordan, T., Braaten, D., and Finn, C.:
Freezing of ridges and water networks preserves the Gamburtsev Subglacial
Mountains for millions of years. Geophys. Res. Lett., 41, 8114–8122,
https://doi.org/10.1002/2014GL061491, 2014.
Diez, A., Matsuoka, K., Ferraccioli, F., Jordan, T. A., Corr, H. F., Kohler,
J., Olesen, A. V., and Forsberg, R.: Basal settings control fast ice flow in
the Recovery/Slessor/Bailey Region, East Antarctica, Geophys. Res. Lett.,
45, 2706–2715, https://doi.org/10.1002/2017GL076601, 2018.
Diez, A., Matsuoka, K., Jordan, T. A., Kohler, J., Ferraccioli, F., Corr,
H. F., Olesen, A. V., Forsberg, R., and Casal, T. G.: Patchy lakes and
topographic origin for fast flow in the Recovery Glacier system, East
Antarctica, J. Geophys. Res.-Earth, 124, 287–304, https://doi.org/10.1029/2018JF004799, 2019.
Drews, R., Eisen, O., Weikusat, I., Kipfstuhl, S., Lambrecht, A., Steinhage, D., Wilhelms, F., and Miller, H.: Layer disturbances and the radio-echo free zone in ice sheets, The Cryosphere, 3, 195–203, https://doi.org/10.5194/tc-3-195-2009, 2009.
EPICA Community Members: Eight glacial cycles from an Antarctic ice core,
Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004.
Farinotti, D., Corr, H. and Gudmundsson, G. H.: The ice thickness distribution of Flask Glacier, Antarctic Peninsula, determined by combining radio-echo soundings, surface velocity data and flow modelling, Ann. Glaciol., 54, 18–24, https://doi.org/10.3189/2013AoG63A603, 2013.
Ferraccioli, F., Gambetta, M., and Bozzo, E.: Microlevelling procedures
applied to regional aeromagnetic data: an example from the Transantarctic
Mountains (Antarctica), Geophys. Prospect, 46, 177–196, https://doi.org/10.1046/j.1365-2478.1998.00080.x, 1998.
Ferraccioli, F., Jones, P. C., Curtis, M. L., and Leat, P. T.: Subglacial
imprints of early Gondwana break-up as identified from high resolution
aerogeophysical data over western Dronning Maud Land, East Antarctica, Terra
Nova, 17, 573–579, https://doi.org/10.1111/j.1365-3121.2005.00651.x, 2005a.
Ferraccioli, F., Jones, P. C., Curtis, M. L., Leat, P. T., and Riley, T. R.:
Tectonic and magmatic patterns in the Jutulstraumen rift region, East
Antarctica, as imaged by high-resolution aeromagnetic data, Earth Planet.
Space, 57, 767–780, https://doi.org/10.1186/BF03351856,
2005b.
Ferraccioli, F., Jones, P. C., Vaughan, A. P. M., and Leat, P. T.: New
aerogeophysical view of the Antarctic Peninsula: More pieces, less puzzle,
Geophys. Res. Lett., 33, L05310, https://doi.org/10.1029/2005GL024636, 2006.
Ferraccioli, F., Jordan, T., Armadillo, E., Bozzo, E., Corr, H., Caneva, G.,
Robinson, C., Frearson, N., and Tabacco, I.: Collaborative aerogeophysical
campaign targets the Wilkes Subglacial Basin, the Transantarctic Mountains
and the Dome C region, Terra Ant. Rep., 13, 1–36, https://nora.nerc.ac.uk/id/eprint/13741 (last access: 18 July 2022), 2007.
Ferraccioli, F., Armadillo, E., Jordan, T., Bozzo, E., and Corr, H.:
Aeromagnetic exploration over the East Antarctic Ice Sheet: a new view of
the Wilkes Subglacial Basin, Tectonophysics, 478, 62–77, https://doi.org/10.1016/j.tecto.2009.03.013, 2009.
Ferraccioli, F., Finn, C. A., Jordan, T. A., Bell, R. E., Anderson, L. M., and
Damaske, D.: East Antarctic rifting triggers uplift of the Gamburtsev
Mountains, Nature, 479, 388–392, https://doi.org/10.1038/nature10566, 2011.
Ferris, J. K., Vaughan, A. P., and King, E. C.: A window on West Antarctic
crustal boundaries: the junction between the Antarctic Peninsula, the
Filchner Block, and Weddell Sea oceanic lithosphere. Tectonophysics,
347, 13–23, https://doi.org/10.1016/S0040-1951(01)00235-9,
2002.
Ferris, J. K., Storey, B. C., Vaughan, A. P., Kyle, P. R., and Jones, P. C.: The
Dufek and Forrestal intrusions, Antarctica: A centre for Ferrar large
igneous province dike emplacement?, Geophys. Res. Lett., 30, 1348,
https://doi.org/10.1029/2002GL016719, 2003.
Forsberg, R., Olesen, A. V., Ferraccioli, F., Jordan, T., Corr, H., and Matsuoka, K.: PolarGap 2015/16 Filling the GOCE polar gap in Antarctica and ASIRAS flight around South Pole, European Space Agency (ESA) [data set], https://doi.org/10.5270/esa-8ffoo3e, 2017.
Forsberg, R., Olesen, A. V., Ferraccioli, F., Jordan, T. A., Matsuoka, K.,
Zakrajsek, A., Ghidella, M., and Greenbaum, J. S.: Exploring the Recovery
Lakes region and interior Dronning Maud Land, East Antarctica, with airborne
gravity, magnetic and radar measurements, Geol. Soc. Lond.
Spec. Publ., 461, 23–34, https://doi.org/10.1144/SP461.17, 2018.
Frederick, B. C., Young, D. A., Blankenship, D. D., Richter, T. G., Kempf, S. D.,
Ferraccioli, F., and Siegert, M. J.: Distribution of subglacial sediments
across the Wilkes Subglacial Basin, East Antarctica, J. Geophys. Res.-Earth,
121, 790–813, https://doi.org/10.1002/2015JF003760, 2016.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Global Change Master Directory (GCMD): GCMD Keywords, Version 12.2.
Greenbelt, MD: Earth Science Data and Information System, Earth Science
Projects Division, Goddard Space Flight Center (GSFC) National Aeronautics
and Space Administration (NASA), https://forum.earthdata.nasa.gov/aphp/tag/GCMD+Keywords, last access: 1 December 2021.
Golynsky, A. V., Ferraccioli, F., Hong, J. K., Golynsky, D. A., von Frese,
R. R. B., Young, D. A., Blankenship, D. D., Holt, J. W., Ivanov, S. V., Kiselev,
A. V., and Masolov, V. N.: New magnetic anomaly map of the Antarctic, Geophys.
Res. Lett., 45, 6437–6449, https://doi.org/10.1029/2018GL078153, 2018.
Goodge, J. W. and Finn, C. A.: Glimpses of East Antarctica: Aeromagnetic and
satellite magnetic view from the central Transantarctic Mountains of East
Antarctica, J. Geophys. Res.-Sol. Ea., 115, B09103, https://doi.org/10.1029/2009JB006890, 2010.
Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts,
J. L., Aitken, A. R. A., Legresy, B., Schroeder, D. M., Warner, R. C., Van Ommen,
T. D., and Siegert, M. J.: Ocean access to a cavity beneath Totten Glacier in
East Antarctica, Nat. Geosci., 8, 294–298, https://doi.org/10.1038/ngeo2388, 2015.
Hackney, R. I. and Featherstone, W. E.: Geodetic versus geophysical
perspectives of the “gravity anomaly”, Geophys. J. Int., 154, 35–43,
https://doi.org/10.1046/j.1365-246X.2003.01941.x, 2003.
Harlan, R. B.: Eotvos corrections for airborne gravimetry, J. Geophys. Res.,
73, 4675–4679, https://doi.org/10.1029/JB073i014p04675,
1968.
Hélière, F., Lin, C. C., Corr, H., and Vaughan, D.: Radio echo
sounding of Pine Island Glacier, West Antarctica: Aperture synthesis
processing and analysis of feasibility from space, IEEE T. Geosci. Remote,
45, 2573–2582, https://doi.org/10.1109/TGRS.2007.897433,
2007.
Hodgson, D. A., Jordan, T. A., De Rydt, J., Fretwell, P. T., Seddon, S. A., Becker, D., Hogan, K. A., Smith, A. M., and Vaughan, D. G.: Past and future dynamics of the Brunt Ice Shelf from seabed bathymetry and ice shelf geometry, The Cryosphere, 13, 545–556, https://doi.org/10.5194/tc-13-545-2019, 2019.
Hofstede, C., Beyer, S., Corr, H., Eisen, O., Hattermann, T., Helm, V., Neckel, N., Smith, E. C., Steinhage, D., Zeising, O., and Humbert, A.: Evidence for a grounding line fan at the onset of a basal channel under the ice shelf of Support Force Glacier, Antarctica, revealed by reflection seismics, The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021, 2021.
Hogan, K. A., Larter, R. D., Graham, A. G. C., Arthern, R., Kirkham, J. D., Totten Minzoni, R., Jordan, T. A., Clark, R., Fitzgerald, V., Wåhlin, A. K., Anderson, J. B., Hillenbrand, C.-D., Nitsche, F. O., Simkins, L., Smith, J. A., Gohl, K., Arndt, J. E., Hong, J., and Wellner, J.: Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing, The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, 2020.
Holland, P. R., Corr, H. F., Vaughan, D. G., Jenkins, A., and Skvarca, P.:
Marine ice in Larsen ice shelf, Geophys. Res. Lett., 36, L11604,
https://doi.org/10.1029/2009GL038162, 2009.
Holland, P. R., Corr, H. F., Pritchard, H. D., Vaughan, D. G., Arthern, R. J.,
Jenkins, A., and Tedesco, M.: The air content of Larsen ice shelf, Geophys.
Res. Lett., 38, L10503, https://doi.org/10.1029/2011GL047245, 2011.
Holschuh, N., Christianson, K., Paden, J., Alley, R. B., and Anandakrishnan,
S.: Linking postglacial landscapes to glacier dynamics using swath radar at
Thwaites Glacier, Antarctica, Geology, 48, 268–272,
https://doi.org/10.1130/G46772.1, 2020.
Holt, J. W., Blankenship, D. D., Morse, D. L., Young, D. A., Peters, M. E.,
Kempf, S. D., Richter, T. G., Vaughan, D. G., and Corr, H. F.: New boundary
conditions for the West Antarctic Ice Sheet: Subglacial topography of the
Thwaites and Smith glacier catchments, Geophys. Res. Lett., 33, L09502,
https://doi.org/10.1029/2005GL025561, 2006.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou B., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 147–286,
https://doi.org/10.1017/9781009157896.003, in press, 2021.
Jeofry, H., Ross, N., Corr, H. F. J., Li, J., Morlighem, M., Gogineni, P., and Siegert, M. J.: A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet, Earth Syst. Sci. Data, 10, 711–725, https://doi.org/10.5194/essd-10-711-2018, 2018.
Johnson, A., Cheeseman, S., and Ferris, J.: Improved compilation of Antarctic
Peninsula magnetic data by new interactive grid suturing and blending
methods, Ann. Geophys., 42, 249–259, https://doi.org/10.4401/ag-3717, 1999.
Jones, P. C., Johnson, A. C., von Frese, R. R., and Corr, H.: Detecting rift
basins in the Evans Ice Stream region of West Antarctica using airborne
gravity data, Tectonophysics, 347, 25–41, https://doi.org/10.1016/S0040-1951(01)00236-0, 2002.
Jordan, T., Ferraccioli, F., Corr, H., Robinson, C., Caneva, G., Armadillo,
E., Bozzo, E., and Frearson, N.: Linking the Wilkes Subglacial Basin the
Transantarctic Mountains and the Ross Sea with a new airborne gravity
survey, Terra Ant. Rep., 13, 37–54, https://nora.nerc.ac.uk/id/eprint/15749 (last access: 18 July 2022), 2007.
Jordan, T. A. and Becker, D.: Investigating the distribution of magmatism at
the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic
data, Phys. Earth Planet In., 282, 77–88, https://doi.org/10.1016/j.pepi.2018.07.007, 2018.
Jordan, T. A., Ferraccioli, F., Jones, P. C., Smellie, J. L., Ghidella, M., and
Corr, H.: Airborne gravity reveals interior of Antarctic volcano, Phys.
Earth Planet In., 175, 127–136, https://doi.org/10.1016/j.pepi.2009.03.004, 2009.
Jordan, T. A., Ferraccioli, F., Vaughan, D. G., Holt, J. W., Corr, H.,
Blankenship, D. D., and Diehl, T. M.: Aerogravity evidence for major
crustal thinning under the Pine Island Glacier region (West Antarctica),
Bulletin, 122, 714–726, https://doi.org/10.1130/B26417.1,
2010.
Jordan, T. A., Ferraccioli, F., Armadillo, E., and Bozzo, E.: Crustal
architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed
from airborne gravity data, Tectonophysics, 585, 196–206, https://doi.org/10.1016/j.tecto.2012.06.041, 2013.
Jordan, T. A., Neale, R. F., Leat, P. T., Vaughan, A. P. M., Flowerdew, M. J.,
Riley, T. R., Whitehouse, M. J., and Ferraccioli, F.: Structure and evolution
of Cenozoic arc magmatism on the Antarctic Peninsula: a high resolution
aeromagnetic perspective, Geophys. J. Int., 198, 1758–1774, https://doi.org/10.1093/gji/ggu233, 2014.
Jordan, T. A., Martin, C., Ferraccioli, F., Matsuoka, K., Corr, H., Forsberg,
R., Olesen, A., and Siegert, M.: Anomalously high geothermal flux near the
South Pole, Sci. Rep.-UK, 8, 1–8, https://doi.org/10.1038/s41598-018-35182-0, 2018.
Jordan, T. A., Porter, D., Tinto, K., Millan, R., Muto, A., Hogan, K., Larter, R. D., Graham, A. G. C., and Paden, J. D.: New gravity-derived bathymetry for the Thwaites, Crosson, and Dotson ice shelves revealing two ice shelf populations, The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, 2020.
Jordan, T. A., Ferraccioli, F., and Forsberg, R.: An embayment in the East
Antarctic basement constrains the shape of the Rodinian continental margin,
Communications Earth & Environment, 3, 1–8, https://doi.org/10.1038/s43247-022-00375-z, 2022.
Karlsson, N. B., Rippin, D. M., Vaughan, D. G., and Corr, H. F.: The internal
layering of Pine Island Glacier, West Antarctica, from airborne
radar-sounding data, Ann. Glaciol., 50, 141–146, https://doi.org/10.3189/S0260305500250660, 2009.
Karlsson, N. B., Rippin, D. M., Bingham, R. G., and Vaughan, D. G.: A
“continuity-index” for assessing ice-sheet dynamics from radar-sounded
internal layers, Earth Planet Sc. Lett., 335, 88–94, https://doi.org/10.1016/j.epsl.2012.04.034, 2012.
Karlsson, N. B., Bingham, R. G., Rippin, D. M., Hindmarsh, R. C., Corr, H. F., and
Vaughan, D. G.: Constraining past accumulation in the central Pine Island
Glacier basin, West Antarctica, using radio-echo sounding, J. Glaciol.,
60, 553–562, https://doi.org/10.3189/2014JoG13j180, 2014.
Karlsson, N. B., Binder, T., Eagles, G., Helm, V., Pattyn, F., Van Liefferinge, B., and Eisen, O.: Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”, The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, 2018.
Le Brocq, A. M., Payne, A. J., and Vieli, A.: An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1), Earth Syst. Sci. Data, 2, 247–260, https://doi.org/10.5194/essd-2-247-2010, 2010.
Le Brocq, A. M., Ross, N., Griggs, J. A., Bingham, R. G., Corr, H. F.,
Ferraccioli, F., Jenkins, A., Jordan, T. A., Payne, A. J., Rippin, D. M., and
Siegert, M. J.: Evidence from ice shelves for channelized meltwater flow
beneath the Antarctic Ice Sheet, Nat. Geosci., 6, 945–948, https://doi.org/10.1038/ngeo1977, 2013.
Lei, Y., Gardner, A. S., and Agram, P.: Processing methodology for the ITS_LIVE Sentinel-1 ice velocity product, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-393, in review, 2021.
Luo, K., Liu, S., Guo, J., Wang, T., Li, L., Cui, X., Sun, B., and Tang, X.:
Radar-Derived Internal Structure and Basal Roughness Characterization along
a Traverse from Zhongshan Station to Dome A, East Antarctica, Remote
Sens., 12, 1079, https://doi.org/10.3390/rs12071079, 2020.
Lythe, M. B., Vaughan, D. G., and the BEDMAP Consortium: BEDMAP: A new ice thickness and subglacial
topographic model of Antarctica, J. Geophys. Res.-Sol. Ea., 106,
11335–11351, https://doi.org/10.1029/2000JB900449, 2001.
MacGregor, J. A., Boisvert, L. N., Medley, B., Petty, A. A., Harbeck, J. P.,
Bell, R. E., Blair, J. B., Blanchard-Wrigglesworth, E., Buckley, E.,M.,
Christoffersen, M. S., and Cochran, J. R.: The scientific legacy of NASA's
Operation Icebridge, Rev. Geophys., 59, e2020RG000712, https://doi.org/10.1029/2020RG000712, 2021.
Millan, R., Rignot, E., Bernier, V., Morlighem, M., and Dutrieux, P.:
Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from
Operation IceBridge gravity and other data, Geophys. Res. Lett., 44,
1360–1368, https://doi.org/10.1002/2016GL072071, 2017.
Moritz, H.: Geodetic reference system 1980, B. Geod., 54, 395–405,
https://doi.org/10.1007/s001900050278, 1980.
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 2. Boulder, Colorado
USA, NASA National Snow and Ice Data Center Distributed Active Archive
Center [data set], https://doi.org/10.5067/E1QL9HFQ7A8M, 2020.
Morlighem, M., Williams, C., Rignot, E., An, L., Arndt, J. E., Bamber, J.,
Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan,
K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R.,
Mayer, L., Mouginot, J., Noël, B., O'Cofaigh, C., Palmer, S. J., Rysgaard, S.,
Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R.,
Weinrebe, W., Wood, M., and Zinglersen, K.: BedMachine v3: Complete bed topography
and ocean bathymetry mapping of Greenland from multi-beam echo sounding
combined with mass conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., and Goel, V.:
Deep glacial troughs and stabilizing ridges unveiled beneath the margins of
the Antarctic ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Napoleoni, F., Jamieson, S. S. R., Ross, N., Bentley, M. J., Rivera, A., Smith, A. M., Siegert, M. J., Paxman, G. J. G., Gacitúa, G., Uribe, J. A., Zamora, R., Brisbourne, A. M., and Vaughan, D. G.: Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica, The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, 2020.
Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F., and Hale, R.: IceBridge
MCoRDS L1B Geolocated Radar Echo Strength Profiles, Version 2. Boulder,
Colorado USA, NASA National Snow and Ice Data Center Distributed Active
Archive Center [data set], https://doi.org/10.5067/90S1XZRBAX5N, 2014.
Parrenin, F. and Hindmarsh, R.: Influence of a non-uniform velocity field on
isochrone geometry along a steady flowline of an ice sheet, J. Glaciol.,
53, 612–622, https://doi.org/10.3189/002214307784409298,
2007.
Paxman, G. J., Jamieson, S. S., Ferraccioli, F., Jordan, T. A., Bentley, M. J.,
Ross, N., Forsberg, R., Matsuoka, K., Steinhage, D., Eagles, G., and Casal,
T. G.: Subglacial Geology and Geomorphology of the Pensacola-Pole Basin, East
Antarctica, Geochem. Geophy. Geosy., 20, 2786–2807,
https://doi.org/10.1029/2018GC008126, 2019.
Peters, M. E., Blankenship, D. D., and Morse, D. L.: Analysis techniques for
coherent airborne radar sounding: Application to West Antarctic ice streams,
J. Geophys. Res.-Sol. Ea., 110, B06303, https://doi.org/10.1029/2004JB003222, 2005.
Peters, M. E., Blankenship, D. D., Carter, S. P., Kempf, S. D., Young, D. A., and
Holt, J. W.: Along-track focusing of airborne radar sounding data from West
Antarctica for improving basal reflection analysis and layer detection, IEEE
T. Geosci. Remote, 45, 2725–2736, https://doi.org/10.1109/TGRS.2007.897416, 2007.
Polar Data Centre: BAS Aerogeophysics Book, https://antarctica.github.io/PDC_GeophysicsBook, last access: 18 July 2022
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-based Antarctica
ice velocity map, version 2, NASA National Snow and Ice Data Center
Distributed Active Archive Center [data set], https://doi.org/10.5067/D7GK8F5J8M8R, 2017.
Rippin, D. M., Bamber, J. L., Siegert, M. J., Vaughan, D. G., and Corr, H. F. J.:
Basal topography and ice flow in the Bailey/Slessor region of East
Antarctica, J. Geophys. Res.-Earth, 108, 6008, https://doi.org/10.1029/2003JF000039, 2003a.
Rippin, D. M., Siegert, M. J., and Bamber, J. L.: The englacial stratigraphy of
Wilkes Land, East Antarctica, as revealed by internal radio-echo sounding
layering, and its relationship with balance velocities, Ann. Glaciol., 36,
189–196, https://doi.org/10.3189/172756403781816356, 2003b.
Rippin, D. M., Vaughan, D. G., and Corr, H. F.: The basal roughness of Pine
Island Glacier, West Antarctica, J. Glaciol., 57, 67–76, https://doi.org/10.3189/002214311795306574, 2011.
Rippin, D. M., Bingham, R. G., Jordan, T. A., Wright, A. P., Ross, N., Corr,
H. F., Ferraccioli, F., Le Brocq, A. M., Rose, K. C., and Siegert, M. J.: Basal
roughness of the Institute and Möller Ice Streams, West Antarctica:
Process determination and landscape interpretation, Geomorphology, 214,
139–147, https://doi.org/10.1016/j.geomorph.2014.01.021, 2014.
Robin, G. D. Q., Swithinbank, C. W. M., and Smith, B. M. E.: Radio echo exploration
of the Antarctic ice sheet, International Association of Scientific
Hydrology Publication, 86, 97–115, 1970.
Robin, G. D. Q., Drewry, D. J., and Meldrum, D. T.: International studies of ice
sheet and bedrock, Philos. T. Roy. Soc. B., 279, 185–196, https://doi.org/10.1098/rstb.1977.0081, 1977.
Rose, K. C., Ferraccioli, F., Jamieson, S. S., Bell, R. E., Corr, H., Creyts,
T. T., Braaten, D., Jordan, T. A., Fretwell, P. T., and Damaske, D.: Early east
Antarctic Ice Sheet growth recorded in the landscape of the Gamburtsev
Subglacial Mountains, Earth Planet Sc. Lett., 375, 1–12, https://doi.org/10.1016/j.epsl.2013.03.053, 2013.
Rose, K. C., Ross, N., Bingham, R. G., Corr, H. F., Ferraccioli, F., Jordan,
T. A., Le Brocq, A. M., Rippin, D. M., and Siegert, M. J.: A temperate former
West Antarctic ice sheet suggested by an extensive zone of subglacial
meltwater channels, Geology, 42, 971–974, https://doi.org/10.1130/G35980.1, 2014.
Ross, N., Bingham, R. G., Corr, H. F., Ferraccioli, F., Jordan, T. A., Le
Brocq, A., Rippin, D. M., Young, D., Blankenship, D. D., and Siegert, M. J.:
Steep reverse bed slope at the grounding line of the Weddell Sea sector in
West Antarctica, Nat. Geosci., 5, 393–396, https://doi.org/10.1038/ngeo1468, 2012.
Ross, N., Jordan, T. A., Bingham, R. G., Corr, H. F., Ferraccioli, F., Le
Brocq, A., Rippin, D. M., Wright, A. P., and Siegert, M. J.: The Ellsworth
subglacial highlands: inception and retreat of the West Antarctic Ice Sheet,
Bulletin, 126, 3–15, https://doi.org/10.1130/B30794.1,
2014.
Ross, N., Corr, H., and Siegert, M.: Large-scale englacial folding and deep-ice stratigraphy within the West Antarctic Ice Sheet, The Cryosphere, 14, 2103–2114, https://doi.org/10.5194/tc-14-2103-2020, 2020.
Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Evidence for a water
system transition beneath Thwaites Glacier, West Antarctica, P. Natl. A.
Sci., 110, 12225–12228, https://doi.org/10.1073/pnas.1302828110, 2013.
Schroeder, D. M., Blankenship, D. D., Young, D. A., and Quartini, E.: Evidence
for elevated and spatially variable geothermal flux beneath the West
Antarctic Ice Sheet, P. Natl. Acad. Sci. USA, 111, 9070–9072, https://doi.org/10.1073/pnas.1405184111, 2014.
Schroeder, D. M., Dowdeswell, J. A., Siegert, M. J., Bingham, R. G., Chu, W.,
MacKie, E. J., Siegfried, M. R., Vega, K. I., Emmons, J. R., and Winstein, K.:
Multidecadal observations of the Antarctic ice sheet from restored analog
radar records, P. Natl. Acad. Sci. USA, 116, 18867–18873, https://doi.org/10.1073/pnas.1821646116, 2019.
Shepherd, T., Bamber, J. L., and Ferraccioli, F.: Subglacial geology in Coats
Land, East Antarctica, revealed by airborne magnetics and radar sounding,
Earth Planet Sc. Lett., 244, 323–335, https://doi.org/10.1016/j.epsl.2006.01.068, 2006.
Siegert, M. J., Payne, A. J., and Joughin, I.: Spatial stability of Ice Stream
D and its tributaries, West Antarctica, revealed by radio-echo sounding and
interferometry, Ann. Glaciol., 37, 377–382, https://doi.org/10.3189/172756403781816022, 2003.
Siegert, M., Ross, N., Corr, H., Kingslake, J., and Hindmarsh, R.: Late
Holocene ice-flow reconfiguration in the Weddell Sea sector of West
Antarctica, Quaternary Sci. Rev., 78, 98–107, https://doi.org/10.1016/j.quascirev.2013.08.003, 2013.
Siegert, M. J. and Payne, A. J.: Past rates of accumulation in central West
Antarctica, Geophys. Res. Lett., 31, L12403, https://doi.org/10.1029/2004GL020290, 2004.
Siegert, M. J., Ross, N., Corr, H., Smith, B., Jordan, T., Bingham, R. G., Ferraccioli, F., Rippin, D. M., and Le Brocq, A.: Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet, The Cryosphere, 8, 15–24, https://doi.org/10.5194/tc-8-15-2014, 2014.
Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T. A.: The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP), Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, 2016.
Studinger, M., Bell, R. E., Blankenship, D. D., Finn, C. A., Arko, R. A., Morse,
D. L., and Joughin, I.: Subglacial sediments: A regional geological template
for ice flow in West Antarctica, Geophys. Res. Lett., 28, 3493–3496,
https://doi.org/10.1029/2000GL011788, 2001.
Sutter, J., Fischer, H., and Eisen, O.: Investigating the internal structure of the Antarctic ice sheet: the utility of isochrones for spatiotemporal ice-sheet model calibration, The Cryosphere, 15, 3839–3860, https://doi.org/10.5194/tc-15-3839-2021, 2021.
Tinto, K. J. and Bell, R. E.: Progressive unpinning of Thwaites Glacier from
newly identified offshore ridge: Constraints from aerogravity, Geophys. Res.
Lett., 38, L20503, https://doi.org/10.1029/2011GL049026,
2011.
Tinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A., Das,
I., Tontini, F. C., Porter, D. F., Frearson, N. P., Howard, S. L., and Siegfried,
M. R.: Ross Ice Shelf response to climate driven by the tectonic imprint on
seafloor bathymetry, Nat. Geosci., 12, 441–449, https://doi.org/10.1038/s41561-019-0370-2, 2019.
Valliant, H. D.: LaCoste & Romberg Air/Sea Meters: An Overview, CRC
Handbook of Geophysical Exploration at Sea, London, CRC Press, https://doi.org/10.1201/9780367812751, 1992.
Vaughan, D. G., Corr, H. F., Ferraccioli, F., Frearson, N., O'Hare, A., Mach,
D., Holt, J. W., Blankenship, D. D., Morse, D. L., and Young, D. A.: New boundary
conditions for the West Antarctic ice sheet: Subglacial topography beneath
Pine Island Glacier, Geophys. Res. Lett., 33, L09501, https://doi.org/10.1029/2005GL025588, 2006.
Vaughan, D. G., Corr, H. F., Smith, A. M., Pritchard, H. D., and Shepherd, A.:
Flow-switching and water piracy between Rutford ice stream and Carlson
inlet, West Antarctica, J. Glaciol., 54, 41–48, https://doi.org/10.3189/002214308784409125, 2008.
Vaughan, D. G., Corr, H. F., Bindschadler, R. A., Dutrieux, P., Gudmundsson,
G. H., Jenkins, A., Newman, T., Vornberger, P., and Wingham, D. J.: Subglacial
melt channels and fracture in the floating part of Pine Island Glacier,
Antarctica. J. Geophys. Res.-Earth, 117, F03012, https://doi.org/10.1029/2012JF002360, 2012.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E.,
and Bouwman, J.: The FAIR Guiding Principles for scientific data management
and stewardship, Sci. Data, 3, 1–9, https://doi.org/10.1038/sdata.2016.18, 2016.
Winski, D. A., Fudge, T. J., Ferris, D. G., Osterberg, E. C., Fegyveresi, J. M., Cole-Dai, J., Thundercloud, Z., Cox, T. S., Kreutz, K. J., Ortman, N., Buizert, C., Epifanio, J., Brook, E. J., Beaudette, R., Severinghaus, J., Sowers, T., Steig, E. J., Kahle, E. C., Jones, T. R., Morris, V., Aydin, M., Nicewonger, M. R., Casey, K. A., Alley, R. B., Waddington, E. D., Iverson, N. A., Dunbar, N. W., Bay, R. C., Souney, J. M., Sigl, M., and McConnell, J. R.: The SP19 chronology for the South Pole Ice Core – Part 1: volcanic matching and annual layer counting, Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, 2019.
Winter, K., Woodward, J., Ross, N., Dunning, S. A., Bingham, R. G., Corr, H. F.,
and Siegert, M. J.: Airborne radar evidence for tributary flow switching in
Institute Ice Stream, West Antarctica: Implications for ice sheet
configuration and dynamics, J. Geophys. Res.-Earth, 120, 1611–1625,
https://doi.org/10.1002/2015JF003518, 2015.
Winter, K., Ross, N., Ferraccioli, F., Jordan, T. A., Corr, H. F., Forsberg,
R., Matsuoka, K., Olesen, A. V., and Casal, T. G.: Topographic steering of
enhanced ice flow at the bottleneck between East and West Antarctica,
Geophys. Res. Lett., 45, 4899–4907, https://doi.org/10.1029/2018GL077504, 2018.
Wright, A. P., Young, D. A., Roberts, J. L., Schroeder, D. M., Bamber, J. L.,
Dowdeswell, J. A., Young, N. W., Le Brocq, A. M., Warner, R. C., Payne, A. J. and
Blankenship, D. D.: Evidence of a hydrological connection between the ice
divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica,
J. Geophys. Res.-Earth, 117, F01033, https://doi.org/10.1029/2011JF002066, 2012.
Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and Quartini,
E.: The distribution of basal water between Antarctic subglacial lakes from
radar sounding, Philos. T. R. Soc. A., 374, 20140297, https://doi.org/10.1098/rsta.2014.0297, 2016.
Young, T. J., Schroeder, D. M., Jordan, T. M., Christoffersen, P., Tulaczyk,
S. M., Culberg, R., and Bienert, N. L.: Inferring ice fabric from birefringence
loss in airborne radargrams: Application to the eastern shear margin of
Thwaites Glacier, West Antarctica, J. Geophys. Res.-Earth, 126,
2020JF006023, https://doi.org/10.1029/2020JF006023, 2021.
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
This paper presents the release of large swaths of airborne geophysical data (including gravity,...
Altmetrics
Final-revised paper
Preprint