Articles | Volume 14, issue 7
https://doi.org/10.5194/essd-14-3379-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3379-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
British Antarctic Survey's aerogeophysical data: releasing 25 years of airborne gravity, magnetic, and radar datasets over Antarctica
British Antarctic Survey, Cambridge, UK
British Antarctic Survey, Cambridge, UK
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Tom A. Jordan
British Antarctic Survey, Cambridge, UK
Fausto Ferraccioli
British Antarctic Survey, Cambridge, UK
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale,
Trieste, Italy
Carl Robinson
British Antarctic Survey, Cambridge, UK
Hugh F. J. Corr
British Antarctic Survey, Cambridge, UK
Helen J. Peat
British Antarctic Survey, Cambridge, UK
Robert G. Bingham
School of GeoSciences, University of Edinburgh, Edinburgh, UK
David G. Vaughan
British Antarctic Survey, Cambridge, UK
Related authors
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Álvaro Arenas-Pingarrón, Alex M. Brisbourne, Carlos Martín, Hugh F. J. Corr, Carl Robinson, Tom A. Jordan, and Paul V. Brennan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1068, https://doi.org/10.5194/egusphere-2025-1068, 2025
Short summary
Short summary
Synthetic Aperture Radar (SAR) imaging is essential for deep englacial observations. Each pixel is formed by averaging the radar echoes within an antenna beamwidth, but the echo diversity is lost after the average. We improve the SAR interpretation if three sub-images are formed with different sub-beamwidths: each is coloured in red, green, or blue, and they are overlapped, creating a coloured image. Interpreters will better identify the slopes of internal layers, crevasses, and layer roughness.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
The Cryosphere, 19, 1153–1180, https://doi.org/10.5194/tc-19-1153-2025, https://doi.org/10.5194/tc-19-1153-2025, 2025
Short summary
Short summary
The study presents internal reflection horizons (IRHs) over an area of 450 000 km² from western Dronning Maud Land, Antarctica, spanning 4.8–91 ka. Using radar and ice core data, nine IRHs were dated and correlated with volcanic events. The data enhance our understanding of the ice sheet's age–depth architecture, accumulation, and dynamics. The findings inform ice flow models and contribute to Antarctic-wide comparisons of IRHs, supporting efforts toward a 3D age–depth ice sheet model.
Bertie W. J. Miles, Tian Li, and Robert G. Bingham
EGUsphere, https://doi.org/10.5194/egusphere-2024-3964, https://doi.org/10.5194/egusphere-2024-3964, 2025
Short summary
Short summary
Totten Glacier is the largest source of mass loss in the East Antarctic Ice Sheet, with thinning detected since the 1990s, though the onset remains unclear. Ice-speed anomalies show no acceleration since 1973, confirming imbalance by the 1970s. A century-long record of surface undulations from Landsat imagery, linked to basal melt variability, reveals an anomalous mid-20th-century period with persistently high melt rates, possibly indicating the onset time of ice shelf thinning.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Tancrède P. M. Leger, Andrew S. Hein, Ángel Rodés, Robert G. Bingham, Irene Schimmelpfennig, Derek Fabel, Pablo Tapia, and ASTER Team
Clim. Past, 19, 35–59, https://doi.org/10.5194/cp-19-35-2023, https://doi.org/10.5194/cp-19-35-2023, 2023
Short summary
Short summary
Over the past 800 thousand years, variations in the Earth’s orbit and tilt have caused antiphased solar insolation intensity in the Northern and Southern Hemispheres. Paradoxically, glacial records suggest that global ice sheets have responded synchronously to major cold glacial and warm interglacial episodes. To address this puzzle, we present a new detailed glacier chronology that estimates the timing of multiple Patagonian ice-sheet waxing and waning cycles over the past 300 thousand years.
Dominic A. Hodgson, Tom A. Jordan, Neil Ross, Teal R. Riley, and Peter T. Fretwell
The Cryosphere, 16, 4797–4809, https://doi.org/10.5194/tc-16-4797-2022, https://doi.org/10.5194/tc-16-4797-2022, 2022
Short summary
Short summary
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula resulting in the collapse of the overlying ice into the newly formed subglacial cavity. It provides evidence of an active hydrological network under the region's glaciers and close coupling between surface climate processes and the base of the ice.
Angelika Humbert, Julia Christmann, Hugh F. J. Corr, Veit Helm, Lea-Sophie Höyns, Coen Hofstede, Ralf Müller, Niklas Neckel, Keith W. Nicholls, Timm Schultz, Daniel Steinhage, Michael Wolovick, and Ole Zeising
The Cryosphere, 16, 4107–4139, https://doi.org/10.5194/tc-16-4107-2022, https://doi.org/10.5194/tc-16-4107-2022, 2022
Short summary
Short summary
Ice shelves are normally flat structures that fringe the Antarctic continent. At some locations they have channels incised into their underside. On Filchner Ice Shelf, such a channel is more than 50 km long and up to 330 m high. We conducted field measurements of basal melt rates and found a maximum of 2 m yr−1. Simulations represent the geometry evolution of the channel reasonably well. There is no reason to assume that this type of melt channel is destabilizing ice shelves.
Helen Ockenden, Robert G. Bingham, Andrew Curtis, and Daniel Goldberg
The Cryosphere, 16, 3867–3887, https://doi.org/10.5194/tc-16-3867-2022, https://doi.org/10.5194/tc-16-3867-2022, 2022
Short summary
Short summary
Hills and valleys hidden under the ice of Thwaites Glacier have an impact on ice flow and future ice loss, but there are not many three-dimensional observations of their location or size. We apply a mathematical theory to new high-resolution observations of the ice surface to predict the bed topography beneath the ice. There is a good correlation with ice-penetrating radar observations. The method may be useful in areas with few direct observations or as a further constraint for other methods.
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022, https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
Short summary
Radio waves transmitted through ice split up and inform us about the ice sheet interior and orientation of single ice crystals. This can be used to infer how ice flows and improve projections on how it will evolve in the future. Here we used an inverse approach and developed a new algorithm to infer ice properties from observed radar data. We applied this technique to the radar data obtained at two EPICA drilling sites, where ice cores were used to validate our results.
Ole Zeising, Daniel Steinhage, Keith W. Nicholls, Hugh F. J. Corr, Craig L. Stewart, and Angelika Humbert
The Cryosphere, 16, 1469–1482, https://doi.org/10.5194/tc-16-1469-2022, https://doi.org/10.5194/tc-16-1469-2022, 2022
Short summary
Short summary
Remote-sensing-derived basal melt rates of ice shelves are of great importance due to their capability to cover larger areas. We performed in situ measurements with a phase-sensitive radar on the southern Filchner Ice Shelf, showing moderate melt rates and low small-scale spatial variability. The comparison with remote-sensing-based melt rates revealed large differences caused by the estimation of vertical strain rates from remote sensing velocity fields that modern fields can overcome.
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021, https://doi.org/10.5194/tc-15-1517-2021, 2021
Short summary
Short summary
Support Force Glacier rapidly flows into Filcher Ice Shelf of Antarctica. As we know little about this glacier and its subglacial drainage, we used seismic energy to map the transition area from grounded to floating ice where a drainage channel enters the ocean cavity. Soft sediments close to the grounding line are probably transported by this drainage channel. The constant ice thickness over the steeply dipping seabed of the ocean cavity suggests a stable transition and little basal melting.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Cited articles
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby,
B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., and Greku, R.: The
International Bathymetric Chart of the Southern Ocean (IBCSO) Version
1.0 – A new bathymetric compilation covering circum-Antarctic waters,
Geophys. Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013.
Ashmore, D. W. and Bingham, R. G.: Antarctic subglacial hydrology: current
knowledge and future challenges, Antarct. Sci., 26, 758–773, https://doi.org/10.1017/S0954102014000546, 2014.
Ashmore, D. W., Bingham, R. G., Hindmarsh, R. C., Corr, H. F., and Joughin, I. R.:
The relationship between sticky spots and radar reflectivity beneath an
active West Antarctic ice stream, Ann. Glaciol., 55, 29–38, https://doi.org/10.3189/2014AoG67A052, 2014.
Ashmore, D. W., Bingham, R. G., Ross, N., Siegert, M. J., Jordan, T. A., and
Mair, D. W.: Englacial architecture and age-depth constraints across the West
Antarctic Ice Sheet, Geophys. Res. Lett., 47, e2019GL086663, https://doi.org/10.1029/2019GL086663, 2020.
Bamber, J. L., Ferraccioli, F., Joughin, I., Shepherd, T., Rippin, D. M.,
Siegert, M. J., and Vaughan, D. G.: East Antarctic ice stream tributary
underlain by major sedimentary basin, Geology, 34, 33–36, https://doi.org/10.1130/G22160.1, 2006.
Becker, D., Nielsen, J. E., Ayres-Sampaio, D., Forsberg, R., Becker, M., and
Bastos, L.: Drift reduction in strapdown airborne gravimetry using a simple
thermal correction, J. Geodesy, 89, 1133–1144, https://doi.org/10.1007/s00190-015-0839-8, 2015.
Bell, R.: Processed Ice Penetrating Radar Altimeter Data from the Gamburtsev Mountainsin Antarctica acquired during the GAMBIT Twin Otter expedition AGAP_GAMBIT (2008), Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.1594/IEDA/313685, 2011.
Bell, R. E., Blankenship, D. D., Finn, C. A., Morse, D. L., Scambos, T. A.,
Brozena, J. M., and Hodge, S. M.: Influence of subglacial geology on the onset
of a West Antarctic ice stream from aerogeophysical observations, Nature,
394, 58–62, https://doi.org/10.1038/27883, 1998.
Bell, R. E., Studinger, M., Fahnestock, M. A., and Shuman, C. A.: Tectonically
controlled subglacial lakes on the flanks of the Gamburtsev Subglacial
Mountains, East Antarctica, Geophys. Res. Lett., 33, L02504, https://doi.org/10.1029/2005GL025207, 2006.
Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I.,
Damaske, D., Frearson, N., Jordan, T., Rose, K., and Studinger, M.:
Widespread persistent thickening of the East Antarctic Ice Sheet by freezing
from the base, Science, 331, 1592–1595, https://doi.org/10.1126/science.1200109, 2011.
Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie,
D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat image
mosaic of Antarctica, Remote Sens. Environ., 112, 4214–4226, https://doi.org/10.1016/j.rse.2008.07.006, 2008.
Bindschadler, R., Choi, H., Wichlacz, A., Bingham, R., Bohlander, J., Brunt, K., Corr, H., Drews, R., Fricker, H., Hall, M., Hindmarsh, R., Kohler, J., Padman, L., Rack, W., Rotschky, G., Urbini, S., Vornberger, P., and Young, N.: Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year, The Cryosphere, 5, 569–588, https://doi.org/10.5194/tc-5-569-2011, 2011.
Bingham, R. G., Siegert, M. J., Young, D. A., and Blankenship, D. D.: Organized
flow from the South Pole to the Filchner-Ronne ice shelf: An assessment of
balance velocities in interior East Antarctica using radio echo sounding
data, J. Geophys. Res.-Earth, 112, F03S26, https://doi.org/10.1029/2006JF000556, 2007.
Bingham, R. G., Ferraccioli, F., King, E. C., Larter, R. D., Pritchard, H. D.,
Smith, A. M., and Vaughan, D. G.: Inland thinning of West Antarctic Ice Sheet
steered along subglacial rifts, Nature, 487, 468–471, https://doi.org/10.1038/nature11292, 2012.
Bingham, R. G., Rippin, D. M., Karlsson, N. B., Corr, H. F., Ferraccioli, F.,
Jordan, T. A., Le Brocq, A. M., Rose, K. C., Ross, N., and Siegert, M. J.:
Ice-flow structure and ice dynamic changes in the Weddell Sea sector of West
Antarctica from radar-imaged internal layering, J. Geophys. Res.-Earth,
120, 655–670, https://doi.org/10.1002/2014JF003291, 2015.
Blankenship, D. D., Morse, D. L., Finn, C. A., Bell, R. E., Peters, M. E., Kempf,
S. D., Hodge, S. M., Studinger, M., Behrendt, J. C., and Brozena, J. M.: Geologic
controls on the initiation of rapid basal motion for West Antarctic ice
streams: A geophysical perspective including new airborne radar sounding and
laser altimetry results, in: The West Antarctic Ice Sheet: Behavior and
Environment, edited by: Alley, R. B. and Bindschadle, R. A., Antarctic Research Series, 77, 105–121, https://doi.org/10.1029/AR077p0105,
2001.
Blankenship, D. D., Kempf, S. D., Young, D. A., Richter, T. G., Schroeder,
D. M., Greenbaum, J. S., van Ommen, T., Warner, R. C., Roberts, J. L.,
Young, N. W., Lemeur, E., Siegert, M. J., and Holt, J. W.: IceBridge HiCARS
1 L1B Time-Tagged Echo Strength Profiles, Version 1. Boulder, Colorado USA,
NASA National Snow and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/W2KXX0MYNJ9G, 2017.
Bodart, J. A.: Calculate englacial layer continuity from BAS airborne radar data, v1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.6858932, 2022.
Bodart, J. A., Bingham, R. G., Ashmore, D. W., Karlsson, N. B., Hein, A. S., and
Vaughan, D. G.: Age-depth stratigraphy of Pine Island Glacier inferred from
airborne radar and ice-core chronology, J. Geophys. Res.-Earth, 126,
e2020JF005927, https://doi.org/10.1029/2020JF005927, 2021.
Bozzo, E. and Ferraccioli, F.: The Italian-British Antarctic geophysical and
geological survey in northern Victoria Land 2005–2006-towards the
International Polar Year 2007-08, https://nora.nerc.ac.uk/id/eprint/15403 (last access: 18 July 2022), 2007.
British Antarctic Survey (BAS): Discovery Metadata System, https://data.bas.ac.uk, last access: 18 July 2022.
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference, Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, 2015.
Castelletti, D., Schroeder, D. M., Mantelli, E., and Hilger, A.: Layer
optimized SAR processing and slope estimation in radar sounder data, J.
Glaciol., 65, 983–988, https://doi.org/10.1017/jog.2019.72, 2019.
Cavitte, M. G. P., Parrenin, F., Ritz, C., Young, D. A., Van Liefferinge, B., Blankenship, D. D., Frezzotti, M., and Roberts, J. L.: Accumulation patterns around Dome C, East Antarctica, in the last 73 kyr, The Cryosphere, 12, 1401–1414, https://doi.org/10.5194/tc-12-1401-2018, 2018.
Chu, W., Hilger, A. M., Culberg, R., Schroeder, D. M., Jordan, T. M., Seroussi,
H., Young, D. A., Blankenship, D. D., and Vaughan, D. G.: Multi-system synthesis
of radar sounding observations of the Amundsen Sea sector from the 2004–2005
field season, J. Geophys. Res.-Earth, 126, e2021JF006296, https://doi.org/10.1029/2021JF006296, 2021.
Constantino, R. R., Tinto, K. J., Bell, R. E., Porter, D. F., and Jordan, T. A.:
Seafloor depth of George VI Sound, Antarctic Peninsula, from inversion of
aerogravity data. Geophys. Res. Lett., 47, e2020GL088654, https://doi.org/10.1029/2020GL088654, 2020.
Corr, H. and Popple, M.: Airborne radio echo sounding on the Evans flowline,
Ronne Ice Shelf, Filchner-Ronne Ice Shelf Programme Report, 8, 9–11,
http://nora.nerc.ac.uk/id/eprint/515954 (last access: 18 July 2022), 1994.
Corr, H. F. and Vaughan, D. G.: A recent volcanic eruption beneath the West
Antarctic ice sheet, Nat. Geosci., 1, 122–125, https://doi.org/10.1038/ngeo106, 2008.
Corr, H. F., Ferraccioli, F., Frearson, N., Jordan, T., Robinson, C.,
Armadillo, E., Caneva, G., Bozzo, E., and Tabacco, I.: Airborne radio-echo
sounding of the Wilkes Subglacial Basin, the Transantarctic Mountains and
the Dome C region, Terra Ant. Rep., 13, 55–63, https://nora.nerc.ac.uk/id/eprint/13578 (last access: 18 July 2022), 2007.
Creyts, T. T., Ferraccioli, F., Bell, R. E., Wolovick, M., Corr, H., Rose,
K. C., Frearson, N., Damaske, D., Jordan, T., Braaten, D., and Finn, C.:
Freezing of ridges and water networks preserves the Gamburtsev Subglacial
Mountains for millions of years. Geophys. Res. Lett., 41, 8114–8122,
https://doi.org/10.1002/2014GL061491, 2014.
Diez, A., Matsuoka, K., Ferraccioli, F., Jordan, T. A., Corr, H. F., Kohler,
J., Olesen, A. V., and Forsberg, R.: Basal settings control fast ice flow in
the Recovery/Slessor/Bailey Region, East Antarctica, Geophys. Res. Lett.,
45, 2706–2715, https://doi.org/10.1002/2017GL076601, 2018.
Diez, A., Matsuoka, K., Jordan, T. A., Kohler, J., Ferraccioli, F., Corr,
H. F., Olesen, A. V., Forsberg, R., and Casal, T. G.: Patchy lakes and
topographic origin for fast flow in the Recovery Glacier system, East
Antarctica, J. Geophys. Res.-Earth, 124, 287–304, https://doi.org/10.1029/2018JF004799, 2019.
Drews, R., Eisen, O., Weikusat, I., Kipfstuhl, S., Lambrecht, A., Steinhage, D., Wilhelms, F., and Miller, H.: Layer disturbances and the radio-echo free zone in ice sheets, The Cryosphere, 3, 195–203, https://doi.org/10.5194/tc-3-195-2009, 2009.
EPICA Community Members: Eight glacial cycles from an Antarctic ice core,
Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004.
Farinotti, D., Corr, H. and Gudmundsson, G. H.: The ice thickness distribution of Flask Glacier, Antarctic Peninsula, determined by combining radio-echo soundings, surface velocity data and flow modelling, Ann. Glaciol., 54, 18–24, https://doi.org/10.3189/2013AoG63A603, 2013.
Ferraccioli, F., Gambetta, M., and Bozzo, E.: Microlevelling procedures
applied to regional aeromagnetic data: an example from the Transantarctic
Mountains (Antarctica), Geophys. Prospect, 46, 177–196, https://doi.org/10.1046/j.1365-2478.1998.00080.x, 1998.
Ferraccioli, F., Jones, P. C., Curtis, M. L., and Leat, P. T.: Subglacial
imprints of early Gondwana break-up as identified from high resolution
aerogeophysical data over western Dronning Maud Land, East Antarctica, Terra
Nova, 17, 573–579, https://doi.org/10.1111/j.1365-3121.2005.00651.x, 2005a.
Ferraccioli, F., Jones, P. C., Curtis, M. L., Leat, P. T., and Riley, T. R.:
Tectonic and magmatic patterns in the Jutulstraumen rift region, East
Antarctica, as imaged by high-resolution aeromagnetic data, Earth Planet.
Space, 57, 767–780, https://doi.org/10.1186/BF03351856,
2005b.
Ferraccioli, F., Jones, P. C., Vaughan, A. P. M., and Leat, P. T.: New
aerogeophysical view of the Antarctic Peninsula: More pieces, less puzzle,
Geophys. Res. Lett., 33, L05310, https://doi.org/10.1029/2005GL024636, 2006.
Ferraccioli, F., Jordan, T., Armadillo, E., Bozzo, E., Corr, H., Caneva, G.,
Robinson, C., Frearson, N., and Tabacco, I.: Collaborative aerogeophysical
campaign targets the Wilkes Subglacial Basin, the Transantarctic Mountains
and the Dome C region, Terra Ant. Rep., 13, 1–36, https://nora.nerc.ac.uk/id/eprint/13741 (last access: 18 July 2022), 2007.
Ferraccioli, F., Armadillo, E., Jordan, T., Bozzo, E., and Corr, H.:
Aeromagnetic exploration over the East Antarctic Ice Sheet: a new view of
the Wilkes Subglacial Basin, Tectonophysics, 478, 62–77, https://doi.org/10.1016/j.tecto.2009.03.013, 2009.
Ferraccioli, F., Finn, C. A., Jordan, T. A., Bell, R. E., Anderson, L. M., and
Damaske, D.: East Antarctic rifting triggers uplift of the Gamburtsev
Mountains, Nature, 479, 388–392, https://doi.org/10.1038/nature10566, 2011.
Ferris, J. K., Vaughan, A. P., and King, E. C.: A window on West Antarctic
crustal boundaries: the junction between the Antarctic Peninsula, the
Filchner Block, and Weddell Sea oceanic lithosphere. Tectonophysics,
347, 13–23, https://doi.org/10.1016/S0040-1951(01)00235-9,
2002.
Ferris, J. K., Storey, B. C., Vaughan, A. P., Kyle, P. R., and Jones, P. C.: The
Dufek and Forrestal intrusions, Antarctica: A centre for Ferrar large
igneous province dike emplacement?, Geophys. Res. Lett., 30, 1348,
https://doi.org/10.1029/2002GL016719, 2003.
Forsberg, R., Olesen, A. V., Ferraccioli, F., Jordan, T., Corr, H., and Matsuoka, K.: PolarGap 2015/16 Filling the GOCE polar gap in Antarctica and ASIRAS flight around South Pole, European Space Agency (ESA) [data set], https://doi.org/10.5270/esa-8ffoo3e, 2017.
Forsberg, R., Olesen, A. V., Ferraccioli, F., Jordan, T. A., Matsuoka, K.,
Zakrajsek, A., Ghidella, M., and Greenbaum, J. S.: Exploring the Recovery
Lakes region and interior Dronning Maud Land, East Antarctica, with airborne
gravity, magnetic and radar measurements, Geol. Soc. Lond.
Spec. Publ., 461, 23–34, https://doi.org/10.1144/SP461.17, 2018.
Frederick, B. C., Young, D. A., Blankenship, D. D., Richter, T. G., Kempf, S. D.,
Ferraccioli, F., and Siegert, M. J.: Distribution of subglacial sediments
across the Wilkes Subglacial Basin, East Antarctica, J. Geophys. Res.-Earth,
121, 790–813, https://doi.org/10.1002/2015JF003760, 2016.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Global Change Master Directory (GCMD): GCMD Keywords, Version 12.2.
Greenbelt, MD: Earth Science Data and Information System, Earth Science
Projects Division, Goddard Space Flight Center (GSFC) National Aeronautics
and Space Administration (NASA), https://forum.earthdata.nasa.gov/aphp/tag/GCMD+Keywords, last access: 1 December 2021.
Golynsky, A. V., Ferraccioli, F., Hong, J. K., Golynsky, D. A., von Frese,
R. R. B., Young, D. A., Blankenship, D. D., Holt, J. W., Ivanov, S. V., Kiselev,
A. V., and Masolov, V. N.: New magnetic anomaly map of the Antarctic, Geophys.
Res. Lett., 45, 6437–6449, https://doi.org/10.1029/2018GL078153, 2018.
Goodge, J. W. and Finn, C. A.: Glimpses of East Antarctica: Aeromagnetic and
satellite magnetic view from the central Transantarctic Mountains of East
Antarctica, J. Geophys. Res.-Sol. Ea., 115, B09103, https://doi.org/10.1029/2009JB006890, 2010.
Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts,
J. L., Aitken, A. R. A., Legresy, B., Schroeder, D. M., Warner, R. C., Van Ommen,
T. D., and Siegert, M. J.: Ocean access to a cavity beneath Totten Glacier in
East Antarctica, Nat. Geosci., 8, 294–298, https://doi.org/10.1038/ngeo2388, 2015.
Hackney, R. I. and Featherstone, W. E.: Geodetic versus geophysical
perspectives of the “gravity anomaly”, Geophys. J. Int., 154, 35–43,
https://doi.org/10.1046/j.1365-246X.2003.01941.x, 2003.
Harlan, R. B.: Eotvos corrections for airborne gravimetry, J. Geophys. Res.,
73, 4675–4679, https://doi.org/10.1029/JB073i014p04675,
1968.
Hélière, F., Lin, C. C., Corr, H., and Vaughan, D.: Radio echo
sounding of Pine Island Glacier, West Antarctica: Aperture synthesis
processing and analysis of feasibility from space, IEEE T. Geosci. Remote,
45, 2573–2582, https://doi.org/10.1109/TGRS.2007.897433,
2007.
Hodgson, D. A., Jordan, T. A., De Rydt, J., Fretwell, P. T., Seddon, S. A., Becker, D., Hogan, K. A., Smith, A. M., and Vaughan, D. G.: Past and future dynamics of the Brunt Ice Shelf from seabed bathymetry and ice shelf geometry, The Cryosphere, 13, 545–556, https://doi.org/10.5194/tc-13-545-2019, 2019.
Hofstede, C., Beyer, S., Corr, H., Eisen, O., Hattermann, T., Helm, V., Neckel, N., Smith, E. C., Steinhage, D., Zeising, O., and Humbert, A.: Evidence for a grounding line fan at the onset of a basal channel under the ice shelf of Support Force Glacier, Antarctica, revealed by reflection seismics, The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021, 2021.
Hogan, K. A., Larter, R. D., Graham, A. G. C., Arthern, R., Kirkham, J. D., Totten Minzoni, R., Jordan, T. A., Clark, R., Fitzgerald, V., Wåhlin, A. K., Anderson, J. B., Hillenbrand, C.-D., Nitsche, F. O., Simkins, L., Smith, J. A., Gohl, K., Arndt, J. E., Hong, J., and Wellner, J.: Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing, The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, 2020.
Holland, P. R., Corr, H. F., Vaughan, D. G., Jenkins, A., and Skvarca, P.:
Marine ice in Larsen ice shelf, Geophys. Res. Lett., 36, L11604,
https://doi.org/10.1029/2009GL038162, 2009.
Holland, P. R., Corr, H. F., Pritchard, H. D., Vaughan, D. G., Arthern, R. J.,
Jenkins, A., and Tedesco, M.: The air content of Larsen ice shelf, Geophys.
Res. Lett., 38, L10503, https://doi.org/10.1029/2011GL047245, 2011.
Holschuh, N., Christianson, K., Paden, J., Alley, R. B., and Anandakrishnan,
S.: Linking postglacial landscapes to glacier dynamics using swath radar at
Thwaites Glacier, Antarctica, Geology, 48, 268–272,
https://doi.org/10.1130/G46772.1, 2020.
Holt, J. W., Blankenship, D. D., Morse, D. L., Young, D. A., Peters, M. E.,
Kempf, S. D., Richter, T. G., Vaughan, D. G., and Corr, H. F.: New boundary
conditions for the West Antarctic Ice Sheet: Subglacial topography of the
Thwaites and Smith glacier catchments, Geophys. Res. Lett., 33, L09502,
https://doi.org/10.1029/2005GL025561, 2006.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou B., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 147–286,
https://doi.org/10.1017/9781009157896.003, in press, 2021.
Jeofry, H., Ross, N., Corr, H. F. J., Li, J., Morlighem, M., Gogineni, P., and Siegert, M. J.: A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet, Earth Syst. Sci. Data, 10, 711–725, https://doi.org/10.5194/essd-10-711-2018, 2018.
Johnson, A., Cheeseman, S., and Ferris, J.: Improved compilation of Antarctic
Peninsula magnetic data by new interactive grid suturing and blending
methods, Ann. Geophys., 42, 249–259, https://doi.org/10.4401/ag-3717, 1999.
Jones, P. C., Johnson, A. C., von Frese, R. R., and Corr, H.: Detecting rift
basins in the Evans Ice Stream region of West Antarctica using airborne
gravity data, Tectonophysics, 347, 25–41, https://doi.org/10.1016/S0040-1951(01)00236-0, 2002.
Jordan, T., Ferraccioli, F., Corr, H., Robinson, C., Caneva, G., Armadillo,
E., Bozzo, E., and Frearson, N.: Linking the Wilkes Subglacial Basin the
Transantarctic Mountains and the Ross Sea with a new airborne gravity
survey, Terra Ant. Rep., 13, 37–54, https://nora.nerc.ac.uk/id/eprint/15749 (last access: 18 July 2022), 2007.
Jordan, T. A. and Becker, D.: Investigating the distribution of magmatism at
the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic
data, Phys. Earth Planet In., 282, 77–88, https://doi.org/10.1016/j.pepi.2018.07.007, 2018.
Jordan, T. A., Ferraccioli, F., Jones, P. C., Smellie, J. L., Ghidella, M., and
Corr, H.: Airborne gravity reveals interior of Antarctic volcano, Phys.
Earth Planet In., 175, 127–136, https://doi.org/10.1016/j.pepi.2009.03.004, 2009.
Jordan, T. A., Ferraccioli, F., Vaughan, D. G., Holt, J. W., Corr, H.,
Blankenship, D. D., and Diehl, T. M.: Aerogravity evidence for major
crustal thinning under the Pine Island Glacier region (West Antarctica),
Bulletin, 122, 714–726, https://doi.org/10.1130/B26417.1,
2010.
Jordan, T. A., Ferraccioli, F., Armadillo, E., and Bozzo, E.: Crustal
architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed
from airborne gravity data, Tectonophysics, 585, 196–206, https://doi.org/10.1016/j.tecto.2012.06.041, 2013.
Jordan, T. A., Neale, R. F., Leat, P. T., Vaughan, A. P. M., Flowerdew, M. J.,
Riley, T. R., Whitehouse, M. J., and Ferraccioli, F.: Structure and evolution
of Cenozoic arc magmatism on the Antarctic Peninsula: a high resolution
aeromagnetic perspective, Geophys. J. Int., 198, 1758–1774, https://doi.org/10.1093/gji/ggu233, 2014.
Jordan, T. A., Martin, C., Ferraccioli, F., Matsuoka, K., Corr, H., Forsberg,
R., Olesen, A., and Siegert, M.: Anomalously high geothermal flux near the
South Pole, Sci. Rep.-UK, 8, 1–8, https://doi.org/10.1038/s41598-018-35182-0, 2018.
Jordan, T. A., Porter, D., Tinto, K., Millan, R., Muto, A., Hogan, K., Larter, R. D., Graham, A. G. C., and Paden, J. D.: New gravity-derived bathymetry for the Thwaites, Crosson, and Dotson ice shelves revealing two ice shelf populations, The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, 2020.
Jordan, T. A., Ferraccioli, F., and Forsberg, R.: An embayment in the East
Antarctic basement constrains the shape of the Rodinian continental margin,
Communications Earth & Environment, 3, 1–8, https://doi.org/10.1038/s43247-022-00375-z, 2022.
Karlsson, N. B., Rippin, D. M., Vaughan, D. G., and Corr, H. F.: The internal
layering of Pine Island Glacier, West Antarctica, from airborne
radar-sounding data, Ann. Glaciol., 50, 141–146, https://doi.org/10.3189/S0260305500250660, 2009.
Karlsson, N. B., Rippin, D. M., Bingham, R. G., and Vaughan, D. G.: A
“continuity-index” for assessing ice-sheet dynamics from radar-sounded
internal layers, Earth Planet Sc. Lett., 335, 88–94, https://doi.org/10.1016/j.epsl.2012.04.034, 2012.
Karlsson, N. B., Bingham, R. G., Rippin, D. M., Hindmarsh, R. C., Corr, H. F., and
Vaughan, D. G.: Constraining past accumulation in the central Pine Island
Glacier basin, West Antarctica, using radio-echo sounding, J. Glaciol.,
60, 553–562, https://doi.org/10.3189/2014JoG13j180, 2014.
Karlsson, N. B., Binder, T., Eagles, G., Helm, V., Pattyn, F., Van Liefferinge, B., and Eisen, O.: Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”, The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, 2018.
Le Brocq, A. M., Payne, A. J., and Vieli, A.: An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1), Earth Syst. Sci. Data, 2, 247–260, https://doi.org/10.5194/essd-2-247-2010, 2010.
Le Brocq, A. M., Ross, N., Griggs, J. A., Bingham, R. G., Corr, H. F.,
Ferraccioli, F., Jenkins, A., Jordan, T. A., Payne, A. J., Rippin, D. M., and
Siegert, M. J.: Evidence from ice shelves for channelized meltwater flow
beneath the Antarctic Ice Sheet, Nat. Geosci., 6, 945–948, https://doi.org/10.1038/ngeo1977, 2013.
Lei, Y., Gardner, A. S., and Agram, P.: Processing methodology for the ITS_LIVE Sentinel-1 ice velocity product, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-393, in review, 2021.
Luo, K., Liu, S., Guo, J., Wang, T., Li, L., Cui, X., Sun, B., and Tang, X.:
Radar-Derived Internal Structure and Basal Roughness Characterization along
a Traverse from Zhongshan Station to Dome A, East Antarctica, Remote
Sens., 12, 1079, https://doi.org/10.3390/rs12071079, 2020.
Lythe, M. B., Vaughan, D. G., and the BEDMAP Consortium: BEDMAP: A new ice thickness and subglacial
topographic model of Antarctica, J. Geophys. Res.-Sol. Ea., 106,
11335–11351, https://doi.org/10.1029/2000JB900449, 2001.
MacGregor, J. A., Boisvert, L. N., Medley, B., Petty, A. A., Harbeck, J. P.,
Bell, R. E., Blair, J. B., Blanchard-Wrigglesworth, E., Buckley, E.,M.,
Christoffersen, M. S., and Cochran, J. R.: The scientific legacy of NASA's
Operation Icebridge, Rev. Geophys., 59, e2020RG000712, https://doi.org/10.1029/2020RG000712, 2021.
Millan, R., Rignot, E., Bernier, V., Morlighem, M., and Dutrieux, P.:
Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from
Operation IceBridge gravity and other data, Geophys. Res. Lett., 44,
1360–1368, https://doi.org/10.1002/2016GL072071, 2017.
Moritz, H.: Geodetic reference system 1980, B. Geod., 54, 395–405,
https://doi.org/10.1007/s001900050278, 1980.
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 2. Boulder, Colorado
USA, NASA National Snow and Ice Data Center Distributed Active Archive
Center [data set], https://doi.org/10.5067/E1QL9HFQ7A8M, 2020.
Morlighem, M., Williams, C., Rignot, E., An, L., Arndt, J. E., Bamber, J.,
Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan,
K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R.,
Mayer, L., Mouginot, J., Noël, B., O'Cofaigh, C., Palmer, S. J., Rysgaard, S.,
Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R.,
Weinrebe, W., Wood, M., and Zinglersen, K.: BedMachine v3: Complete bed topography
and ocean bathymetry mapping of Greenland from multi-beam echo sounding
combined with mass conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., and Goel, V.:
Deep glacial troughs and stabilizing ridges unveiled beneath the margins of
the Antarctic ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Napoleoni, F., Jamieson, S. S. R., Ross, N., Bentley, M. J., Rivera, A., Smith, A. M., Siegert, M. J., Paxman, G. J. G., Gacitúa, G., Uribe, J. A., Zamora, R., Brisbourne, A. M., and Vaughan, D. G.: Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica, The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, 2020.
Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F., and Hale, R.: IceBridge
MCoRDS L1B Geolocated Radar Echo Strength Profiles, Version 2. Boulder,
Colorado USA, NASA National Snow and Ice Data Center Distributed Active
Archive Center [data set], https://doi.org/10.5067/90S1XZRBAX5N, 2014.
Parrenin, F. and Hindmarsh, R.: Influence of a non-uniform velocity field on
isochrone geometry along a steady flowline of an ice sheet, J. Glaciol.,
53, 612–622, https://doi.org/10.3189/002214307784409298,
2007.
Paxman, G. J., Jamieson, S. S., Ferraccioli, F., Jordan, T. A., Bentley, M. J.,
Ross, N., Forsberg, R., Matsuoka, K., Steinhage, D., Eagles, G., and Casal,
T. G.: Subglacial Geology and Geomorphology of the Pensacola-Pole Basin, East
Antarctica, Geochem. Geophy. Geosy., 20, 2786–2807,
https://doi.org/10.1029/2018GC008126, 2019.
Peters, M. E., Blankenship, D. D., and Morse, D. L.: Analysis techniques for
coherent airborne radar sounding: Application to West Antarctic ice streams,
J. Geophys. Res.-Sol. Ea., 110, B06303, https://doi.org/10.1029/2004JB003222, 2005.
Peters, M. E., Blankenship, D. D., Carter, S. P., Kempf, S. D., Young, D. A., and
Holt, J. W.: Along-track focusing of airborne radar sounding data from West
Antarctica for improving basal reflection analysis and layer detection, IEEE
T. Geosci. Remote, 45, 2725–2736, https://doi.org/10.1109/TGRS.2007.897416, 2007.
Polar Data Centre: BAS Aerogeophysics Book, https://antarctica.github.io/PDC_GeophysicsBook, last access: 18 July 2022
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-based Antarctica
ice velocity map, version 2, NASA National Snow and Ice Data Center
Distributed Active Archive Center [data set], https://doi.org/10.5067/D7GK8F5J8M8R, 2017.
Rippin, D. M., Bamber, J. L., Siegert, M. J., Vaughan, D. G., and Corr, H. F. J.:
Basal topography and ice flow in the Bailey/Slessor region of East
Antarctica, J. Geophys. Res.-Earth, 108, 6008, https://doi.org/10.1029/2003JF000039, 2003a.
Rippin, D. M., Siegert, M. J., and Bamber, J. L.: The englacial stratigraphy of
Wilkes Land, East Antarctica, as revealed by internal radio-echo sounding
layering, and its relationship with balance velocities, Ann. Glaciol., 36,
189–196, https://doi.org/10.3189/172756403781816356, 2003b.
Rippin, D. M., Vaughan, D. G., and Corr, H. F.: The basal roughness of Pine
Island Glacier, West Antarctica, J. Glaciol., 57, 67–76, https://doi.org/10.3189/002214311795306574, 2011.
Rippin, D. M., Bingham, R. G., Jordan, T. A., Wright, A. P., Ross, N., Corr,
H. F., Ferraccioli, F., Le Brocq, A. M., Rose, K. C., and Siegert, M. J.: Basal
roughness of the Institute and Möller Ice Streams, West Antarctica:
Process determination and landscape interpretation, Geomorphology, 214,
139–147, https://doi.org/10.1016/j.geomorph.2014.01.021, 2014.
Robin, G. D. Q., Swithinbank, C. W. M., and Smith, B. M. E.: Radio echo exploration
of the Antarctic ice sheet, International Association of Scientific
Hydrology Publication, 86, 97–115, 1970.
Robin, G. D. Q., Drewry, D. J., and Meldrum, D. T.: International studies of ice
sheet and bedrock, Philos. T. Roy. Soc. B., 279, 185–196, https://doi.org/10.1098/rstb.1977.0081, 1977.
Rose, K. C., Ferraccioli, F., Jamieson, S. S., Bell, R. E., Corr, H., Creyts,
T. T., Braaten, D., Jordan, T. A., Fretwell, P. T., and Damaske, D.: Early east
Antarctic Ice Sheet growth recorded in the landscape of the Gamburtsev
Subglacial Mountains, Earth Planet Sc. Lett., 375, 1–12, https://doi.org/10.1016/j.epsl.2013.03.053, 2013.
Rose, K. C., Ross, N., Bingham, R. G., Corr, H. F., Ferraccioli, F., Jordan,
T. A., Le Brocq, A. M., Rippin, D. M., and Siegert, M. J.: A temperate former
West Antarctic ice sheet suggested by an extensive zone of subglacial
meltwater channels, Geology, 42, 971–974, https://doi.org/10.1130/G35980.1, 2014.
Ross, N., Bingham, R. G., Corr, H. F., Ferraccioli, F., Jordan, T. A., Le
Brocq, A., Rippin, D. M., Young, D., Blankenship, D. D., and Siegert, M. J.:
Steep reverse bed slope at the grounding line of the Weddell Sea sector in
West Antarctica, Nat. Geosci., 5, 393–396, https://doi.org/10.1038/ngeo1468, 2012.
Ross, N., Jordan, T. A., Bingham, R. G., Corr, H. F., Ferraccioli, F., Le
Brocq, A., Rippin, D. M., Wright, A. P., and Siegert, M. J.: The Ellsworth
subglacial highlands: inception and retreat of the West Antarctic Ice Sheet,
Bulletin, 126, 3–15, https://doi.org/10.1130/B30794.1,
2014.
Ross, N., Corr, H., and Siegert, M.: Large-scale englacial folding and deep-ice stratigraphy within the West Antarctic Ice Sheet, The Cryosphere, 14, 2103–2114, https://doi.org/10.5194/tc-14-2103-2020, 2020.
Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Evidence for a water
system transition beneath Thwaites Glacier, West Antarctica, P. Natl. A.
Sci., 110, 12225–12228, https://doi.org/10.1073/pnas.1302828110, 2013.
Schroeder, D. M., Blankenship, D. D., Young, D. A., and Quartini, E.: Evidence
for elevated and spatially variable geothermal flux beneath the West
Antarctic Ice Sheet, P. Natl. Acad. Sci. USA, 111, 9070–9072, https://doi.org/10.1073/pnas.1405184111, 2014.
Schroeder, D. M., Dowdeswell, J. A., Siegert, M. J., Bingham, R. G., Chu, W.,
MacKie, E. J., Siegfried, M. R., Vega, K. I., Emmons, J. R., and Winstein, K.:
Multidecadal observations of the Antarctic ice sheet from restored analog
radar records, P. Natl. Acad. Sci. USA, 116, 18867–18873, https://doi.org/10.1073/pnas.1821646116, 2019.
Shepherd, T., Bamber, J. L., and Ferraccioli, F.: Subglacial geology in Coats
Land, East Antarctica, revealed by airborne magnetics and radar sounding,
Earth Planet Sc. Lett., 244, 323–335, https://doi.org/10.1016/j.epsl.2006.01.068, 2006.
Siegert, M. J., Payne, A. J., and Joughin, I.: Spatial stability of Ice Stream
D and its tributaries, West Antarctica, revealed by radio-echo sounding and
interferometry, Ann. Glaciol., 37, 377–382, https://doi.org/10.3189/172756403781816022, 2003.
Siegert, M., Ross, N., Corr, H., Kingslake, J., and Hindmarsh, R.: Late
Holocene ice-flow reconfiguration in the Weddell Sea sector of West
Antarctica, Quaternary Sci. Rev., 78, 98–107, https://doi.org/10.1016/j.quascirev.2013.08.003, 2013.
Siegert, M. J. and Payne, A. J.: Past rates of accumulation in central West
Antarctica, Geophys. Res. Lett., 31, L12403, https://doi.org/10.1029/2004GL020290, 2004.
Siegert, M. J., Ross, N., Corr, H., Smith, B., Jordan, T., Bingham, R. G., Ferraccioli, F., Rippin, D. M., and Le Brocq, A.: Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet, The Cryosphere, 8, 15–24, https://doi.org/10.5194/tc-8-15-2014, 2014.
Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T. A.: The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP), Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, 2016.
Studinger, M., Bell, R. E., Blankenship, D. D., Finn, C. A., Arko, R. A., Morse,
D. L., and Joughin, I.: Subglacial sediments: A regional geological template
for ice flow in West Antarctica, Geophys. Res. Lett., 28, 3493–3496,
https://doi.org/10.1029/2000GL011788, 2001.
Sutter, J., Fischer, H., and Eisen, O.: Investigating the internal structure of the Antarctic ice sheet: the utility of isochrones for spatiotemporal ice-sheet model calibration, The Cryosphere, 15, 3839–3860, https://doi.org/10.5194/tc-15-3839-2021, 2021.
Tinto, K. J. and Bell, R. E.: Progressive unpinning of Thwaites Glacier from
newly identified offshore ridge: Constraints from aerogravity, Geophys. Res.
Lett., 38, L20503, https://doi.org/10.1029/2011GL049026,
2011.
Tinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A., Das,
I., Tontini, F. C., Porter, D. F., Frearson, N. P., Howard, S. L., and Siegfried,
M. R.: Ross Ice Shelf response to climate driven by the tectonic imprint on
seafloor bathymetry, Nat. Geosci., 12, 441–449, https://doi.org/10.1038/s41561-019-0370-2, 2019.
Valliant, H. D.: LaCoste & Romberg Air/Sea Meters: An Overview, CRC
Handbook of Geophysical Exploration at Sea, London, CRC Press, https://doi.org/10.1201/9780367812751, 1992.
Vaughan, D. G., Corr, H. F., Ferraccioli, F., Frearson, N., O'Hare, A., Mach,
D., Holt, J. W., Blankenship, D. D., Morse, D. L., and Young, D. A.: New boundary
conditions for the West Antarctic ice sheet: Subglacial topography beneath
Pine Island Glacier, Geophys. Res. Lett., 33, L09501, https://doi.org/10.1029/2005GL025588, 2006.
Vaughan, D. G., Corr, H. F., Smith, A. M., Pritchard, H. D., and Shepherd, A.:
Flow-switching and water piracy between Rutford ice stream and Carlson
inlet, West Antarctica, J. Glaciol., 54, 41–48, https://doi.org/10.3189/002214308784409125, 2008.
Vaughan, D. G., Corr, H. F., Bindschadler, R. A., Dutrieux, P., Gudmundsson,
G. H., Jenkins, A., Newman, T., Vornberger, P., and Wingham, D. J.: Subglacial
melt channels and fracture in the floating part of Pine Island Glacier,
Antarctica. J. Geophys. Res.-Earth, 117, F03012, https://doi.org/10.1029/2012JF002360, 2012.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E.,
and Bouwman, J.: The FAIR Guiding Principles for scientific data management
and stewardship, Sci. Data, 3, 1–9, https://doi.org/10.1038/sdata.2016.18, 2016.
Winski, D. A., Fudge, T. J., Ferris, D. G., Osterberg, E. C., Fegyveresi, J. M., Cole-Dai, J., Thundercloud, Z., Cox, T. S., Kreutz, K. J., Ortman, N., Buizert, C., Epifanio, J., Brook, E. J., Beaudette, R., Severinghaus, J., Sowers, T., Steig, E. J., Kahle, E. C., Jones, T. R., Morris, V., Aydin, M., Nicewonger, M. R., Casey, K. A., Alley, R. B., Waddington, E. D., Iverson, N. A., Dunbar, N. W., Bay, R. C., Souney, J. M., Sigl, M., and McConnell, J. R.: The SP19 chronology for the South Pole Ice Core – Part 1: volcanic matching and annual layer counting, Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, 2019.
Winter, K., Woodward, J., Ross, N., Dunning, S. A., Bingham, R. G., Corr, H. F.,
and Siegert, M. J.: Airborne radar evidence for tributary flow switching in
Institute Ice Stream, West Antarctica: Implications for ice sheet
configuration and dynamics, J. Geophys. Res.-Earth, 120, 1611–1625,
https://doi.org/10.1002/2015JF003518, 2015.
Winter, K., Ross, N., Ferraccioli, F., Jordan, T. A., Corr, H. F., Forsberg,
R., Matsuoka, K., Olesen, A. V., and Casal, T. G.: Topographic steering of
enhanced ice flow at the bottleneck between East and West Antarctica,
Geophys. Res. Lett., 45, 4899–4907, https://doi.org/10.1029/2018GL077504, 2018.
Wright, A. P., Young, D. A., Roberts, J. L., Schroeder, D. M., Bamber, J. L.,
Dowdeswell, J. A., Young, N. W., Le Brocq, A. M., Warner, R. C., Payne, A. J. and
Blankenship, D. D.: Evidence of a hydrological connection between the ice
divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica,
J. Geophys. Res.-Earth, 117, F01033, https://doi.org/10.1029/2011JF002066, 2012.
Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and Quartini,
E.: The distribution of basal water between Antarctic subglacial lakes from
radar sounding, Philos. T. R. Soc. A., 374, 20140297, https://doi.org/10.1098/rsta.2014.0297, 2016.
Young, T. J., Schroeder, D. M., Jordan, T. M., Christoffersen, P., Tulaczyk,
S. M., Culberg, R., and Bienert, N. L.: Inferring ice fabric from birefringence
loss in airborne radargrams: Application to the eastern shear margin of
Thwaites Glacier, West Antarctica, J. Geophys. Res.-Earth, 126,
2020JF006023, https://doi.org/10.1029/2020JF006023, 2021.
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
This paper presents the release of large swaths of airborne geophysical data (including gravity,...
Altmetrics
Final-revised paper
Preprint