Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2553-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2553-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Torsten Bickert
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Helen C. Bostock
School of Earth and Environmental Sciences, University of Queensland, Brisbane,
Australia
National Institute of Water and Atmospheric Research (NIWA), Taihoro Nukurangi, Wellington, New Zealand
Cristiano M. Chiessi
School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
Barbara Donner
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Aline Govin
LSCE-IPSL, Laboratoire des Sciences du Climat et de l'Environnement (CEA-CNRS-UVSQ), Paris-Saclay University, 91190, Gif-sur-Yvette, France
Naomi Harada
Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
Enqing Huang
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Heather Johnstone
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Henning Kuhnert
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Michael Langner
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Frank Lamy
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Lester Lembke-Jene
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Lorraine Lisiecki
Department of Earth Science, University of California, Santa Barbara, CA 93106, USA
Jean Lynch-Stieglitz
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
Lars Max
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Mahyar Mohtadi
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Gesine Mollenhauer
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Juan Muglia
Centro para el Estudio de los Sistemas Marinos, CONICET, 2915 Boulevard Brown, U9120ACD, Puerto Madryn, Argentina
Dirk Nürnberg
GEOMAR Helmholtz Centre for Ocean Research, Wischhofstr. 1–3, Geb. 4, 24148, Kiel, Germany
André Paul
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Carsten Rühlemann
Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, 30655 Hanover, Germany
Janne Repschläger
Department of Climate Geochemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
Rajeev Saraswat
Micropaleontology Laboratory, Geological Oceanography Division, National Institute of Oceanography, Goa, India
Andreas Schmittner
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
Elisabeth L. Sikes
Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
Robert F. Spielhagen
GEOMAR Helmholtz Centre for Ocean Research, Wischhofstr. 1–3, Geb. 4, 24148, Kiel, Germany
Ralf Tiedemann
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Related authors
Peter Köhler and Stefan Mulitza
Clim. Past, 20, 991–1015, https://doi.org/10.5194/cp-20-991-2024, https://doi.org/10.5194/cp-20-991-2024, 2024
Short summary
Short summary
We constructed 160 kyr long mono-specific stacks of δ13C and of δ18O from the wider tropics from the planktic foraminifera G. ruber and/or T. sacculifer and compared them with carbon cycle simulations using the BICYCLE-SE model. In our stacks and our model-based interpretation, we cannot detect a species-specific isotopic fractionation during hard-shell formation as a function of carbonate chemistry in the surrounding seawater, something which is called a carbonate ion effect.
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Michael Langner and Stefan Mulitza
Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, https://doi.org/10.5194/cp-15-2067-2019, 2019
Short summary
Short summary
Collections of paleoclimate data provide valuable information on the functioning of the Earth system but are often difficult to manage due to the inconsistency of data formats and reconstruction methods. We present a software toolbox that combines a simple document-based database with functionality for the visualization and management of marine proxy data. The program allows the efficient homogenization of larger paleoceanographic data sets into quality-controlled and transparent data products.
Charlotte Breitkreuz, André Paul, Stefan Mulitza, Javier García-Pintado, and Michael Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-32, https://doi.org/10.5194/gmd-2019-32, 2019
Publication in GMD not foreseen
Short summary
Short summary
We present a technique for ocean state estimation based on the combination of a simple data assimilation method with a state reduction approach. The technique proves to be very efficient and successful in reducing the model-data misfit and reconstructing a target ocean circulation from synthetic observations. In an application to Last Glacial Maximum proxy data the model-data misfit is greatly reduced but some misfit remains. Two different ocean states are found with similar model-data misfit.
Rike Völpel, André Paul, Annegret Krandick, Stefan Mulitza, and Michael Schulz
Geosci. Model Dev., 10, 3125–3144, https://doi.org/10.5194/gmd-10-3125-2017, https://doi.org/10.5194/gmd-10-3125-2017, 2017
Short summary
Short summary
This study presents the implementation of stable water isotopes in the MITgcm and describes the results of an equilibrium simulation under pre-industrial conditions. The model compares well to observational data and measurements of plankton tow records and thus opens wide prospects for long-term simulations in a paleoclimatic context.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Shuwen Sun, Enno Schefuß, Stefan Mulitza, Cristiano M. Chiessi, André O. Sawakuchi, Matthias Zabel, Paul A. Baker, Jens Hefter, and Gesine Mollenhauer
Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, https://doi.org/10.5194/bg-14-2495-2017, 2017
J. A. Collins, A. Govin, S. Mulitza, D. Heslop, M. Zabel, J. Hartmann, U. Röhl, and G. Wefer
Clim. Past, 9, 1181–1191, https://doi.org/10.5194/cp-9-1181-2013, https://doi.org/10.5194/cp-9-1181-2013, 2013
Aline Martins Mega, Teresa Rodrigues, Emilia Salgueiro, Maria Padilha, Henning Kuhnert, and Antje H. L. Voelker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3185, https://doi.org/10.5194/egusphere-2024-3185, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our research explores climatic changes during the Early-Middle Pleistocene (1006–750 kilo years) on the southern Portuguese margin. We found that warm, subtropical gyre related conditions dominated. However, those conditions were occasionally interrupted by extreme cold events during the glacial periods. Our data shows that these cold events, linked to changes in the North Atlantic’s circulation, reached as far south as 36° N and significantly impacting marine ecosystems in the surface ocean.
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-60, https://doi.org/10.5194/cp-2024-60, 2024
Preprint under review for CP
Short summary
Short summary
In order to understand the mechanisms governing permafrost organic matter re-mobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in wide-spread erosion and transport of permafrost materials to the ocean, but erosion is mitigated by regional dense sea ice cover. Factors like inland warming or floods increase permafrost mobilization locally.
Alexandra Auderset, Sandi M. Smart, Yeongjun Ryu, Dario Marconi, Haojia Abby Ren, Lena Heins, Hubert Vonhof, Ralf Schiebel, Janne Repschläger, Daniel M. Sigman, Gerald H. Haug, and Alfredo Martínez-García
EGUsphere, https://doi.org/10.5194/egusphere-2024-2291, https://doi.org/10.5194/egusphere-2024-2291, 2024
Short summary
Short summary
This study investigates foraminifera-bound nitrogen isotopes (FB-δ15N) as a tool to study the history of photosymbiosis in planktic foraminifera. By analysing multiple species from the South Atlantic, we found that FB-δ15N differentiates between species with dinoflagellate symbionts and those without, probably due to internal ammonium recycling in the former. Overall, this study provides strong support for FB-δ15N as a tool for exploring the evolution of symbiosis in marine ecosystems.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-290, https://doi.org/10.5194/essd-2024-290, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We want to understand changes to the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Megan Jeffers, Chris Chapman, Bernadette M. Sloyan, and Helen Bostock
EGUsphere, https://doi.org/10.5194/egusphere-2024-2265, https://doi.org/10.5194/egusphere-2024-2265, 2024
Short summary
Short summary
The East Australian Current (EAC) significantly impacts the marine environment of Australia's east coast. This study analyses physical and biogeochemical data from around the EAC mooring array between 2012 to 2022 to understand nutrient variability at approximately 27° S. Both seasonality and the EAC's lateral position affects the distribution of nutrients in the water column. These findings reveal occurrences of the upwelling of deep EAC nutrient rich water into the oligotrophic surface waters.
Arnaud Nicolas, Gesine Mollenhauer, Johannes Lachner, Konstanze Stübner, Maylin Malter, Jutta Wollenburg, Hendrik Grotheer, and Florian Adolphi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1992, https://doi.org/10.5194/egusphere-2024-1992, 2024
Short summary
Short summary
We use the authigenic 10Be/9Be record of a Laptev Sea sediment core for the period 8–14 kyr BP and synchronize it with the 10Be records from absolutely dated ice cores. We employed a likelihood function to calculate the ΔR values. A benthic ΔR value of +345±60 14C years was estimated, which corresponds to a marine reservoir age of 848±90 14C years. This new ΔR value was used to refine the age-depth model for core PS2458-4, establishing it as a potential reference chronology for the Laptev Sea.
Peter Köhler and Stefan Mulitza
Clim. Past, 20, 991–1015, https://doi.org/10.5194/cp-20-991-2024, https://doi.org/10.5194/cp-20-991-2024, 2024
Short summary
Short summary
We constructed 160 kyr long mono-specific stacks of δ13C and of δ18O from the wider tropics from the planktic foraminifera G. ruber and/or T. sacculifer and compared them with carbon cycle simulations using the BICYCLE-SE model. In our stacks and our model-based interpretation, we cannot detect a species-specific isotopic fractionation during hard-shell formation as a function of carbonate chemistry in the surrounding seawater, something which is called a carbonate ion effect.
Jennifer L. Middleton, Julia Gottschalk, Gisela Winckler, Jean Hanley, Carol Knudson, Jesse R. Farmer, Frank Lamy, Lorraine E. Lisiecki, and Expedition 383 Scientists
Geochronology, 6, 125–145, https://doi.org/10.5194/gchron-6-125-2024, https://doi.org/10.5194/gchron-6-125-2024, 2024
Short summary
Short summary
We present oxygen isotope data for a new sediment core from the South Pacific and assign ages to our record by aligning distinct patterns in observed oxygen isotope changes to independently dated target records with the same patterns. We examine the age uncertainties associated with this approach caused by human vs. automated alignment and the sensitivity of outcomes to the choice of alignment target. These efforts help us understand the timing of past climate changes.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Vera Dorothee Meyer, Jürgen Pätzold, Gesine Mollenhauer, Isla S. Castañeda, Stefan Schouten, and Enno Schefuß
Clim. Past, 20, 523–546, https://doi.org/10.5194/cp-20-523-2024, https://doi.org/10.5194/cp-20-523-2024, 2024
Short summary
Short summary
The climatic factors sustaining vegetation in the Sahara during the African humid period (AHP) are still not fully understood. Using biomarkers in a marine sediment core from the eastern Mediterranean, we infer variations in Mediterranean (winter) and monsoonal (summer) rainfall in the Nile river watershed around the AHP. We find that winter and summer rain enhanced during the AHP, suggesting that Mediterranean moisture supported the monsoon in sustaining the “green Sahara”.
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
EGUsphere, https://doi.org/10.5194/egusphere-2024-246, https://doi.org/10.5194/egusphere-2024-246, 2024
Short summary
Short summary
Using a multiproxy approach, we analyzed biomarkers and diatom assemblages from a marine sediment core from the Powell Basin, Weddell Sea. The results reveal the first continuous coastal Antarctic sea ice record since the Last Penultimate Glacial. Our findings contribute valuable insights into past glacial-interglacial sea ice response to a changing climate and enhance our understanding of the ocean-sea ice-ice shelf interactions and dynamics.
Christen L. Bowman, Devin S. Rand, Lorraine E. Lisiecki, and Samantha C. Bova
Earth Syst. Sci. Data, 16, 701–713, https://doi.org/10.5194/essd-16-701-2024, https://doi.org/10.5194/essd-16-701-2024, 2024
Short summary
Short summary
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records over the last 800 kyr from 10 ocean sediment cores. To better understand glacial–interglacial differences between the tropical WPWP and high-latitude climate change, we compare our WPWP stack to global and North Atlantic deep-ocean stacks. Although we see similar timing in glacial–interglacial change between the stacks, the WPWP exhibits less amplitude of change.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Eduardo Queiroz Alves, Wanyee Wong, Jens Hefter, Hendrik Grotheer, Tommaso Tesi, Torben Gentz, Karin Zonneveld, and Gesine Mollenhauer
Clim. Past, 20, 121–136, https://doi.org/10.5194/cp-20-121-2024, https://doi.org/10.5194/cp-20-121-2024, 2024
Short summary
Short summary
Our study reveals a previously unknown peat source for the massive influx of terrestrial organic matter that was exported from the European continent to the ocean during the last deglaciation. Our findings shed light on ancient terrestrial organic carbon mobilization, providing insights that are crucial for refining climate models.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Nestor Gaviria-Lugo, Charlotte Läuchli, Hella Wittmann, Anne Bernhardt, Patrick Frings, Mahyar Mohtadi, Oliver Rach, and Dirk Sachse
Biogeosciences, 20, 4433–4453, https://doi.org/10.5194/bg-20-4433-2023, https://doi.org/10.5194/bg-20-4433-2023, 2023
Short summary
Short summary
We analyzed how leaf wax hydrogen isotopes in continental and marine sediments respond to climate along one of the strongest aridity gradients in the world, from hyperarid to humid, along Chile. We found that under extreme aridity, the relationship between hydrogen isotopes in waxes and climate is non-linear, suggesting that we should be careful when reconstructing past hydrological changes using leaf wax hydrogen isotopes so as to avoid overestimating how much the climate has changed.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Alexandre Cauquoin, Ayako Abe-Ouchi, Takashi Obase, Wing-Le Chan, André Paul, and Martin Werner
Clim. Past, 19, 1275–1294, https://doi.org/10.5194/cp-19-1275-2023, https://doi.org/10.5194/cp-19-1275-2023, 2023
Short summary
Short summary
Stable water isotopes are tracers of climate processes occurring in the hydrological cycle. They are widely used to reconstruct the past variations of polar temperature before the instrumental era thanks to their measurements in ice cores. However, the relationship between measured isotopes and temperature has large uncertainties. In our study, we investigate how the sea surface conditions (temperature, sea ice, ocean circulation) impact this relationship for a cold to warm climate change.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Lea Pesjak, Andrew McMinn, Zanna Chase, and Helen Bostock
Clim. Past, 19, 419–437, https://doi.org/10.5194/cp-19-419-2023, https://doi.org/10.5194/cp-19-419-2023, 2023
Short summary
Short summary
This study uses diatom assemblages, biogenic silica and Si/Al data over the last 140 kyr from core TAN1302-44 (64°54' S, 144°32' E) to define glacial-to-interglacial paleoenvironments near Antarctica with respect to sea ice duration and ocean circulation. It has found that the sea ice season increased gradually during the last glacial, reaching a maximum before decreasing at the end of MIS 2. Following this, Circumpolar Deep Water increased relative to other times prior to ice sheet retreat.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Mengli Cao, Jens Hefter, Ralf Tiedemann, Lester Lembke-Jene, Vera D. Meyer, and Gesine Mollenhauer
Clim. Past, 19, 159–178, https://doi.org/10.5194/cp-19-159-2023, https://doi.org/10.5194/cp-19-159-2023, 2023
Short summary
Short summary
We use sediment records of lignin to reconstruct deglacial vegetation change and permafrost mobilization, which occurred earlier in the Yukon than in the Amur river basin. Sea ice extent or surface temperatures of adjacent oceans might have had a strong influence on the timing of permafrost mobilization. In contrast to previous evidence, our records imply that during glacial peaks of permafrost decomposition, lipids and lignin might have been delivered to the ocean by identical processes.
Rajeev Saraswat, Thejasino Suokhrie, Dinesh K. Naik, Dharmendra P. Singh, Syed M. Saalim, Mohd Salman, Gavendra Kumar, Sudhira R. Bhadra, Mahyar Mohtadi, Sujata R. Kurtarkar, and Abhayanand S. Maurya
Earth Syst. Sci. Data, 15, 171–187, https://doi.org/10.5194/essd-15-171-2023, https://doi.org/10.5194/essd-15-171-2023, 2023
Short summary
Short summary
Much effort is made to project monsoon changes by reconstructing the past. The stable oxygen isotopic ratio of marine calcareous organisms is frequently used to reconstruct past monsoons. Here, we use the published and new stable oxygen isotopic data to demonstrate a diagenetic effect and a strong salinity influence on the oxygen isotopic ratio of foraminifera in the northern Indian Ocean. We also provide updated calibration equations to deduce monsoons from the oxygen isotopic ratio.
Dirk Nürnberg, Akintunde Kayode, Karl J. F. Meier, and Cyrus Karas
Clim. Past, 18, 2483–2507, https://doi.org/10.5194/cp-18-2483-2022, https://doi.org/10.5194/cp-18-2483-2022, 2022
Short summary
Short summary
The Leeuwin Current to the west of Australia steers the heat exchange between the tropical and the subantarctic ocean areas. Its prominent variability during the last glacial effectively shaped the Australian ecosystem and was closely related to the dynamics of the Antarctic Circumpolar Current. At ~ 43 ka BP, the rapidly weakening Leeuwin Current, the ecological response in Australia, and human interference likely caused the extinction of the exotic Australian megafauna.
Takasumi Kurahashi-Nakamura, André Paul, Ute Merkel, and Michael Schulz
Clim. Past, 18, 1997–2019, https://doi.org/10.5194/cp-18-1997-2022, https://doi.org/10.5194/cp-18-1997-2022, 2022
Short summary
Short summary
With a comprehensive Earth-system model including the global carbon cycle, we simulated the climate state during the last glacial maximum. We demonstrated that the CO2 concentration in the atmosphere both in the modern (pre-industrial) age (~280 ppm) and in the glacial age (~190 ppm) can be reproduced by the model with a common configuration by giving reasonable model forcing and total ocean inventories of carbon and other biogeochemical matter for the respective ages.
Kaveh Purkiani, Matthias Haeckel, Sabine Haalboom, Katja Schmidt, Peter Urban, Iason-Zois Gazis, Henko de Stigter, André Paul, Maren Walter, and Annemiek Vink
Ocean Sci., 18, 1163–1181, https://doi.org/10.5194/os-18-1163-2022, https://doi.org/10.5194/os-18-1163-2022, 2022
Short summary
Short summary
Based on altimetry data and in situ hydrographic observations, the impacts of an anticyclone mesoscale eddy (large rotating body of water) on the seawater characteristics were investigated during a research campaign. The particular eddy presents significant anomalies on the seawater properties at 1500 m. The potential role of eddies in the seafloor and its consequential effect on the altered dispersion of mining-related sediment plumes are important to assess future mining operations.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Raúl Tapia, Sze Ling Ho, Hui-Yu Wang, Jeroen Groeneveld, and Mahyar Mohtadi
Biogeosciences, 19, 3185–3208, https://doi.org/10.5194/bg-19-3185-2022, https://doi.org/10.5194/bg-19-3185-2022, 2022
Short summary
Short summary
We report census counts of planktic foraminifera in depth-stratified plankton net samples off Indonesia. Our results show that the vertical distribution of foraminifera species routinely used in paleoceanographic reconstructions varies in hydrographically distinct regions, likely in response to food availability. Consequently, the thermal gradient based on mixed layer and thermocline dwellers also differs for these regions, suggesting potential implications for paleoceanographic reconstructions.
Inga Labuhn, Franziska Tell, Ulrich von Grafenstein, Dan Hammarlund, Henning Kuhnert, and Bénédicte Minster
Biogeosciences, 19, 2759–2777, https://doi.org/10.5194/bg-19-2759-2022, https://doi.org/10.5194/bg-19-2759-2022, 2022
Short summary
Short summary
This study presents the isotopic composition of recent biogenic carbonates from several lacustrine species which calcify during different times of the year. The authors demonstrate that when biological offsets are corrected, the dominant cause of differences between species is the seasonal variation in temperature-dependent fractionation of oxygen isotopes. Consequently, such carbonates from lake sediments can provide proxy records of seasonal water temperature changes in the past.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Gerard J. M. Versteegh, Karin A. F. Zonneveld, Jens Hefter, Oscar E. Romero, Gerhard Fischer, and Gesine Mollenhauer
Biogeosciences, 19, 1587–1610, https://doi.org/10.5194/bg-19-1587-2022, https://doi.org/10.5194/bg-19-1587-2022, 2022
Short summary
Short summary
A 5-year record of long-chain mid-chain diol export flux and composition is presented with a 1- to 3-week resolution sediment trap CBeu (in the NW African upwelling). All environmental parameters as well as the diol composition are dominated by the seasonal cycle, albeit with different phase relations for temperature and upwelling. Most diol-based proxies are dominated by upwelling. The long-chain diol index reflects temperatures of the oligotrophic summer sea surface.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Kelly-Anne Lawler, Giuseppe Cortese, Matthieu Civel-Mazens, Helen Bostock, Xavier Crosta, Amy Leventer, Vikki Lowe, John Rogers, and Leanne K. Armand
Earth Syst. Sci. Data, 13, 5441–5453, https://doi.org/10.5194/essd-13-5441-2021, https://doi.org/10.5194/essd-13-5441-2021, 2021
Short summary
Short summary
Radiolarians found in marine sediments are used to reconstruct past Southern Ocean environments. This requires a comprehensive modern dataset. The Southern Ocean Radiolarian (SO-RAD) dataset includes radiolarian counts from sites in the Southern Ocean. It can be used for palaeoceanographic reconstructions or to study modern species diversity and abundance. We describe the data collection and include recommendations for users unfamiliar with procedures typically used by the radiolarian community.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Bingbing Wei, Guodong Jia, Jens Hefter, Manyu Kang, Eunmi Park, Shizhu Wang, and Gesine Mollenhauer
Biogeosciences, 17, 4489–4508, https://doi.org/10.5194/bg-17-4489-2020, https://doi.org/10.5194/bg-17-4489-2020, 2020
Short summary
Short summary
This research reports the applicability of four organic temperature proxies (U37K', LDI, TEX86H, and RI-OH) to the northern South China Sea shelf. The comparison with local sea surface temperature (SST) indicates the impact of terrestrial input on LDI, TEX86H, and RI-OH proxies near the coast. After excluding samples influenced by terrestrial materials, proxy temperatures exhibit different seasonality, providing valuable tools to reconstruct regional SSTs under different monsoonal conditions.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Heike H. Zimmermann, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Juliane Müller, Ruediger Stein, Ralf Tiedemann, and Ulrike Herzschuh
Ocean Sci., 16, 1017–1032, https://doi.org/10.5194/os-16-1017-2020, https://doi.org/10.5194/os-16-1017-2020, 2020
Short summary
Short summary
This study targets high-resolution, diatom-specific sedimentary ancient DNA using a DNA metabarcoding approach. Diatom DNA has been preserved with substantial taxonomic richness in the eastern Fram Strait over the past 30 000 years with taxonomic composition being dominated by cold-water and sea-ice-associated diatoms. Taxonomic reorganisations took place after the Last Glacial Maximum and after the Younger Dryas. Peak proportions of pennate diatoms might indicate past sea-ice presence.
Annalena A. Lochte, Ralph Schneider, Markus Kienast, Janne Repschläger, Thomas Blanz, Dieter Garbe-Schönberg, and Nils Andersen
Clim. Past, 16, 1127–1143, https://doi.org/10.5194/cp-16-1127-2020, https://doi.org/10.5194/cp-16-1127-2020, 2020
Short summary
Short summary
The Labrador Sea is important for the modern global thermohaline circulation system through the formation of Labrador Sea Water. However, the role of the southward flowing Labrador Current in Labrador Sea convection is still debated. In order to better assess its role in deep-water formation and climate variability, we present high-resolution mid- to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years.
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Takasumi Kurahashi-Nakamura, André Paul, Guy Munhoven, Ute Merkel, and Michael Schulz
Geosci. Model Dev., 13, 825–840, https://doi.org/10.5194/gmd-13-825-2020, https://doi.org/10.5194/gmd-13-825-2020, 2020
Short summary
Short summary
Chemical processes in ocean-floor sediments have a large influence on the marine carbon cycle, hence the global climate, at long timescales. We developed a new coupling scheme for a chemical sediment model and a comprehensive climate model. The new coupled model outperformed the original uncoupled climate model in reproducing the global distribution of sediment properties. The sediment model will also act as a
bridgebetween the ocean model and paleoceanographic data.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Michael Langner and Stefan Mulitza
Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, https://doi.org/10.5194/cp-15-2067-2019, 2019
Short summary
Short summary
Collections of paleoclimate data provide valuable information on the functioning of the Earth system but are often difficult to manage due to the inconsistency of data formats and reconstruction methods. We present a software toolbox that combines a simple document-based database with functionality for the visualization and management of marine proxy data. The program allows the efficient homogenization of larger paleoceanographic data sets into quality-controlled and transparent data products.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Short summary
Open ocean phytoplankton include coccolithophore algae, a key element in carbon cycle regulation with important feedbacks to the climate system. We document latitudinal variability in both coccolithophore assemblage and the mass variation in one particular species, Emiliania huxleyi, for a transect across the Drake Passage (in the Southern Ocean). Coccolithophore abundance, diversity and maximum depth habitat decrease southwards, coinciding with changes in the predominant E. huxleyi morphotypes.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Thomas Opel, Julian B. Murton, Sebastian Wetterich, Hanno Meyer, Kseniia Ashastina, Frank Günther, Hendrik Grotheer, Gesine Mollenhauer, Petr P. Danilov, Vasily Boeskorov, Grigoriy N. Savvinov, and Lutz Schirrmeister
Clim. Past, 15, 1443–1461, https://doi.org/10.5194/cp-15-1443-2019, https://doi.org/10.5194/cp-15-1443-2019, 2019
Short summary
Short summary
To reconstruct past winter climate, we studied ice wedges at two sites in the Yana Highlands, interior Yakutia (Russia), the most continental region of the Northern Hemisphere. Our ice wedges of the upper ice complex unit of the Batagay megaslump and a river terrace show much more depleted stable-isotope compositions than other study sites in coastal and central Yakutia, reflecting lower winter temperatures and a higher continentality of the study region during Marine Isotope Stages 3 and 1.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Eunmi Park, Jens Hefter, Gerhard Fischer, Morten Hvitfeldt Iversen, Simon Ramondenc, Eva-Maria Nöthig, and Gesine Mollenhauer
Biogeosciences, 16, 2247–2268, https://doi.org/10.5194/bg-16-2247-2019, https://doi.org/10.5194/bg-16-2247-2019, 2019
Short summary
Short summary
We analyzed GDGT-based proxy temperatures in the polar oceans. In the eastern Fram Strait (79° N), the nutrient distribution may determine the depth habit of Thaumarchaeota and thus the proxy temperature. In the Antarctic Polar Front (50° S), the contribution of Euryarchaeota or the nonlinear correlation between the proxy values and temperatures may cause the warm biases of the proxy temperatures relative to SSTs.
Rodrigo da Costa Portilho-Ramos, Tainã Marcos Lima Pinho, Cristiano Mazur Chiessi, and Cátia Fernandes Barbosa
Clim. Past, 15, 943–955, https://doi.org/10.5194/cp-15-943-2019, https://doi.org/10.5194/cp-15-943-2019, 2019
Short summary
Short summary
Fossil microorganisms from the last glacial found in marine sediments collected off southern Brazil suggest that more productive austral summer upwelling and more frequent austral winter incursions of nutrient-rich waters from the Plata River boosted regional productivity year-round. While upwelling was more productive due to the higher silicon content from the Southern Ocean, more frequent riverine incursions were modulated by stronger alongshore southwesterly winds.
Charlotte Breitkreuz, André Paul, and Michael Schulz
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-52, https://doi.org/10.5194/cp-2019-52, 2019
Publication in CP not foreseen
Short summary
Short summary
We combined a model simulation of the Last Glacial Maximum ocean with sea surface temperature and calcite oxygen isotope data through data assimilation. The reconstructed ocean state is very similar to the modern and it follows that the employed proxy data do not require an ocean state very different from today's. Sensitivity experiments reveal that data from the deep North Atlantic but also from the global deep Southern Ocean are most important to constrain the Atlantic overturning circulation.
Eveline M. Mezger, Lennart J. de Nooijer, Jacqueline Bertlich, Jelle Bijma, Dirk Nürnberg, and Gert-Jan Reichart
Biogeosciences, 16, 1147–1165, https://doi.org/10.5194/bg-16-1147-2019, https://doi.org/10.5194/bg-16-1147-2019, 2019
Short summary
Short summary
Seawater salinity is an important factor when trying to reconstruct past ocean conditions. Foraminifera, small organisms living in the sea, produce shells that incorporate more Na at higher salinities. The accuracy of reconstructions depends on the fundamental understanding involved in the incorporation and preservation of the original Na of the shell. In this study, we unravel the Na composition of different components of the shell and describe the relative contribution of these components.
Charlotte Breitkreuz, André Paul, Stefan Mulitza, Javier García-Pintado, and Michael Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-32, https://doi.org/10.5194/gmd-2019-32, 2019
Publication in GMD not foreseen
Short summary
Short summary
We present a technique for ocean state estimation based on the combination of a simple data assimilation method with a state reduction approach. The technique proves to be very efficient and successful in reducing the model-data misfit and reconstructing a target ocean circulation from synthetic observations. In an application to Last Glacial Maximum proxy data the model-data misfit is greatly reduced but some misfit remains. Two different ocean states are found with similar model-data misfit.
Javier García-Pintado and André Paul
Geosci. Model Dev., 11, 5051–5084, https://doi.org/10.5194/gmd-11-5051-2018, https://doi.org/10.5194/gmd-11-5051-2018, 2018
Short summary
Short summary
Earth system models (ESMs) integrate interactions of atmosphere, ocean, land, ice, and biosphere to estimate the state of regional and global climate under a variety of conditions. Past climate field reconstructions with deterministic ESMs through the assimilation of climate proxies need to consider the required high computations and model non-linearity. Our tests indicate that iterative schemes based on the Kalman filter and careful sensitivity analysis are adequate for approaching the problem.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Friederike Grimmer, Lydie Dupont, Frank Lamy, Gerlinde Jung, Catalina González, and Gerold Wefer
Clim. Past, 14, 1739–1754, https://doi.org/10.5194/cp-14-1739-2018, https://doi.org/10.5194/cp-14-1739-2018, 2018
Short summary
Short summary
We present the first marine pollen record of the early Pliocene from western equatorial South America. Our reconstruction of the vegetation aims to provide insights into hydrological changes related to tectonic events (Central American Seaway closure, uplift of the Northern Andes). We find stable humid conditions, suggesting a southern location of the Intertropical Convergence Zone. The presence of high montane vegetation indicates an early uplift of the Western Cordillera of the northern Andes.
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Julie Lattaud, Frédérique Kirkels, Francien Peterse, Chantal V. Freymond, Timothy I. Eglinton, Jens Hefter, Gesine Mollenhauer, Sergio Balzano, Laura Villanueva, Marcel T. J. van der Meer, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 4147–4161, https://doi.org/10.5194/bg-15-4147-2018, https://doi.org/10.5194/bg-15-4147-2018, 2018
Short summary
Short summary
Long-chain diols (LCDs) are biomarkers that occur widespread in marine environments and also in lakes and rivers. In this study, we looked at the distribution of LCDs in three river systems (Godavari, Danube, and Rhine) in relation to season, precipitation, and temperature. We found out that the LCDs are likely being produced in calm areas of the river systems and that marine LCDs have a different distribution than riverine LCDs.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Rike Völpel, André Paul, Annegret Krandick, Stefan Mulitza, and Michael Schulz
Geosci. Model Dev., 10, 3125–3144, https://doi.org/10.5194/gmd-10-3125-2017, https://doi.org/10.5194/gmd-10-3125-2017, 2017
Short summary
Short summary
This study presents the implementation of stable water isotopes in the MITgcm and describes the results of an equilibrium simulation under pre-industrial conditions. The model compares well to observational data and measurements of plankton tow records and thus opens wide prospects for long-term simulations in a paleoclimatic context.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Shuwen Sun, Enno Schefuß, Stefan Mulitza, Cristiano M. Chiessi, André O. Sawakuchi, Matthias Zabel, Paul A. Baker, Jens Hefter, and Gesine Mollenhauer
Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, https://doi.org/10.5194/bg-14-2495-2017, 2017
Vera D. Meyer, Jens Hefter, Gerrit Lohmann, Lars Max, Ralf Tiedemann, and Gesine Mollenhauer
Clim. Past, 13, 359–377, https://doi.org/10.5194/cp-13-359-2017, https://doi.org/10.5194/cp-13-359-2017, 2017
Marília C. Campos, Cristiano M. Chiessi, Ines Voigt, Alberto R. Piola, Henning Kuhnert, and Stefan Mulitza
Clim. Past, 13, 345–358, https://doi.org/10.5194/cp-13-345-2017, https://doi.org/10.5194/cp-13-345-2017, 2017
Short summary
Short summary
Our new planktonic foraminiferal stable carbon isotopic data from the western South Atlantic show major decreases during abrupt climate change events of the last glacial. These anomalies are likely related to periods of a sluggish Atlantic meridional overturning circulation and increase (decrease) in atmospheric CO2 (stable carbon isotopic ratios). We hypothesize that strengthening of Southern Ocean deep-water ventilation and weakening of the biological pump are responsible for these decreases.
Janne Repschläger, Dieter Garbe-Schönberg, Mara Weinelt, and Ralph Schneider
Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, https://doi.org/10.5194/cp-13-333-2017, 2017
Short summary
Short summary
We reconstruct changes in the warm water transport from the subtropical to the subpolar North Atlantic over the last 10 000 years. We use stable isotope and Mg / Ca ratios measured on surface and subsurface dwelling foraminifera. Results indicate an overall stable warm water transport at surface. The northward transport at subsurface evolves stepwise and stabilizes at 7 ka BP on the modern mode. These ocean transport changes seem to be controlled by the meltwater inflow into the North Atlantic.
David J. Ullman and Andreas Schmittner
Geosci. Model Dev., 10, 945–958, https://doi.org/10.5194/gmd-10-945-2017, https://doi.org/10.5194/gmd-10-945-2017, 2017
Short summary
Short summary
One major source of uncertainty in the prediction of climate relates to how models simulate clouds and their impact on surface temperatures. We have developed a new method for incorporating the cloud results as derived from complex climate models and applying these results to a more simplified model. The benefit with this approach is that a more simplified model is able to be run more efficiently, while still maintaining complicated cloud effects and their effect on surface temperatures.
Pierre Burckel, Claire Waelbroeck, Yiming Luo, Didier M. Roche, Sylvain Pichat, Samuel L. Jaccard, Jeanne Gherardi, Aline Govin, Jörg Lippold, and François Thil
Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, https://doi.org/10.5194/cp-12-2061-2016, 2016
Short summary
Short summary
In this paper, we compare new and published Atlantic sedimentary Pa/Th data with Pa/Th simulated using stream functions generated under various climatic conditions. We show that during Greenland interstadials of the 20–50 ka period, the Atlantic meridional overturning circulation was very different from that of the Holocene. Moreover, southern-sourced waters dominated the Atlantic during Heinrich stadial 2, a slow northern-sourced water mass flowing above 2500 m in the North Atlantic.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Gerhard Fischer, Johannes Karstensen, Oscar Romero, Karl-Heinz Baumann, Barbara Donner, Jens Hefter, Gesine Mollenhauer, Morten Iversen, Björn Fiedler, Ivanice Monteiro, and Arne Körtzinger
Biogeosciences, 13, 3203–3223, https://doi.org/10.5194/bg-13-3203-2016, https://doi.org/10.5194/bg-13-3203-2016, 2016
Short summary
Short summary
Particle fluxes at the Cape Verde Ocean Observatory in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on deep sediment trap time-series data collected at 1290 and 3439 m water depths. The typically open-ocean flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen eddy in winter 2010. The eddy passage was accompanied by high biogenic and lithogenic fluxes, lasting from December 2009 to May 2010.
Gerhard Fischer, Oscar Romero, Ute Merkel, Barbara Donner, Morten Iversen, Nico Nowald, Volker Ratmeyer, Götz Ruhland, Marco Klann, and Gerold Wefer
Biogeosciences, 13, 3071–3090, https://doi.org/10.5194/bg-13-3071-2016, https://doi.org/10.5194/bg-13-3071-2016, 2016
Short summary
Short summary
The studies were initiated to investigate potential changes in the important coastal upwelling system off NW Africa and to evaluate the role of mineral dust for carbon sequestration into the deep ocean. For this purpose, we deployed time series sediment traps in the deep water column off Cape Blanc, Mauritania. A more than two-decadal sediment trap record from this coastal upwelling system is now presented with respect to deep ocean mass fluxes, flux components and their longer term variability.
Pepijn Bakker and Andreas Schmittner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-79, https://doi.org/10.5194/gmd-2016-79, 2016
Revised manuscript not accepted
Short summary
Short summary
We present an AMOC-emulator framework consisting of a box model and a statistical tuning methodology that allows us to mimic the behaviour of the Atlantic Meridional Overturning Circulation (AMOC) in any complex global climate model. The simplicity of the AMOC-emulator allows us to run large numbers of simulations, test the importance of a range of uncertainties and thus provide probabilistic AMOC projections driven by future climate change including the partial melt of the Greenland Ice Sheet.
Rachel M. Spratt and Lorraine E. Lisiecki
Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, https://doi.org/10.5194/cp-12-1079-2016, 2016
Short summary
Short summary
This study presents an average of seven Late Pleistocene sea level records, which improves the signal-to-noise ratio for estimates of sea level change during glacial cycles of the past 800 000 years.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
C. Häggi, C. M. Chiessi, and E. Schefuß
Biogeosciences, 12, 7239–7249, https://doi.org/10.5194/bg-12-7239-2015, https://doi.org/10.5194/bg-12-7239-2015, 2015
C. M. Chiessi, S. Mulitza, G. Mollenhauer, J. B. Silva, J. Groeneveld, and M. Prange
Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, https://doi.org/10.5194/cp-11-915-2015, 2015
Short summary
Short summary
Here we show that temperatures in the western South Atlantic increased markedly during the major slowdown event of the Atlantic meridional overturning circulation (AMOC) of the last deglaciation. Over the adjacent continent, however, temperatures followed the rise in atmospheric carbon dioxide, lagging changes in oceanic temperature. Our records corroborate the notion that the long duration of the major slowdown event of the AMOC was fundamental in driving the Earth out of the last glacial.
M. Winterfeld, T. Laepple, and G. Mollenhauer
Biogeosciences, 12, 3769–3788, https://doi.org/10.5194/bg-12-3769-2015, https://doi.org/10.5194/bg-12-3769-2015, 2015
M. Winterfeld, M. A. Goñi, J. Just, J. Hefter, and G. Mollenhauer
Biogeosciences, 12, 2261–2283, https://doi.org/10.5194/bg-12-2261-2015, https://doi.org/10.5194/bg-12-2261-2015, 2015
T. Pados, R. F. Spielhagen, D. Bauch, H. Meyer, and M. Segl
Biogeosciences, 12, 1733–1752, https://doi.org/10.5194/bg-12-1733-2015, https://doi.org/10.5194/bg-12-1733-2015, 2015
Short summary
Short summary
Fossil planktic foraminifera and their geochemical composition are commonly used proxies in palaeoceanography. Our study with living specimens revealed that in the Fram Strait both Neogloboquadrina pachyderma and Turborotalita quinqueloba from the water column have lower δ18O and δ13C values than inorganically precipitated calcite/fossil tests from the sediment surface. These offsets indicate biological influence during calcification and a change of water column properties in the recent past.
A. Schmittner and D. C. Lund
Clim. Past, 11, 135–152, https://doi.org/10.5194/cp-11-135-2015, https://doi.org/10.5194/cp-11-135-2015, 2015
Short summary
Short summary
Model simulations of carbon isotope changes as a result of a reduction in the Atlantic Meridional Overturning Circulation (AMOC) agree well with sediment data from the early last deglaciation, supporting the idea that the AMOC was substantially reduced during that time period of global warming. We hypothesize, and present supporting evidence, that changes in the AMOC may have caused the coeval rise in atmospheric CO2, owing to a reduction in the efficiency of the ocean's biological pump.
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
A. Govin, C. M. Chiessi, M. Zabel, A. O. Sawakuchi, D. Heslop, T. Hörner, Y. Zhang, and S. Mulitza
Clim. Past, 10, 843–862, https://doi.org/10.5194/cp-10-843-2014, https://doi.org/10.5194/cp-10-843-2014, 2014
D. K. Naik, R. Saraswat, N. Khare, A. C. Pandey, and R. Nigam
Clim. Past, 10, 745–758, https://doi.org/10.5194/cp-10-745-2014, https://doi.org/10.5194/cp-10-745-2014, 2014
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
K. F. Kvale, K. J. Meissner, D. P. Keller, M. Eby, and A. Schmittner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-1709-2014, https://doi.org/10.5194/gmdd-7-1709-2014, 2014
Revised manuscript not accepted
T. Kurahashi-Nakamura, M. Losch, and A. Paul
Geosci. Model Dev., 7, 419–432, https://doi.org/10.5194/gmd-7-419-2014, https://doi.org/10.5194/gmd-7-419-2014, 2014
A. Schmittner and G. D. Egbert
Geosci. Model Dev., 7, 211–224, https://doi.org/10.5194/gmd-7-211-2014, https://doi.org/10.5194/gmd-7-211-2014, 2014
M. M. Telesiński, R. F. Spielhagen, and H. A. Bauch
Clim. Past, 10, 123–136, https://doi.org/10.5194/cp-10-123-2014, https://doi.org/10.5194/cp-10-123-2014, 2014
L. F. Prado, I. Wainer, C. M. Chiessi, M.-P. Ledru, and B. Turcq
Clim. Past, 9, 2117–2133, https://doi.org/10.5194/cp-9-2117-2013, https://doi.org/10.5194/cp-9-2117-2013, 2013
C. J. Somes, A. Oschlies, and A. Schmittner
Biogeosciences, 10, 5889–5910, https://doi.org/10.5194/bg-10-5889-2013, https://doi.org/10.5194/bg-10-5889-2013, 2013
A. Schmittner, N. Gruber, A. C. Mix, R. M. Key, A. Tagliabue, and T. K. Westberry
Biogeosciences, 10, 5793–5816, https://doi.org/10.5194/bg-10-5793-2013, https://doi.org/10.5194/bg-10-5793-2013, 2013
D. Handiani, A. Paul, M. Prange, U. Merkel, L. Dupont, and X. Zhang
Clim. Past, 9, 1683–1696, https://doi.org/10.5194/cp-9-1683-2013, https://doi.org/10.5194/cp-9-1683-2013, 2013
G. Milzer, J. Giraudeau, J. Faust, J. Knies, F. Eynaud, and C. Rühlemann
Biogeosciences, 10, 4433–4448, https://doi.org/10.5194/bg-10-4433-2013, https://doi.org/10.5194/bg-10-4433-2013, 2013
J.-R. Riethdorf, D. Nürnberg, L. Max, R. Tiedemann, S. A. Gorbarenko, and M. I. Malakhov
Clim. Past, 9, 1345–1373, https://doi.org/10.5194/cp-9-1345-2013, https://doi.org/10.5194/cp-9-1345-2013, 2013
J. A. Collins, A. Govin, S. Mulitza, D. Heslop, M. Zabel, J. Hartmann, U. Röhl, and G. Wefer
Clim. Past, 9, 1181–1191, https://doi.org/10.5194/cp-9-1181-2013, https://doi.org/10.5194/cp-9-1181-2013, 2013
J. C. Hargreaves, J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi
Clim. Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013, https://doi.org/10.5194/cp-9-811-2013, 2013
Related subject area
Palaeooceanography, palaeoclimatology
Coral skeletal proxy records database for the Great Barrier Reef, Australia
A revised marine fossil record of the Mediterranean before and after the Messinian salinity crisis
Seeing the wood for the trees: active human–environmental interactions in arid northwestern China
SISALv3: a global speleothem stable isotope and trace element database
DINOSTRAT version 2.1-GTS2020
Paleo±Dust: quantifying uncertainty in paleo-dust deposition across archive types
An 800 kyr planktonic δ18O stack for the Western Pacific Warm Pool
Tephra data from varved lakes of the Last Glacial–Interglacial Transition: towards a global inventory and better chronologies on the Varved Sediments Database (VARDA)
A modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau
Last Glacial loess in Europe: luminescence database and chronology of deposition
The CoralHydro2k database: a global, actively curated compilation of coral δ18O and Sr ∕ Ca proxy records of tropical ocean hydrology and temperature for the Common Era
BENFEP: a quantitative database of benthic foraminifera from surface sediments of the eastern Pacific
The World Atlas of Last Interglacial Shorelines (version 1.0)
A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years
Artemisia pollen dataset for exploring the potential ecological indicators in deep time
Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11 500 years) from a bipolar ice-core array
Last Interglacial sea-level data points from Northwest Europe
Compilation of Last Interglacial (Marine Isotope Stage 5e) sea-level indicators in the Bahamas, Turks and Caicos, and the east coast of Florida, USA
Compilation of a database of Holocene nearshore marine mollusk shell geochemistry from the California Current System
Last interglacial sea-level proxies in the glaciated Northern Hemisphere
Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0)
High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores
DINOSTRAT: a global database of the stratigraphic and paleolatitudinal distribution of Mesozoic–Cenozoic organic-walled dinoflagellate cysts
The Southern Ocean Radiolarian (SO-RAD) dataset: a new compilation of modern radiolarian census data
Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions
A global compilation of U-series-dated fossil coral sea-level indicators for the Last Interglacial period (Marine Isotope Stage 5e)
A standardized database of Marine Isotopic Stage 5e sea-level proxies on tropical Pacific islands
Last interglacial sea-level history from speleothems: a global standardized database
Last interglacial sea-level proxies in East Africa and the Western Indian Ocean
A multiproxy database of western North American Holocene paleoclimate records
A review of MIS 5e sea-level proxies around Japan
Last interglacial (MIS 5e) sea-level proxies in southeastern South America
Compilation of relative pollen productivity (RPP) estimates and taxonomically harmonised RPP datasets for single continents and Northern Hemisphere extratropics
A global mean sea surface temperature dataset for the Last Interglacial (129–116 ka) and contribution of thermal expansion to sea level change
SISALv2: a comprehensive speleothem isotope database with multiple age–depth models
The Eurasian Modern Pollen Database (EMPD), version 2
VARDA (VARved sediments DAtabase) – providing and connecting proxy data from annually laminated lake sediments
The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate
Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis
Simple noise estimates and pseudoproxies for the last 21 000 years
The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems
Speleothem stable isotope records for east-central Europe: resampling sedimentary proxy records to obtain evenly spaced time series with spectral guidance
A database of paleoceanographic sediment cores from the North Pacific, 1951–2016
The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period
A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing
Ariella K. Arzey, Helen V. McGregor, Tara R. Clark, Jody M. Webster, Stephen E. Lewis, Jennie Mallela, Nicholas P. McKay, Hugo W. Fahey, Supriyo Chakraborty, Tries B. Razak, and Matt J. Fischer
Earth Syst. Sci. Data, 16, 4869–4930, https://doi.org/10.5194/essd-16-4869-2024, https://doi.org/10.5194/essd-16-4869-2024, 2024
Short summary
Short summary
Coral skeletal records from the Great Barrier Reef (GBR) provide vital data on climate and environmental change. Presented here is the Great Barrier Reef Coral Skeletal Records Database, an extensive compilation of GBR coral records. The database includes key metadata, primary data, and access instructions, and it enhances research on past, present, and future climate and environmental variability of the GBR. The database will assist with contextualising present-day threats to reefs globally.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Hui Shen, Robert N. Spengler, Xinying Zhou, Alison Betts, Peter Weiming Jia, Keliang Zhao, and Xiaoqiang Li
Earth Syst. Sci. Data, 16, 2483–2499, https://doi.org/10.5194/essd-16-2483-2024, https://doi.org/10.5194/essd-16-2483-2024, 2024
Short summary
Short summary
Understanding how early farmers adapted to their environments is important regarding how we respond to the changing climate. Here, we present wood charcoal records from northwestern China to explore human–environmental interactions. Our data suggest that people started managing chestnut trees around 4600 BP and cultivating fruit trees and transporting conifers from 3500 BP. From 2500 BP, people established horticultural systems, showing that they actively adapted to the environment.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Nicolás J. Cosentino, Gabriela Torre, Fabrice Lambert, Samuel Albani, François De Vleeschouwer, and Aloys J.-M. Bory
Earth Syst. Sci. Data, 16, 941–959, https://doi.org/10.5194/essd-16-941-2024, https://doi.org/10.5194/essd-16-941-2024, 2024
Short summary
Short summary
One of the main uncertainties related to future climate change has to do with how aerosols interact with climate. Dust is the most abundant aerosol in the atmosphere by mass. In order to better understand the links between dust and climate, we can turn to geological archives of ancient dust. Paleo±Dust is a compilation of measured values of the paleo-dust deposition rate. We can use this compilation to guide climate models so that they better represent dust–climate interactions.
Christen L. Bowman, Devin S. Rand, Lorraine E. Lisiecki, and Samantha C. Bova
Earth Syst. Sci. Data, 16, 701–713, https://doi.org/10.5194/essd-16-701-2024, https://doi.org/10.5194/essd-16-701-2024, 2024
Short summary
Short summary
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records over the last 800 kyr from 10 ocean sediment cores. To better understand glacial–interglacial differences between the tropical WPWP and high-latitude climate change, we compare our WPWP stack to global and North Atlantic deep-ocean stacks. Although we see similar timing in glacial–interglacial change between the stacks, the WPWP exhibits less amplitude of change.
Anna Beckett, Cecile Blanchet, Alexander Brauser, Rebecca Kearney, Celia Martin-Puertas, Ian Matthews, Konstantin Mittelbach, Adrian Palmer, Arne Ramisch, and Achim Brauer
Earth Syst. Sci. Data, 16, 595–604, https://doi.org/10.5194/essd-16-595-2024, https://doi.org/10.5194/essd-16-595-2024, 2024
Short summary
Short summary
This paper focuses on volcanic ash (tephra) in European annually laminated (varve) lake records from the period 25 to 8 ka. Tephra enables the synchronisation of these lake records and their proxy reconstructions to absolute timescales. The data incorporate geochemical data from tephra layers across 19 varve lake records. We highlight the potential for synchronising multiple records using tephra layers across continental scales whilst supporting reproducibility through accessible data.
Qingfeng Ma, Liping Zhu, Jianting Ju, Junbo Wang, Yong Wang, Lei Huang, and Torsten Haberzettl
Earth Syst. Sci. Data, 16, 311–320, https://doi.org/10.5194/essd-16-311-2024, https://doi.org/10.5194/essd-16-311-2024, 2024
Short summary
Short summary
Modern pollen datasets are essential for pollen-based quantitative paleoclimate reconstructions. Here we present a modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau. This dataset can be used not only for quantitative precipitation reconstructions on the central and western Tibetan Plateau, but can also be combined with other pollen datasets to improve the reliability of quantitative climate reconstructions across the entire Tibetan Plateau.
Mathieu Bosq, Sebastian Kreutzer, Pascal Bertran, Philippe Lanos, Philippe Dufresne, and Christoph Schmidt
Earth Syst. Sci. Data, 15, 4689–4711, https://doi.org/10.5194/essd-15-4689-2023, https://doi.org/10.5194/essd-15-4689-2023, 2023
Short summary
Short summary
During the last glacial period, cold conditions associated with changes in atmospheric circulation resulted in the deposition of widespread loess. It seems that the phases of loess accumulation were not strictly synchronous. To test this hypothesis, the chronology of loess deposition in different regions of Europe was studied by recalculating 1423 luminescence ages in a database. Our study discusses the link between the main loess sedimentation phases and the maximal advance of glaciers.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Paula Diz, Víctor González-Guitián, Rita González-Villanueva, Aida Ovejero, and Iván Hernández-Almeida
Earth Syst. Sci. Data, 15, 697–722, https://doi.org/10.5194/essd-15-697-2023, https://doi.org/10.5194/essd-15-697-2023, 2023
Short summary
Short summary
Benthic foraminifera are key components of the ocean benthos and marine sediments. Determining their geographic distribution is highly relevant for improving our understanding of the recent and past ocean benthic ecosystem and establishing adequate conservation strategies. Here, we contribute to this knowledge by generating an open-access database of previously documented quantitative data of benthic foraminifera species from surface sediments of the eastern Pacific (BENFEP).
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
Yang Liu, Jingyun Zheng, Zhixin Hao, and Quansheng Ge
Earth Syst. Sci. Data, 14, 5717–5735, https://doi.org/10.5194/essd-14-5717-2022, https://doi.org/10.5194/essd-14-5717-2022, 2022
Short summary
Short summary
Proxy-based precipitation reconstruction is essential to study the inter-annual to decadal variability and underlying mechanisms beyond the instrumental period that is critical for climate modeling, prediction and attribution. We present a set of standard precipitation index reconstructions for the whole year and wet seasons over the whole of Asia since 1700, with the spatial resolution of 2.5°, based on 2912 annually resolved proxy series mainly derived from tree rings and historical documents.
Li-Li Lu, Bo-Han Jiao, Feng Qin, Gan Xie, Kai-Qing Lu, Jin-Feng Li, Bin Sun, Min Li, David K. Ferguson, Tian-Gang Gao, Yi-Feng Yao, and Yu-Fei Wang
Earth Syst. Sci. Data, 14, 3961–3995, https://doi.org/10.5194/essd-14-3961-2022, https://doi.org/10.5194/essd-14-3961-2022, 2022
Short summary
Short summary
Artemisia is one of the dominant plant elements in the arid and semi-arid regions. We attempt to decipher the underlying causes of the long-standing disagreement on the correlation between Artemisia pollen and aridity by using the dataset to recognize the different ecological implications of Artemisia pollen types. Our findings improve the resolution of palaeoenvironmental assessment and change the traditional concept of Artemisia being restricted to arid and semi-arid environments.
Michael Sigl, Matthew Toohey, Joseph R. McConnell, Jihong Cole-Dai, and Mirko Severi
Earth Syst. Sci. Data, 14, 3167–3196, https://doi.org/10.5194/essd-14-3167-2022, https://doi.org/10.5194/essd-14-3167-2022, 2022
Short summary
Short summary
Volcanism is a key driver of climate. Based on ice cores from Greenland and Antarctica, we reconstruct its climate impact potential over the Holocene. By aligning records on a well-dated chronology from Antarctica, we resolve long-standing inconsistencies in the dating of past volcanic eruptions. We reconstruct 850 eruptions (which, in total, injected 7410 Tg of sulfur in the stratosphere) and estimate how they changed the opacity of the atmosphere, a prerequisite for climate model simulations.
Kim M. Cohen, Víctor Cartelle, Robert Barnett, Freek S. Busschers, and Natasha L. M. Barlow
Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, https://doi.org/10.5194/essd-14-2895-2022, 2022
Short summary
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
Andrea Dutton, Alexandra Villa, and Peter M. Chutcharavan
Earth Syst. Sci. Data, 14, 2385–2399, https://doi.org/10.5194/essd-14-2385-2022, https://doi.org/10.5194/essd-14-2385-2022, 2022
Short summary
Short summary
This paper includes data that have been compiled to identify the position of sea level during a warm period about 125 000 years ago that is known as the Last Interglacial. Here, we have focused on compiling data for the region of the Bahamas, Turks and Caicos, and the east coast of Florida. These data were compiled and placed within a standardized format prescribed by a new database known as WALIS, which stands for World Atlas of Last Interglacial Shorelines Database.
Hannah M. Palmer, Veronica Padilla Vriesman, Roxanne M. W. Banker, and Jessica R. Bean
Earth Syst. Sci. Data, 14, 1695–1705, https://doi.org/10.5194/essd-14-1695-2022, https://doi.org/10.5194/essd-14-1695-2022, 2022
Short summary
Short summary
Shells of coastal marine organisms can serve as archives of past ocean and climate change. Here, we compiled a database of all available oxygen and carbon isotope values of nearshore marine molluscs from the northeast Pacific coast of North America through the Holocene including both modern collected shells and shells analyzed from midden sites. This first-of-its-kind database can be used to answer archaeological and oceanographic questions in future research.
April S. Dalton, Evan J. Gowan, Jan Mangerud, Per Möller, Juha P. Lunkka, and Valery Astakhov
Earth Syst. Sci. Data, 14, 1447–1492, https://doi.org/10.5194/essd-14-1447-2022, https://doi.org/10.5194/essd-14-1447-2022, 2022
Short summary
Short summary
The last interglacial (LIG; 130 to 115 ka) is a useful analogue for improving predictions of future changes to sea level. Here, we describe the location and characteristics of 82 LIG marine sites from the glaciated Northern Hemisphere (Russia, northern Europe, Greenland and North America). Sites are located in a variety of settings, including boreholes, riverbank exposures and along coastal cliffs.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Peter K. Bijl
Earth Syst. Sci. Data, 14, 579–617, https://doi.org/10.5194/essd-14-579-2022, https://doi.org/10.5194/essd-14-579-2022, 2022
Short summary
Short summary
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their first (origination) and last (extinction) appearances. But how do you know such ages can then be applied worldwide? And what causes regional differences? This paper investigates the regional consistency of ranges of species of a specific microfossil group, organic-walled dinoflagellate cysts. This overview helps in identifying regional differences in the stratigraphic ranges of species and their causes.
Kelly-Anne Lawler, Giuseppe Cortese, Matthieu Civel-Mazens, Helen Bostock, Xavier Crosta, Amy Leventer, Vikki Lowe, John Rogers, and Leanne K. Armand
Earth Syst. Sci. Data, 13, 5441–5453, https://doi.org/10.5194/essd-13-5441-2021, https://doi.org/10.5194/essd-13-5441-2021, 2021
Short summary
Short summary
Radiolarians found in marine sediments are used to reconstruct past Southern Ocean environments. This requires a comprehensive modern dataset. The Southern Ocean Radiolarian (SO-RAD) dataset includes radiolarian counts from sites in the Southern Ocean. It can be used for palaeoceanographic reconstructions or to study modern species diversity and abundance. We describe the data collection and include recommendations for users unfamiliar with procedures typically used by the radiolarian community.
Xianyong Cao, Fang Tian, Kai Li, Jian Ni, Xiaoshan Yu, Lina Liu, and Nannan Wang
Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, https://doi.org/10.5194/essd-13-3525-2021, 2021
Short summary
Short summary
The Tibetan Plateau is quite remote, and it is difficult to collect samples on it; the previous modern pollen data are located on a nearby road, and there is a large geographic gap in the eastern and central Tibetan Plateau. Our novel pollen data can fill the gap and will be valuable in establishing a complete dataset covering the entire Tibetan Plateau, thus helping us to get a comprehensive understanding. In addition, the dataset can also be used to investigate plant species distribution.
Peter M. Chutcharavan and Andrea Dutton
Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, https://doi.org/10.5194/essd-13-3155-2021, 2021
Short summary
Short summary
This paper summarizes a global database of fossil coral U-series ages for the Last Interglacial period and was compiled as a contribution to the World Atlas of Last Interglacial Shorelines. Each entry contains relevant age, elevation and sample metadata, and all ages and isotope activity ratios have been normalized and recalculated using the same decay constant values. We also provide two example geochemical screening criteria to help users assess sample age quality.
Nadine Hallmann, Gilbert Camoin, Jody M. Webster, and Marc Humblet
Earth Syst. Sci. Data, 13, 2651–2699, https://doi.org/10.5194/essd-13-2651-2021, https://doi.org/10.5194/essd-13-2651-2021, 2021
Short summary
Short summary
The last interglacial (Marine Isotope Stage 5e – MIS 5e) occurred between 128 and 116 ka when sea level was about 6–8 m above its present level; sea-level changes during this period are still debated. MIS 5e represents a potential future warm-climate analogue. This paper presents an open-access database based on the review of MIS 5e coral reef records from many tropical Pacific islands. Overall, the database contains 318 age data points and 94 relative sea-level data points from 38 studies.
Oana A. Dumitru, Victor J. Polyak, Yemane Asmerom, and Bogdan P. Onac
Earth Syst. Sci. Data, 13, 2077–2094, https://doi.org/10.5194/essd-13-2077-2021, https://doi.org/10.5194/essd-13-2077-2021, 2021
Short summary
Short summary
Here we describe a global database that summarizes the current knowledge of MIS 5 sea level as captured by speleothems. We used the framework of the WALIS database to provide a standardized format which will facilitate the sea-level research community to utilize this worldwide database. This is the first speleothem database and contains all the information needed to assess former paleo relative sea levels and their chronological constraints.
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Evan Tam and Yusuke Yokoyama
Earth Syst. Sci. Data, 13, 1477–1497, https://doi.org/10.5194/essd-13-1477-2021, https://doi.org/10.5194/essd-13-1477-2021, 2021
Short summary
Short summary
Changes in sea level during Marine Isotope Stage (MIS) 5e are comparable to modern sea levels in our global climate. Contributing to the World Atlas of Last Interglacial Shorelines (WALIS), this paper reviewed data from over 70 studies detailing sea-level markers for MIS 5e around Japan. Most sea-level markers were found as marine terraces and are often dated by comparison to dated volcanic ash or sediment layers, which has connected Japan’s landforms to global patterns of sea-level change.
Evan J. Gowan, Alessio Rovere, Deirdre D. Ryan, Sebastian Richiano, Alejandro Montes, Marta Pappalardo, and Marina L. Aguirre
Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, https://doi.org/10.5194/essd-13-171-2021, 2021
Short summary
Short summary
During the last interglacial (130 to 115 ka), global sea level was higher than present. The World Atlas of Last Interglacial Shorelines (WALIS) has been created to document this. In this paper, we have compiled data for southeastern South America. There are landforms that indicate that sea level was 5 to 25 m higher than present during this time period. However, the quality of these data is hampered by limitations on elevation measurements, chronology, and geological descriptions.
Mareike Wieczorek and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, https://doi.org/10.5194/essd-12-3515-2020, 2020
Short summary
Short summary
Relative pollen productivity (RPP) estimates are used to estimate vegetation cover from pollen records. This study provides (i) a compilation of northern hemispheric RPP studies, allowing researchers to identify suitable sets for their study region and to identify data gaps for future research, and (ii) taxonomically harmonized, unified RPP sets for China, Europe, North America, and the whole Northern Hemisphere, generated from the available studies.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Arne Ramisch, Alexander Brauser, Mario Dorn, Cecile Blanchet, Brian Brademann, Matthias Köppl, Jens Mingram, Ina Neugebauer, Norbert Nowaczyk, Florian Ott, Sylvia Pinkerneil, Birgit Plessen, Markus J. Schwab, Rik Tjallingii, and Achim Brauer
Earth Syst. Sci. Data, 12, 2311–2332, https://doi.org/10.5194/essd-12-2311-2020, https://doi.org/10.5194/essd-12-2311-2020, 2020
Short summary
Short summary
Annually laminated lake sediments (varves) record past climate change at seasonal resolution. The VARved sediments DAtabase (VARDA) is created to utilize the full potential of varves for climate reconstructions. VARDA offers free access to a compilation and synchronization of standardized climate-proxy data, with applications ranging from reconstructing regional patterns of past climate change to validating simulations of climate models. VARDA is freely accessible at https://varve.gfz-potsdam.de
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, https://doi.org/10.5194/essd-11-1129-2019, 2019
Short summary
Short summary
Reconstructions try to extract a climate signal from paleo-observations. It is essential to understand their uncertainties. Similarly, comparing climate simulations and paleo-observations requires approaches to address their uncertainties. We describe a simple but flexible noise model for climate proxies for temperature on millennial timescales, which can assist these goals.
Kamolphat Atsawawaranunt, Laia Comas-Bru, Sahar Amirnezhad Mozhdehi, Michael Deininger, Sandy P. Harrison, Andy Baker, Meighan Boyd, Nikita Kaushal, Syed Masood Ahmad, Yassine Ait Brahim, Monica Arienzo, Petra Bajo, Kerstin Braun, Yuval Burstyn, Sakonvan Chawchai, Wuhui Duan, István Gábor Hatvani, Jun Hu, Zoltán Kern, Inga Labuhn, Matthew Lachniet, Franziska A. Lechleitner, Andrew Lorrey, Carlos Pérez-Mejías, Robyn Pickering, Nick Scroxton, and SISAL Working Group Members
Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, https://doi.org/10.5194/essd-10-1687-2018, 2018
Short summary
Short summary
This paper is an overview of the contents of the SISAL database and its structure. The database contains oxygen and carbon isotope measurements from 371 individual speleothem records and 10 composite records from 174 cave systems from around the world. The SISAL database is created by a collective effort of the members of the Past Global Changes SISAL working group, which aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation.
István Gábor Hatvani, Zoltán Kern, Szabolcs Leél-Őssy, and Attila Demény
Earth Syst. Sci. Data, 10, 139–149, https://doi.org/10.5194/essd-10-139-2018, https://doi.org/10.5194/essd-10-139-2018, 2018
Short summary
Short summary
Evenly spaced carbon and oxygen stable isotope records were produced from central European stalagmites. To mitigate the potential bias of interpolation, the variance spectra were carefully evaluated. The derived data are ready to use with conventional uni- and multivariate statistics, which are usually not prepared to handle the general characteristic of sedimentary paleoclimate records derived from geological sequences unevenly sampled in time.
Marisa Borreggine, Sarah E. Myhre, K. Allison S. Mislan, Curtis Deutsch, and Catherine V. Davis
Earth Syst. Sci. Data, 9, 739–749, https://doi.org/10.5194/essd-9-739-2017, https://doi.org/10.5194/essd-9-739-2017, 2017
Short summary
Short summary
We created a database of 2134 marine sediment cores above 30° N in the North Pacific from 1951 to 2016 to facilitate paleoceanographic and paleoclimate research. This database allows for accessibility to sedimentary sequences, age models, and proxies produced in the North Pacific. We found community-wide shifts towards multiproxy investigation and increased age model generation. The database consolidates the research efforts of an entire community into an efficient tool for future investigations.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Peter Köhler, Christoph Nehrbass-Ahles, Jochen Schmitt, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, https://doi.org/10.5194/essd-9-363-2017, 2017
Short summary
Short summary
We document our best available data compilation of published ice core records of the greenhouse gases CO2, CH4, and N2O and recent measurements on firn air and atmospheric samples covering the time window from 156 000 years BP to the beginning of the year 2016 CE. A smoothing spline method is applied to translate the discrete and irregularly spaced data points into continuous time series. The radiative forcing for each greenhouse gas is computed using well-established, simple formulations.
Cited articles
Abrantes, F., Baas, J., Haflidason, H., Rasmussen, T., Klitgaard, D., Loncaric, N., and Gaspar, L.:
Sediment fluxes along the northeastern European Margin: inferring hydrological changes between 20 and 8 kyr,
Mar. Geol.,
152, 7–23, https://doi.org/10.1016/S0025-3227(98)00062-0, 1998.
Abrantes, F. F., Gaspar, L., Helmers, E., Loncaric, N., and Monteiro, J.:
Geochemical properties, stable isotopes and foraminifera abundances in sediment cores from the Portuguese Margin taken during the POSEIDON cruise PO200/10 in 1993. European North Atlantic Margin (ENAM): Sediment Pathways, Processes and Fluxes,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.895024, 2018.
Abrantes, F. F., Loncaric, N., Moreno, J., Mil-Homens, M., and Pflaumann, U.:
Paleoceanographic conditions along the Portuguese Margin during the last 30 ka: A multiple proxy study,
Comunicacoes do Instituto Geologico e Mineiro, 161–184, 2001.
Adegbie, A. T.:
Reconstruction of paleoenvironmental conditions in Equatorial Atlantic and the Gulf of Guinea Basins for the last 245,000 years,
Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 178,
Universität Bremen, Bremen, 113 pp., 2001.
Adegbie, A. T., Schneider, R. R., Röhl, U., and Wefer, G.:
Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon,
Palaeogeogr. Palaeocl.,
197, 323–333, https://doi.org/10.1016/S0031-0182(03)00474-7, 2003.
Aharon, P.:
Meltwater flooding events in the Gulf of Mexico revisited: Implications for rapid climate changes during the last deglaciation,
Paleoceanography,
18, 1079, https://doi.org/10.1029/2002PA000840, 2003.
Alexander, I. T., Kroon, D., and Thompson, R.:
Late Quaternary Paleoenvironmental Change on the Northeast Australian Margin as Evidenced in Oxygen Isotope Stratigraphy, Mineral Magnetism, and Sedimentology,
in: Proceedings of the Ocean Drilling Program, 133 Scientific Results,
edited by: McKenzie, J. A., Davies, P. J., and Palmer-Julson, A.,
Ocean Drilling Program,
https://doi.org/10.2973/odp.proc.sr.133.224.1993, 1993.
Allen, J. R. M., Brandt, U., Brauer, A., Hubberten, H.-W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J. F. W., Nowaczyk, N. R., Oberhänsli, H., Watts, W. A., Wulf, S., and Zolitschka, B.:
Rapid environmental changes in southern Europe during the last glacial period,
Nature,
400, 740–743, https://doi.org/10.1038/23432, 1999.
Anderson, D. M., Prell, W. L., and Barratt, N. J.:
Estimates of sea surface temperature in the Coral Sea at the Last Glacial Maximum,
Paleoceanography,
4, 615–627, https://doi.org/10.1029/PA004i006p00615, 1989.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., and Burckle, L. H.:
Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2,
Science,
323, 1443–1448, https://doi.org/10.1126/science.1167441, 2009.
Andres, M. S.:
Late quaternary paleoceanography of the Great Australian Bight: A geochemical and sedimentological study of cool-water carbonates, ODP Leg 182, Site 1127,
PhD thesis,
Swiss Federal Institute of Technology Zurich, 189 pp., 2002.
Andrews, J. T. and Tedesco, K.:
Detrital carbonate-rich sediments, northwestern Labrador Sea: Implications for ice-sheet dynamics and iceberg rafting (Heinrich) events in the North Atlantic,
Geology,
20, 1087, https://doi.org/10.1130/0091-7613(1992)020<1087:DCRSNL>2.3.CO;2, 1992.
Andrews, J. T., Erlenkeuser, H., Evans, L. W., Briggs, W. M., and Jull, A. J. T.:
Meltwater and Deglaciation, SE Baffin Shelf (NE Margin Laurentide Ice Sheet) Between 13.5 and 7 ka: From O and C Stable Isotopic Data,
Paleoceanography,
6, 621–637, https://doi.org/10.1029/91PA01914, 1991.
Andrews, J. T., Belt, S. T., Olafsdottir, S., Massé, G., and Vare, L. L.:
Sea ice and marine climate variability for NW Iceland/Denmark Strait over the last 2000 cal. yr BP,
Holocene,
19, 775–784, https://doi.org/10.1177/0959683609105302, 2009.
Arz, H. W., Pätzold, J., and Wefer, G.:
Correlated Millennial-Scale Changes in Surface Hydrography and Terrigenous Sediment Yield Inferred from Last-Glacial Marine Deposits off Northeastern Brazil,
Quaternary Res.,
50, 157–166, https://doi.org/10.1006/qres.1998.1992, 1998.
Arz, H. W., Pätzold, J., and Wefer, G.:
Climatic changes during the last deglaciation recorded in sediment cores from the northeastern Brazilian Continental Margin,
Geo-Mar. Lett.,
19, 209–218, https://doi.org/10.1007/s003670050111, 1999a.
Arz, H. W., Pätzold, J., and Wefer, G.:
The deglacial history of the western tropical Atlantic as inferred from high resolution stable isotope records off northeastern Brazil,
Earth Planet. Sc. Lett.,
167, 105–117, https://doi.org/10.1016/S0012-821X(99)00025-4, 1999b.
Arz, H. W., Pätzold, J., Müller, P. J., and Moammar, M. O.:
Influence of Northern Hemisphere climate and global sea level rise on the restricted Red Sea marine environment during termination I,
Paleoceanography,
18, 1053, https://doi.org/10.1029/2002PA000864, 2003.
Auffret, G., Zaragosi, S., Dennielou, B., Cortijo, E., van Rooij, D., Grousset, F., Pujol, C., Eynaud, F., and Siegert, M.:
Terrigenous fluxes at the Celtic margin during the last glacial cycle,
Mar. Geol.,
188, 79–108, https://doi.org/10.1016/S0025-3227(02)00276-1, 2002.
Ausín, B., Flores, J.-A., Sierro, F.-J., Bárcena, M.-A., Hernández-Almeida, I., Francés, G., Gutiérrez-Arnillas, E., Martrat, B., Grimalt, J. O., and Cacho, I.:
Coccolithophore productivity and surface water dynamics in the Alboran Sea during the last 25 kyr,
Palaeogeogr. Palaeocl.,
418, 126–140, https://doi.org/10.1016/j.palaeo.2014.11.011, 2015a.
Ausín, B., Flores, J. A., Sierro, F. J., Cacho, I., Hernández-Almeida, I., Martrat, B., and Grimalt, J. O.:
Atmospheric patterns driving Holocene productivity in the Alboran Sea (Western Mediterranean): A multiproxy approach,
Holocene,
25, 583–595, https://doi.org/10.1177/0959683614565952, 2015b.
Ausín, B., Haghipour, N., Wacker, L., Voelker, A. H. L., Hodell, D., Magill, C., Looser, N., Bernasconi, S. M., and Eglinton, T. I.:
Radiocarbon Age Offsets Between Two Surface Dwelling Planktonic Foraminifera Species During Abrupt Climate Events in the SW Iberian Margin,
Paleoceanography and Paleoclimatology,
34, 63–78, https://doi.org/10.1029/2018PA003490, 2019.
Baas, J. H., Mienert, J., Abrantes, F., and Prins, M. A.:
Late Quaternary sedimentation on the Portuguese continental margin: climate-related processes and products,
Palaeogeogr. Palaeocl.,
130, 1–23, https://doi.org/10.1016/S0031-0182(96)00135-6, 1997.
Bahr, A., Doubrawa, M., Titschack, J., Austermann, G., Koutsodendris, A., Nürnberg, D., Albuquerque, A. L., Friedrich, O., and Raddatz, J.: Monsoonal forcing of cold-water coral growth off southeastern Brazil during the past 160 kyr, Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, 2020.
Balmer, S., Sarnthein, M., Mudelsee, M., and Grootes, P. M.:
Refined modeling and 14C plateau tuning reveal consistent patterns of glacial and deglacial 14C reservoir ages of surface waters in low-latitude Atlantic,
Paleoceanography,
31, 1030–1040, https://doi.org/10.1002/2016PA002953, 2016.
Barash, M. S., Yushina, I. G., and Spielhagen, R. F.:
Reconstructions of the Quaternary paleohydrological variability by planktonic foraminifera (North Atlantic, Reykjanes Ridge),
Oceanology,
42, 744–756, 2002.
Bard, E., Arnold, M., Maurice, P., Duprat, J., Moyes, J., and Duplessy, J.-C.:
Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry,
Nature,
328, 791–794, https://doi.org/10.1038/328791a0, 1987.
Bard, E., Rostek, F., Turon, J.-L., and Gendreau, S.:
Hydrological impact of heinrich events in the subtropical northeast atlantic,
Science,
289, 1321–1324, https://doi.org/10.1126/science.289.5483.1321, 2000.
Bard, E., Ménot-Combes, G., and Rostek, F.:
Present Status of Radiocarbon Calibration and Comparison Records Based on Polynesian Corals and Iberian Margin Sediments,
Radiocarbon,
46, 1189–1202, https://doi.org/10.1017/S0033822200033087, 2004a.
Bard, E., Rostek, F., and Ménot-Combes, G.:
Radiocarbon calibration beyond 20,000 14C yr B. P. by means of planktonic foraminifera of the Iberian Margin,
Quaternary Res.,
61, 204–214, https://doi.org/10.1016/j.yqres.2003.11.006, 2004b.
Bard, E., Rostek, F., and Ménot-Combes, G.:
Paleoclimate. A better radiocarbon clock,
Science,
303, 178–179, https://doi.org/10.1126/science.1091964, 2004c.
Barrows, T. T., Juggins, S., de Deckker, P., Calvo, E., and Pelejero, C.:
Long-term sea surface temperature and climate change in the Australian–New Zealand region,
Paleoceanography,
22, 149, https://doi.org/10.1029/2006PA001328, 2007.
Bassinot, F. C., Beaufort, L., Vincent, E., Labeyrie, L. D., Rostek, F., Müller, P. J., Quidelleur, X., and Lancelot, Y.:
Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: A 1500-kyr record of carbonate dissolution,
Paleoceanography,
9, 579–600, https://doi.org/10.1029/94PA00860, 1994.
Bauch, D., Darling, K., Simstich, J., Bauch, H. A., Erlenkeuser, H., and Kroon, D.:
Palaeoceanographic implications of genetic variation in living North Atlantic Neogloboquadrina pachyderma,
Nature,
424, 299–302, https://doi.org/10.1038/nature01778, 2003.
Bauch, H.:
A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr,
Quaternary Sci. Rev.,
20, 659–678, https://doi.org/10.1016/S0277-3791(00)00098-6, 2001.
Bé, A. W. and Duplessy, J. C.:
Subtropical convergence fluctuations and quaternary climates in the middle latitudes of the Indian ocean,
Science,
194, 419–422, https://doi.org/10.1126/science.194.4263.419, 1976.
Behling, H., Arz, H. W., Pätzold, J., and Wefer, G.:
Late Quaternary vegetational and climate dynamics in southeastern Brazil, inferences from marine cores GeoB 3229-2 and GeoB 3202-1,
Palaeogeogr. Palaeocl.,
179, 227–243, https://doi.org/10.1016/S0031-0182(01)00435-7, 2002.
Bender, V. B., Hanebuth, T. J. J., and Chiessi, C. M.:
Holocene shifts of the Subtropical Shelf Front off southeastern South America controlled by high and low latitude atmospheric forcings,
Paleoceanography,
28, 481–490, https://doi.org/10.1002/palo.20044, 2013.
Benway, H. M., Mix, A. C., Haley, B. A., and Klinkhammer, G. P.:
Eastern Pacific Warm Pool paleosalinity and climate variability: 0–30 kyr,
Paleoceanography,
21, 32, https://doi.org/10.1029/2005PA001208, 2006.
Benz, V., Esper, O., Gersonde, R., Lamy, F., and Tiedemann, R.:
Last Glacial Maximum sea surface temperature and sea–ice extent in the Pacific sector of the Southern Ocean,
Quaternary Sci. Rev.,
146, 216–237, https://doi.org/10.1016/j.quascirev.2016.06.006, 2016.
Berger, W. H. and Vincent, E.:
Sporadic shutdown of North Atlantic deep water production during the Glacial–Holocene transition?,
Nature,
324, 53–55, https://doi.org/10.1038/324053a0, 1986.
Berger, W. H., Killingley, J. S., Metzler, C. V., and Vincent, E.:
Two-Step Deglaciation: 14C-Dated High-Resolution δ18O Records from the Tropical Atlantic Ocean,
Quaternary Res.,
23, 258–271, https://doi.org/10.1016/0033-5894(85)90032-8, 1985.
Bernhardt, A., Melnick, D., Hebbeln, D., Lückge, A., and Strecker, M. R.:
Turbidite paleoseismology along the active continental margin of Chile – Feasible or not?,
Quaternary Sci. Rev.,
120, 71–92, https://doi.org/10.1016/j.quascirev.2015.04.001, 2015.
Bernhardt, A., Hebbeln, D., Regenberg, M., Lückge, A., and Strecker, M. R.:
Shelfal sediment transport by an undercurrent forces turbidity-current activity during high sea level along the Chile continental margin,
Geology,
44, 295–298, https://doi.org/10.1130/G37594.1, 2016.
Bertram, C. J., Elderfield, H., Shackleton, N. J., and MacDonald, J. A.:
Cadmium/calcium and carbon isotope reconstructions of the glacial northeast Atlantic Ocean,
Paleoceanography,
10, 563–578, https://doi.org/10.1029/94PA03058, 1995.
Betzler, C., Lüdmann, T., Hübscher, C., and FÜRSTENAU, J.:
Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean),
Sediment. Geol.,
290, 126–137, https://doi.org/10.1016/j.sedgeo.2013.03.011, 2013.
Beveridge, N. A. S., Elderfield, H., and Shackleton, N. J.:
Deep thermohaline circulation in the low-latitude Atlantic during the Last Glacial,
Paleoceanography,
10, 643–660, https://doi.org/10.1029/94PA03353, 1995.
Bianchi, C. and Gersonde, R.:
Climate evolution at the last deglaciation: the role of the Southern Ocean,
Earth Planet. Sc. Lett.,
228, 407–424, https://doi.org/10.1016/j.epsl.2004.10.003, 2004.
Bickert, T. and Mackensen, A.:
Last Glacial to Holocene Changes in South Atlantic Deep Water Circulation,
in: The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems,
edited by: Wefer, G., Mulitza, S., and Ratmeyer, V.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 671–693, https://doi.org/10.1007/978-3-642-18917-3_29, 2004.
Blake Jr., W., Jackson, R. H., and Currie, C. G.:
14C datings of sediment core HU91/039-012TC and HU91/039-012P from the northernmost Baffin Bay,
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.785493, 1996.
Blumberg, S., Lamy, F., Arz, H. W., Echtler, H. P., Wiedicke, M., Haug, G. H., and Oncken, O.:
Turbiditic trench deposits at the South-Chilean active margin: A Pleistocene–Holocene record of climate and tectonics,
Earth Planet. Sc. Lett.,
268, 526–539, https://doi.org/10.1016/j.epsl.2008.02.007, 2008.
Bolliet, T., Holbourn, A., Kuhnt, W., Laj, C., Kissel, C., Beaufort, L., Kienast, M., Andersen, N., and Garbe-Schönberg, D.:
Mindanao Dome variability over the last 160 kyr: Episodic glacial cooling of the West Pacific Warm Pool,
Paleoceanography,
26, 1050, https://doi.org/10.1029/2010PA001966, 2011.
Bonn, W. J.:
Biogenopal und biogenes Barium als Indikatoren für spätquartäre Produktivitätsänderungen am antarktischen Kontinentalhang, atlantischer Sektor,
Berichte zur Polarforschung, 180,
Alfred-Wegener-Institut für Polar- und Meeresforschung, 186 pp., 1995.
Bonn, W. J., Gingele, F. X., Grobe, H., Mackensen, A., and Fütterer, D. K.:
Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka,
Palaeogeogr. Palaeocl.,
139, 195–211, https://doi.org/10.1016/S0031-0182(97)00144-2, 1998.
Borreggine, M., Myhre, S. E., Mislan, K. A. S., Deutsch, C., and Davis, C. V.: A database of paleoceanographic sediment cores from the North Pacific, 1951–2016, Earth Syst. Sci. Data, 9, 739–749, https://doi.org/10.5194/essd-9-739-2017, 2017.
Bostock, H. C., Opdyke, B. N., Gagan, M. K., and Fifield, L. K.:
Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last deglaciation,
Paleoceanography,
19, PA4013, https://doi.org/10.1029/2004PA001047, 2004.
Bostock, H. C., Opdyke, B. N., Gagan, M. K., Kiss, A. E., and Fifield, L. K.:
Glacial/interglacial changes in the East Australian current,
Clim. Dynam.,
26, 645–659, https://doi.org/10.1007/s00382-005-0103-7, 2006.
Bostock, H. C., Opdyke, B. N., Gagan, M. K., and Fifield, L. K.:
Late Quaternary siliciclastic/carbonate sedimentation model for the Capricorn Channel, southern Great Barrier Reef province, Australia,
Mar. Geol.,
257, 107–123, https://doi.org/10.1016/j.margeo.2008.11.003, 2009.
Bostock, H. C., Hayward, B. W., Neil, H. L., Sabaa, A. T., and Scott, G. H.:
Changes in the position of the Subtropical Front south of New Zealand since the last glacial period,
Paleoceanography,
30, 824–844, https://doi.org/10.1002/2014PA002652, 2015.
Bouimetarhan, I., Dupont, L., Schefuß, E., Mollenhauer, G., Mulitza, S., and Zonneveld, K.:
Palynological evidence for climatic and oceanic variability off NW Africa during the late Holocene,
Quaternary Res.,
72, 188–197, https://doi.org/10.1016/j.yqres.2009.05.003, 2009.
Bouimetarhan, I., Dupont, L., Kuhlmann, H., Pätzold, J., Prange, M., Schefuß, E., and Zonneveld, K.: Northern Hemisphere control of deglacial vegetation changes in the Rufiji uplands (Tanzania), Clim. Past, 11, 751–764, https://doi.org/10.5194/cp-11-751-2015, 2015.
Boyle, E. A. and Keigwin, L.:
North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature,
Nature,
330, 35–40, https://doi.org/10.1038/330035a0, 1987.
Braun, B.:
Rekonstruktion glaziomariner Sedimentationsprozesse am Kontinentalrand des westlichen Bellingshausenmeeres,
Diploma Thesis,
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven & Geologisches Institut, Julius-Maximilians Universität, Würzburg, 83 pp., 1997.
Brehme, I.: Sedimentfazies und Bodenwasserstrom am Kontinentalhang des
nordwestlichen Weddellmeeres (Sediment facies and bottomwater current on the
continental slope in the northwestern Weddell Sea), Berichte zur Polarforschung,
110, Alfred-Wegener-Institut für Polar- und Meeresforschung, 127 pp., 1992.
Broecker, W., Klas, M., Ragano-Beavan, N., Mathieu, G., Mix, A., Andree, M., Oeschger, H., Wölfli, W., Suter, M., Bonani, G., Hofmann, H. J., Nessi, M., and Morenzoni, E.:
Accelerator mass spectrometry radiocarbon measurements on marine carbonate samples from deep sea cores and sediment traps,
Radiocarbon,
30, 261–295, https://doi.org/10.1017/S0033822200044234, 1988.
Broecker, W. S., Andree, M., Bonani, G., Wolfli, W., Klas, M., Mix, A., and Oeschger, H.:
Comparison between radiocarbon ages obtained on coexisting planktonic foraminifera,
Paleoceanography,
3, 647–657, https://doi.org/10.1029/PA003i006p00647, 1988.
Broecker, W. S., Clark, E., Lynch-Stieglitz, J., Beck, W., Stott, L. D., Hajdas, I., and Bonani, G.:
Late glacial diatom accumulation at 9∘ S in the Indian Ocean,
Paleoceanography,
15, 348–352, https://doi.org/10.1029/1999PA000439, 2000.
Broecker, W. S., Lynch-Stieglitz, J., Clark, E., Hajdas, I., and Bonani, G.:
What caused the atmosphere's CO2 content to rise during the last 8000 years?,
Geochem. Geophy. Geosy.,
2, 2001GC000177, https://doi.org/10.1029/2001GC000177, 2001.
Bunzel, D., Schmiedl, G., Lindhorst, S., Mackensen, A., Reolid, J., Romahn, S., and Betzler, C.: A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea, Clim. Past, 13, 1791–1813, https://doi.org/10.5194/cp-13-1791-2017, 2017.
Cacho, I., Grimalt, J. O., Canals, M., Sbaffi, L., Shackleton, N. J., Schönfeld, J., and Zahn, R.:
Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes,
Paleoceanography,
16, 40–52, https://doi.org/10.1029/2000PA000502, 2001.
Cacho, I., Shackleton, N., Elderfield, H., Sierro, F. J., and Grimalt, J. O.:
Glacial rapid variability in deep-water temperature and δ18O from the Western Mediterranean Sea,
Quaternary Sci. Rev.,
25, 3294–3311, https://doi.org/10.1016/j.quascirev.2006.10.004, 2006.
Caissie, B. E., Brigham-Grette, J., Lawrence, K. T., Herbert, T. D., and Cook, M. S.:
Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records,
Paleoceanography,
25, 15, https://doi.org/10.1029/2008PA001671, 2010.
Caley, T., Extier, T., Collins, J. A., Schefuß, E., Dupont, L., Malaizé, B., Rossignol, L., Souron, A., McClymont, E. L., Jimenez-Espejo, F. J., García-Comas, C., Eynaud, F., Martinez, P., Roche, D. M., Jorry, S. J., Charlier, K., Wary, M., Gourves, P.-Y., Billy, I., and Giraudeau, J.:
A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa,
Nature,
560, 76–79, https://doi.org/10.1038/s41586-018-0309-6, 2018.
Came, R. E., Oppo, D. W., and Curry, W. B.:
Atlantic Ocean circulation during the Younger Dryas: Insights from a new Cd/Ca record from the western subtropical South Atlantic,
Paleoceanography,
18, 1086, https://doi.org/10.1029/2003PA000888, 2003.
Came, R. E., Oppo, D. W., Curry, W. B., and Lynch-Stieglitz, J.:
Deglacial variability in the surface return flow of the Atlantic meridional overturning circulation,
Paleoceanography,
23, PA1217, https://doi.org/10.1029/2007PA001450, 2008.
Camillo, E., Quadros, J. P., Santarosa, A. C. A., Costa, K. B., and Toledo, F. A. L.:
An abrupt cooling event recorded around 73 kyr in western South Atlantic,
Quatern. Int.,
542, 80–87, https://doi.org/10.1016/j.quaint.2020.03.005, 2020.
Campos, M. C., Chiessi, C. M., Venancio, I. M., Pinho, T. M. L., Crivellari, S., Kuhnert, H., Schmiedl, G., Díaz, R. A., Albuquerque, A. L. S., Portilho-Ramos, R. C., Bahr, A., and Mulitza, S.:
Constraining Millennial-Scale Changes in Northern Component Water Ventilation in the Western Tropical South Atlantic,
Paleoceanography and Paleoclimatology, 35, e2020PA003876,
https://doi.org/10.1029/2020PA003876, 2020.
Caniupán, M., Lamy, F., Lange, C. B., Kaiser, J., Arz, H., Kilian, R., Baeza Urrea, O., Aracena, C., Hebbeln, D., Kissel, C., Laj, C., Mollenhauer, G., and Tiedemann, R.:
Millennial-scale sea surface temperature and Patagonian Ice Sheet changes off southernmost Chile (53∘ S) over the past ∼ 60 kyr,
Paleoceanography,
26, PA3221, https://doi.org/10.1029/2010PA002049, 2011.
Caralp, M.:
_Age determination of sediment core KS82-31,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407598, 2006a.
Caralp, M.:
_Age determination of sediment core KS82-32,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407599, 2006b.
Caralp, M.-H.:
Late glacial to recent deep-sea benthic foraminifera from the northeastern Atlantic (Cadiz Gulf) and western Mediterranean (Alboran Sea): Paleooceanographic results,
Mar. Micropaleontol.,
13, 265–289, https://doi.org/10.1016/0377-8398(88)90006-0, 1988.
Carlson, A. E., Oppo, D. W., Came, R. E., LeGrande, A. N., Keigwin, L. D., and Curry, W. B.:
Subtropical Atlantic salinity variability and Atlantic meridional circulation during the last deglaciation,
Earth Planet. Sc. Lett.,
36, 991, https://doi.org/10.1130/g25080a.1, 2008.
Carter, L. and Manighetti, B.:
Glacial/interglacial control of terrigenous and biogenic fluxes in the deep ocean off a high input, collisional margin: A 139 kyr-record from New Zealand,
Mar. Geol.,
226, 307–322, https://doi.org/10.1016/j.margeo.2005.11.004, 2006.
Carter, R. M., Gammon, P. R., and Millwood, L.:
Glacial–interglacial (MIS 1–10) migrations of the Subtropical Front across ODP Site 1119, Canterbury Bight, Southwest Pacific Ocean,
Mar. Geol.,
205, 29–58, https://doi.org/10.1016/S0025-3227(04)00017-9, 2004.
Castañeda, I. S., Mulitza, S., Schefuss, E., Lopes dos Santos, R. A., Sinninghe Damsté, J. S., and Schouten, S.:
Wet phases in the Sahara/Sahel region and human migration patterns in North Africa,
P. Natl. Acad. Sci. USA,
106, 20159–20163, https://doi.org/10.1073/pnas.0905771106, 2009.
Català, A., Cacho, I., Frigola, J., Pena, L. D., and Lirer, F.: Holocene hydrography evolution in the Alboran Sea: a multi-record and multi-proxy comparison, Clim. Past, 15, 927–942, https://doi.org/10.5194/cp-15-927-2019, 2019.
Channell, J. E. T., Hodell, D. A., and Curtis, J. H.:
ODP Site 1063 (Bermuda Rise) revisited: Oxygen isotopes, excursions and paleointensity in the Brunhes Chron,
Geochem. Geophy. Geosy.,
13, Q02001, https://doi.org/10.1029/2011GC003897, 2012.
Channell, J. E. T., Xuan, C., Hodell, D. A., Crowhurst, S. J., and Larter, R. D.:
Relative paleointensity (RPI) and age control in Quaternary sediment drifts off the Antarctic Peninsula,
Quaternary Sci. Rev.,
211, 17–33, https://doi.org/10.1016/j.quascirev.2019.03.006, 2019.
Charles, C. D. and Fairbanks, R. G.:
Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate,
Nature,
355, 416–419, https://doi.org/10.1038/355416a0, 1992.
Charles, C. D., Froelich, P. N., Zibello, M. A., Mortlock, R. A., and Morley, J. J.:
Biogenic opal in Southern Ocean sediments over the last 450,000 years: Implications for surface water chemistry and circulation,
Paleoceanography,
6, 697–728, https://doi.org/10.1029/91PA02477, 1991.
Charles, C. D., Lynch-Stieglitz, J., Ninnemann, U. S., and Fairbanks, R. G.:
Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations,
Earth Planet. Sc. Lett.,
142, 19–27, https://doi.org/10.1016/0012-821X(96)00083-0, 1996.
Chase, Z., Anderson, R. F., Fleisher, M. Q., and Kubik, P. W.:
Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years,
Deep-Sea Res. Pt. II,
50, 799–832, https://doi.org/10.1016/S0967-0645(02)00595-7, 2003.
Chen, M.-T., Chang, Y.-P., Chang, C.-C., Wang, L.-W., Wang, C.-H., and Yu, E.-F.:
Late Quaternary sea-surface temperature variations in the southeast Atlantic: a planktic foraminifer faunal record of the past 600 000 yr (IMAGES II MD962085),
Mar. Geol.,
180, 163–181, https://doi.org/10.1016/S0025-3227(01)00212-2, 2002.
Chen, M.-T., Shiau, L.-J., Yu, P.-S., Chiu, T.-C., Chen, Y.-G., and Wei, K.-Y.:
500 000-Year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island),
Palaeogeogr. Palaeocl.,
197, 113–131, https://doi.org/10.1016/S0031-0182(03)00389-4, 2003.
Chiessi, C. M., Mulitza, S., Paul, A., Pätzold, J., Groeneveld, J., and Wefer, G.:
South Atlantic interocean exchange as the trigger for the Bølling warm event,
Geology,
36, 919–922, https://doi.org/10.1130/G24979A.1, 2008.
Chiessi, C. M., Mulitza, S., Pätzold, J., Wefer, G., and Marengo, J. A.:
Possible impact of the Atlantic Multidecadal Oscillation on the South American summer monsoon,
Geophys. Res. Lett.,
36, 105, https://doi.org/10.1029/2009GL039914, 2009.
CLIMAP Project Members: Seasonal reconstructions of the earth's surface at the
last glacial maximum, Geological Society of America, Map and Chart Series, 36, 1–18, 1981.
CLIMAP Project Members: Stable isotope analysis on sediment core RC12-294,
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.106548, 2003.
CLIMAP Project Members:
Radiocarbon age determinations on sediment core A179-015,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.186339, 2004a.
CLIMAP Project Members:
Radiocarbon age determinations on sediment core V26-176,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.186283, 2004b.
Cobianchi, M., Luciani, V., Lupi, C., Mancin, N., Lirer, F., Pelosi, N., Trattenero, I., Bordiga, M., Hall, I. R., and Sprovieri, M.:
Pleistocene biogeochemical record in the south-west Pacific Ocean (images site MD97-2114, Chatham Rise),
J. Quaternary Sci.,
27, 519–530, https://doi.org/10.1002/jqs.2542, 2012.
Colin, C., Duhamel, M., Siani, G., Dubois-Dauphin, Q., Ducassou, E., Liu, Z., Wu, J., Revel, M., Dapoigny, A., Douville, E., Taviani, M., and Montagna, P.:
Changes in the Intermediate Water Masses of the Mediterranean Sea During the Last Climatic Cycle—New Constraints From Neodymium Isotopes in Foraminifera,
Paleoceanography and Paleoclimatology,
36, 1, https://doi.org/10.1029/2020PA004153, 2021.
Collins, J. A., Schefuß, E., Heslop, D., Mulitza, S., Prange, M., Zabel, M., Tjallingii, R., Dokken, T. M., Huang, E., Mackensen, A., Schulz, M., Tian, J., Zarriess, M., and Wefer, G.:
Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years,
Nat. Geosci.,
4, 42–45, https://doi.org/10.1038/ngeo1039, 2011.
Cook, M. S., Keigwin, L. D., Birgel, D., and Hinrichs, K.-U.:
Repeated pulses of vertical methane flux recorded in glacial sediments from the southeast Bering Sea,
Paleoceanography,
26, PA2210, https://doi.org/10.1029/2010PA001993, 2011.
Cordes, D. and Fütterer, D. K.:
Sedimentology of core PS1451-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51958, 1997a.
Cordes, D. and Fütterer, D. K.:
Sedimentology of core PS1467-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51961, 1997b.
Corselli, C., Principato, M. S., Maffioli, P., and Crudeli, D.:
Changes in planktonic assemblages during sapropel S5 deposition: Evidence from Urania Basin area, eastern Mediterranean,
Paleoceanography,
17, 1–1-1-30, https://doi.org/10.1029/2000PA000536, 2002.
Cosma, T. N., Hendy, I. L., and Chang, A. S.:
Chronological constraints on Cordilleran Ice Sheet glaciomarine sedimentation from core MD02-2496 off Vancouver Island (western Canada),
Quaternary Sci. Rev.,
27, 941–955, https://doi.org/10.1016/j.quascirev.2008.01.013, 2008.
Costa, K. and McManus, J.:
Efficacy of 230Th normalization in sediments from the Juan de Fuca Ridge, northeast Pacific Ocean,
Geochim. Cosmochim. Ac.,
197, 215–225, https://doi.org/10.1016/j.gca.2016.10.034, 2017.
Costa, K. B., Cabarcos, E., Santarosa, A. C. A., Battaglin, B. B. F., and Toledo, F. A. L.:
A multiproxy approach to the climate and marine productivity variations along MIS 5 in SE Brazil: A comparison between major components of calcareous nannofossil assemblages and geochemical records,
Palaeogeogr. Palaeocl.,
449, 275–288, https://doi.org/10.1016/j.palaeo.2016.02.032, 2016a.
Costa, K. M., McManus, J. F., Anderson, R. F., Ren, H., Sigman, D. M., Winckler, G., Fleisher, M. Q., Marcantonio, F., and Ravelo, A. C.:
No iron fertilization in the equatorial Pacific Ocean during the last ice age,
Nature,
529, 519–522, https://doi.org/10.1038/nature16453, 2016b.
Costa, K. B., Camillo Jr, E., Santarosa, A. C. A., Iwai, F. S., de Quadros, J. P., Leipnitz, I. I., and de Lima Toledo, F. A.:
Menardiiform planktonic foraminifera stratigraphy from Middle Pleistocene to Holocene in the Western South Atlantic,
Rev. Bras. Paleontolog.,
21, 225–237, https://doi.org/10.4072/rbp.2018.3.03, 2018.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.:
Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation,
Paleoceanography,
24, 1095, https://doi.org/10.1029/2008PA001683, 2009.
Crivellari, S., Chiessi, C. M., Kuhnert, H., Häggi, C., da Costa Portilho-Ramos, R., Zeng, J.-Y., Zhang, Y., Schefuß, E., Mollenhauer, G., Hefter, J., Alexandre, F., Sampaio, G., and Mulitza, S.:
Increased Amazon freshwater discharge during late Heinrich Stadial 1,
Quaternary Sci. Rev.,
181, 144–155, https://doi.org/10.1016/j.quascirev.2017.12.005, 2018.
Crosta, X., Sturm, A., Armand, L., and Pichon, J.-J.:
Late Quaternary sea ice history in the Indian sector of the Southern Ocean as recorded by diatom assemblages,
Mar. Micropaleontol.,
50, 209–223, https://doi.org/10.1016/S0377-8398(03)00072-0, 2004.
Curry, W. B. and Crowley, T. J.:
The d13C of equatorial Atlantic surface waters: Implications for Ice Age pCO2 levels,
Paleoceanography,
2, 489–517, https://doi.org/10.1029/PA002i005p00489, 1987.
Curry, W. B. and Lohmann, G. P.:
Carbon Isotopic Changes in Benthic Foraminifera from the Western South Atlantic: Reconstruction of Glacial Abyssal Circulation Patterns,
Quaternary Res.,
18, 218–235, https://doi.org/10.1016/0033-5894(82)90071-0, 1982.
Curry, W. B. and Lohmann, G. P.:
Reduced advection into Atlantic Ocean deep eastern basins during last glaciation maximum,
Nature,
306, 577–580, https://doi.org/10.1038/306577a0, 1983.
Curry, W. B., Duplessy, J. C., Labeyrie, L. D., and Shackleton, N. J.:
Changes in the distribution of δ13C of deep water CO2 between the Last Glaciation and the Holocene,
Paleoceanography,
3, 317–341, https://doi.org/10.1029/PA003i003p00317, 1988.
Curry, W. B., Marchitto, T. M., McManus, J. F., Oppo, D. W., and Laarkamp, K. L.:
Millennial-scale changes in ventilation of the thermocline, intermediate, and deep waters of the glacial North Atlantic,
in: Mechanisms of Global Climate Change at Millennial Time Scales,
edited by: Clark, U., Webb, S., and Keigwin, D.,
American Geophysical Union, Washington, DC, 59–76, https://doi.org/10.1029/GM112, 1999.
Dang, H., Jian, Z., Kissel, C., and Bassinot, F.:
Precessional changes in the western equatorial Pacific Hydroclimate: A 240 kyr marine record from the Halmahera Sea, East Indonesia,
Geochem. Geophy. Geosy.,
16, 148–164, https://doi.org/10.1002/2014GC005550, 2015.
Daniau, A.-L., Sánchez Goñi, M. F., Martinez, P., Urrego, D. H., Bout-Roumazeilles, V., Desprat, S., and Marlon, J. R.:
Orbital-scale climate forcing of grassland burning in southern Africa,
P. Natl. Acad. Sci. USA,
110, 5069–5073, https://doi.org/10.1073/pnas.1214292110, 2013.
Davies-Walczak, M., Mix, A. C., Stoner, J. S., Southon, J. R., Cheseby, M., and Xuan, C.:
Late Glacial to Holocene radiocarbon constraints on North Pacific Intermediate Water ventilation and deglacial atmospheric CO2 sources,
Earth Planet. Sc. Lett.,
397, 57–66, https://doi.org/10.1016/j.epsl.2014.04.004, 2014.
de Abreu, L. , Shackleton, N. J., Schönfeld, J., Hall, M., and Chapman, M.:
Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods,
Mar. Geol.,
196, 1–20, https://doi.org/10.1016/S0025-3227(03)00046-X, 2003.
de Almeida, F. K., de Mello, R. M., Costa, K. B., and Toledo, F. A. L.:
The response of deep-water benthic foraminiferal assemblages to changes in paleoproductivity during the Pleistocene (last 769.2 kyr), western South Atlantic Ocean,
Palaeogeogr. Palaeocl.,
440, 201–212, https://doi.org/10.1016/j.palaeo.2015.09.005, 2015.
de Deckker, P., Moros, M., Perner, K., and Jansen, E.:
Influence of the tropics and southern westerlies on glacial interhemispheric asymmetry,
Nat. Geosci.,
5, 266–269, https://doi.org/10.1038/ngeo1431, 2012.
de Deckker, P., Barrows, T. T., Stuut, J.-B. W., van der Kaars, S., Ayress, M. A., Rogers, J., and Chaproniere, G.:
Land–sea correlations in the Australian region: 460 ka of changes recorded in a deep-sea core offshore Tasmania. Part 2: the marine compared with the terrestrial record,
Aust. J. Earth Sci.,
66, 17–36, https://doi.org/10.1080/08120099.2018.1495101, 2019.
de Oliveira Lessa, D. V., Ramos, R. P., Barbosa, C. F., da Silva, A. R., Belem, A., Turcq, B., and Albuquerque, A. L.:
Planktonic foraminifera in the sediment of a western boundary upwelling system off Cabo Frio, Brazil,
Mar. Micropaleontol.,
106, 55–68, https://doi.org/10.1016/j.marmicro.2013.12.003, 2014.
de Vernal, A. and Hillaire-Marcel, C.:
Provincialism in trends and high frequency changes in the northwest North Atlantic during the Holocene,
Global Planet. Change,
54, 263–290, https://doi.org/10.1016/j.gloplacha.2006.06.023, 2006.
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.:
Abrupt onset and termination of the African Humid Period,
Quaternary Sci. Rev.,
19, 347–361, https://doi.org/10.1016/S0277-3791(99)00081-5, 2000.
Dias, B. B., Barbosa, C. F., Faria, G. R., Seoane, J. C. S., and Albuquerque, A. L. S.:
The effects of multidecadal-scale phytodetritus disturbances on the benthic foraminiferal community of a Western Boundary Upwelling System, Brazil,
Mar. Micropaleontol.,
139, 102–112, https://doi.org/10.1016/j.marmicro.2017.12.003, 2018.
Dickson, A. J., Beer, C. J., Dempsey, C., Maslin, M. A., Bendle, J. A., McClymont, E. L., and Pancost, R. D.:
Oceanic forcing of the Marine Isotope Stage 11 interglacial,
Nat. Geosci.,
2, 428–433, https://doi.org/10.1038/ngeo527, 2009.
Diz, P., Hall, I. R., Zahn, R., and Molyneux, E. G.:
Paleoceanography of the southern Agulhas Plateau during the last 150 ka: Inferences from benthic foraminiferal assemblages and multispecies epifaunal carbon isotopes,
Paleoceanography,
22, PA4218, https://doi.org/10.1029/2007PA001511, 2007.
Dreger, D. L.:
Decadal-to-centennial-scale sediment records of ice advance on the Barents shelf and meltwater discharge into the northeastern Norwegian Sea over the last 40 kyr,
PhD thesis,
Mathematisch-Naturwissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 79 pp., 1999.
Dubois, N., Kienast, M., Kienast, S., Normandeau, C., Calvert, S. E., Herbert, T. D., and Mix, A.:
Millennial-scale variations in hydrography and biogeochemistry in the Eastern Equatorial Pacific over the last 100 kyr,
Quaternary Sci. Rev.,
30, 210–223, https://doi.org/10.1016/j.quascirev.2010.10.012, 2011.
Dunbar, G. B., Dickens, G. R., and Carter, R. M.:
Sediment flux across the Great Barrier Reef Shelf to the Queensland Trough over the last 300 ky,
Sediment. Geol.,
133, 49–92, https://doi.org/10.1016/S0037-0738(00)00027-0, 2000.
Duncan, B., Carter, L., Dunbar, G., Bostock, H., Neil, H., Scott, G., Hayward, B. W., and Sabaa, A.:
Interglacial/glacial changes in coccolith-rich deposition in the SW Pacific Ocean: An analogue for a warmer world?,
Global Planet. Change,
144, 252–262, https://doi.org/10.1016/j.gloplacha.2016.08.001, 2016.
Duplessy, J.-C.:
North Atlantic deep water circulation during the last climate cycle,
Bulletin de l'Institut de Geologie du Bassin d'Aquitaine,
31, 379–391, 1982.
Duplessy, J.-C.:
Quaternary paleoceanography: unpublished stable isotope # records,
IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #1996-035,
NOAA/NGDC Paleoclimatology Program, Boulder, Colorado, USA, 1996.
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D., and Kallel, N.:
Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation,
Paleoceanography,
3, 343–360, https://doi.org/10.1029/PA003i003p00343, 1988.
Duplessy, J. C., Bard, E., Arnold, M., Shackleton, N. J., Duprat, J., and Labeyrie, L.:
How fast did the ocean—atmosphere system run during the last deglaciation?,
Earth Planet. Sc. Lett.,
103, 27–40, https://doi.org/10.1016/0012-821X(91)90147-A, 1991.
Duplessy, J. C., Cortijo, E., Ivanova, E., Khusid, T., Labeyrie, L., Levitan, M., Murdmaa, I., and Paterne, M.:
Paleoceanography of the Barents Sea during the Holocene,
Paleoceanography,
20, PA4004, https://doi.org/10.1029/2004PA001116, 2005.
Dupont, L. M. and Kuhlmann, H.:
Glacial-interglacial vegetation change in the Zambezi catchment,
Quaternary Sci. Rev.,
155, 127–135, https://doi.org/10.1016/j.quascirev.2016.11.019, 2017.
Dürkoop, A.:
Der Brasil-Strom im Spätquartär: Rekonstruktion der oberflächennahen Hydrographie während der letzten 400 000 Jahre,
Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 119,
Universität Bremen, Bremen, 121 pp., 1998.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB1408-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223480, 1997a.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB1501-4,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223481, 1997b.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB1503-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223482, 1997c.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB1508-4,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223483, 1997d.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB1701-4,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223484, 1997e.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB1903-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223485, 1997f.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB2117-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223487, 1997g.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB2125-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223488, 1997h.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB2202-4,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223489, 1997i.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB2819-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223491, 1997j.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB2109-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223486, 2004a.
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.:
Stable isotope data of sediment core GeoB3808-6,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223492, 2004b.
Dürkop, A., Holbourn, A., Kuhnt, W., Zuraida, R., Andersen, N., and Grootes, P. M.:
Centennial-scale climate variability in the Timor Sea during Marine Isotope Stage 3,
Mar. Micropaleontol.,
66, 208–221, https://doi.org/10.1016/j.marmicro.2007.10.002, 2008.
Dyez, K. A., Zahn, R., and Hall, I. R.:
Multicentennial Agulhas leakage variability and links to North Atlantic climate during the past 80,000 years,
Paleoceanography,
29, 1238–1248, https://doi.org/10.1002/2014PA002698, 2014.
Ehrmann, W., Schmiedl, G., Seidel, M., Krüger, S., and Schulz, H.: A distal 140 kyr sediment record of Nile discharge and East African monsoon variability, Clim. Past, 12, 713–727, https://doi.org/10.5194/cp-12-713-2016, 2016.
El Frihmat, Y., Hebbeln, D., Jaaidi, E. B., and Mhammdi, N.:
Reconstruction of productivity signal and deep-water conditions in Moroccan Atlantic margin (∼ 35∘ N) from the last glacial to the Holocene,
SpringerPlus,
4, 69, https://doi.org/10.1186/s40064-015-0853-6, 2015.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., and Piotrowski, A. M.:
Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition,
Science,
337, 704–709, https://doi.org/10.1126/science.1221294, 2012.
Elliot, M., Labeyrie, L., Bond, G., Cortijo, E., Turon, J.-L., Tisnerat, N., and Duplessy, J.-C.:
Millennial-scale iceberg discharges in the Irminger Basin during the Last Glacial Period: Relationship with the Heinrich events and environmental settings,
Paleoceanography,
13, 433–446, https://doi.org/10.1029/98PA01792, 1998.
Elliot, M., Labeyrie, L., and Duplessy, J.-C.:
Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10 ka),
Quaternary Sci. Rev.,
21, 1153–1165, https://doi.org/10.1016/S0277-3791(01)00137-8, 2002.
Elmore, A. C., Wright, J. D., and Southon, J.:
Continued meltwater influence on North Atlantic Deep Water instabilities during the early Holocene,
Mar. Geol.,
360, 17–24, https://doi.org/10.1016/j.margeo.2014.11.015, 2015a.
Elmore, A. C., Wright, J. D., and Chalk, T. B.:
Precession-driven changes in Iceland–Scotland Overflow Water penetration and bottom water circulation on Gardar Drift since ∼ 200 ka,
Palaeogeogr. Palaeocl.,
440, 551–563, https://doi.org/10.1016/j.palaeo.2015.09.042, 2015b.
Elmore, A. C., McClymont, E. L., Elderfield, H., Kender, S., Cook, M. R., Leng, M. J., Greaves, M., and Misra, S.:
Antarctic Intermediate Water properties since 400 ka recorded in infaunal (Uvigerina peregrina) and epifaunal (Planulina wuellerstorfi) benthic foraminifera,
Earth Planet. Sc. Lett.,
428, 193–203, https://doi.org/10.1016/j.epsl.2015.07.013, 2015c.
Elverhøi, A., Andersen, E. S., Dokken, T., Hebbeln, D., Spielhagen, R., Svendsen, J. I., Sørflaten, M., Rørnes, A., Hald, M., and Forsberg, C. F.:
The Growth and Decay of the Late Weichselian Ice Sheet in Western Svalbard and Adjacent Areas Based on Provenance Studies of Marine Sediments,
Quaternary Res.,
44, 303–316, https://doi.org/10.1006/qres.1995.1076, 1995.
Emeis, K.-C., Struck, U., Schulz, H.-M., Rosenberg, R., Bernasconi, S., Erlenkeuser, H., Sakamoto, T., and Martinez-Ruiz, F.:
Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios,
Palaeogeogr. Palaeocl.,
158, 259–280, https://doi.org/10.1016/S0031-0182(00)00053-5, 2000.
Erdem, Z., Schönfeld, J., Glock, N., Dengler, M., Mosch, T., Sommer, S., Elger, J., and Eisenhauer, A.:
Peruvian sediments as recorders of an evolving hiatus for the last 22 thousand years,
Quaternary Sci. Rev.,
137, 1–14, https://doi.org/10.1016/j.quascirev.2016.01.029, 2016.
Evans, H. F., Channell, J. E. T., Stoner, J. S., Hillaire-Marcel, C., Wright, J. D., Neitzke, L. C., and Mountain, G. S.:
Paleointensity-assisted chronostratigraphy of detrital layers on the Eirik Drift (North Atlantic) since marine isotope stage 11,
Geochem. Geophy. Geosy.,
8, Q11007, https://doi.org/10.1029/2007GC001720, 2007.
Eynaud, F., Malaizé, B., Zaragosi, S., de Vernal, A., Scourse, J., Pujol, C., Cortijo, E., Grousset, F. E., Penaud, A., Toucanne, S., Turon, J.-L., and Auffret, G.:
New constraints on European glacial freshwater releases to the North Atlantic Ocean,
Geophys. Res. Lett.,
39, 79, https://doi.org/10.1029/2012GL052100, 2012.
Fehrenbacher, J. and Martin, P.:
Western equatorial Pacific deep water carbonate chemistry during the Last Glacial Maximum and deglaciation: Using planktic foraminiferal Mg/Ca to reconstruct sea surface temperature and seafloor dissolution,
Paleoceanography,
26, PA2225, https://doi.org/10.1029/2010PA002035, 2011.
Fentimen, R., Feenstra, E., Rüggeberg, A., Vennemann, T., Hajdas, I., Adatte, T., van Rooij, D., and Foubert, A.:
Cold-Water Coral Mound Archive Provides Unique Insights Into Intermediate Water Mass Dynamics in the Alboran Sea During the Last Deglaciation,
Front. Mar. Sci.,
7, 243, https://doi.org/10.3389/fmars.2020.00354, 2020.
Ferreira, F., Frontalini, F., Leão, C. J., and Leipnitz, I. I.:
Changes in the water column structure and paleoproductivity in the western South Atlantic Ocean since the middle Pleistocene: Evidence from benthic and planktonic foraminifera,
Quatern. Int.,
352, 111–123, https://doi.org/10.1016/j.quaint.2014.07.061, 2014.
Ferry, A. J., Crosta, X., Quilty, P. G., Fink, D., Howard, W., and Armand, L. K.:
First records of winter sea ice concentration in the southwest Pacific sector of the Southern Ocean,
Paleoceanography,
30, 1525–1539, https://doi.org/10.1002/2014PA002764, 2015.
Fink, H. G., Wienberg, C., de Pol-Holz, R., Wintersteller, P., and Hebbeln, D.:
Cold-water coral growth in the Alboran Sea related to high productivity during the Late Pleistocene and Holocene,
Mar. Geol.,
339, 71–82, https://doi.org/10.1016/j.margeo.2013.04.009, 2013.
Flores, J.-A., Gersonde, R., and Sierro, F. J.:
Pleistocene fluctuations in the Agulhas Current Retroflection based on the calcareous plankton record,
Mar. Micropaleontol.,
37, 1–22, https://doi.org/10.1016/S0377-8398(99)00012-2, 1999.
Flores, J.-A., Gersonde, R., Sierro, F. J., and Niebler, H.-S.:
Southern Ocean Pleistocene calcareous nannofossil events: calibration with isotope and geomagnetic stratigraphies,
Mar. Micropaleontol.,
40, 377–402, https://doi.org/10.1016/S0377-8398(00)00047-5, 2000.
Flower, B. P., Hastings, D. W., Hill, H. W., and Quinn, T. M.:
Phasing of deglacial warming and Laurentide Ice Sheet meltwater in the Gulf of Mexico,
Paleoceanography,
32, 597, https://doi.org/10.1130/G20604.1, 2004.
Fontugne, M. R. and Calvert, S. E.:
Late Pleistocene Variability of the Carbon Isotopic Composition of Organic Matter in the Eastern Mediterranean: Monitor of Changes in Carbon Sources and Atmospheric CO2 Concentrations,
Paleoceanography,
7, 1–20, https://doi.org/10.1029/91PA02674, 1992.
Fraile, I., Schulz, M., Mulitza, S., and Kucera, M.: Predicting the global distribution of planktonic foraminifera using a dynamic ecosystem model, Biogeosciences, 5, 891–911, https://doi.org/10.5194/bg-5-891-2008, 2008.
Fraser, N., Kuhnt, W., Holbourn, A., Bolliet, T., Andersen, N., Blanz, T., and Beaufort, L.:
Precipitation variability within the West Pacific Warm Pool over the past 120 ka: Evidence from the Davao Gulf, southern Philippines,
Paleoceanography,
29, 1094–1110, https://doi.org/10.1002/2013PA002599, 2014.
Freudenthal, T.:
Reconstruction of productivity gradients in the Canary Island region off Morocco by means of sinking particles and sediments,
Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 147 pp., 2000.
Freudenthal, T., Meggers, H., Henderiks, J., Kuhlmann, H., Moreno, A., and Wefer, G.:
Upwelling intensity and filament activity off Morocco during the last 250,000 years,
Deep-Sea Res. Pt. II,
49, 3655–3674, https://doi.org/10.1016/S0967-0645(02)00101-7, 2002.
Freymüller, J.:
Eine hochauflösende planktische Isotopenaufzeichnung des 'Heinrich Event 1' im tropischen Südamerika,
Bachelorarbeit,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, 40 pp., 2013.
Friddell, J. E.:
Increased northeast Pacific climatic variability during the warm middle Holocene,
Geophys. Res. Lett.,
30, 483, https://doi.org/10.1029/2002GL016834, 2003.
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F. J., Flores, J. A., and Grimalt, J. O.:
Evidence of abrupt changes in Western Mediterranean Deep Water circulation during the last 50 kyr: A high-resolution marine record from the Balearic Sea,
Quatern. Int.,
181, 88–104, https://doi.org/10.1016/j.quaint.2007.06.016, 2008.
Frozza, C. F., Pivel, M. A. G., Suárez-Ibarra, J. Y., Ritter, M. N., and Coimbra, J. C.:
Bioerosion on Late Quaternary Planktonic Foraminifera Related to Paleoproductivity in the Western South Atlantic,
Paleoceanography and Paleoclimatology,
35, 32, https://doi.org/10.1029/2020PA003865, 2020.
de Garidel-Thoron, T., Rosenthal, Y., Beaufort, L., Bard, E., Sonzogni, C., and Mix, A. C.:
A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr,
Paleoceanography,
22, PA3204, https://doi.org/10.1029/2006PA001269, 2007.
Ge, H., Li, Q., and Cheng, X.:
Late Quaternary high resolution monsoon records in planktonic stable isotopes from northern South China Sea,
Earth Sci. J. China Uni. Geosci.,
515–525, 2010 (in Chinese).
Gebhardt, H., Sarnthein, M., Grootes, P. M., Kiefer, T., Kuehn, H., Schmieder, F., and Röhl, U.:
Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V,
Paleoceanography,
23, PA1202, https://doi.org/10.1029/2007PA001513, 2008.
Geibert, W., Matthiessen, J., Stimac, I., Wollenburg, J., and Stein, R.:
Glacial episodes of a freshwater Arctic Ocean covered by a thick ice shelf,
Nature,
590, 97–102, https://doi.org/10.1038/s41586-021-03186-y, 2021.
Geiselhart, S. and Hemleben, C.:
Stable isotopes of sediment core M31/2_KL17,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.54426, 1998a.
Geiselhart, S. and Hemleben, C.:
Stable isotopes from sediment core M31/2_KL23,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.54427, 1998b.
Gemmeke, B.:
Spätquartäre Variationen der Sauerstoffisotopen-Zusammensetztung des Oberflächenwassers im östlichen tropischen Nordatlantik,
Bachelorarbeit,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, 39 pp., 2010.
Gersonde, R., Abelmann, A., Brathauer, U., Becquey, S., Bianchi, C., Cortese, G., Grobe, H., Kuhn, G., Niebler, H.-S., Segl, M., Sieger, R., Zielinski, U., and Fütterer, D. K.:
Last glacial sea surface temperatures and sea–ice extent in the Southern Ocean (Atlantic–Indian sector): A multiproxy approach,
Paleoceanography,
18, https://doi.org/10.1029/2002PA000809, 2003.
Gherardi, J.-M., Labeyrie, L., Nave, S., Francois, R., McManus, J. F., and Cortijo, E.:
Glacial-interglacial circulation changes inferred from 231 Pa/ 230 Th sedimentary record in the North Atlantic region,
Paleoceanography,
24, PA2204, https://doi.org/10.1029/2008PA001696, 2009.
Gibbons, F. T., Oppo, D. W., Mohtadi, M., Rosenthal, Y., Cheng, J., Liu, Z., and Linsley, B. K.:
Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans,
Earth Planet. Sc. Lett.,
387, 240–251, https://doi.org/10.1016/j.epsl.2013.11.032, 2014.
Gingele, F., de Deckker, P., and Norman, M.:
Late Pleistocene and Holocene climate of SE Australia reconstructed from dust and river loads deposited offshore the River Murray Mouth,
Earth Planet. Sc. Lett.,
255, 257–272, https://doi.org/10.1016/j.epsl.2006.12.019, 2007.
Gingele, F. X., Schmieder, F., Dobeneck, T. von, Petschick, R., and Rühlemann, C.:
Terrigenous Flux in the Rio Grande Rise Area during the Past 1500 ka: Evidence of Deepwater Advection or Rapid Response to Continental Rainfall Patterns?,
Paleoceanography,
14, 84–95, https://doi.org/10.1029/1998PA900012, 1999.
Giresse, P., Bongopassi, G., Delibrias, G., and Duplessy, J. C.:
La lithostratigraphie de sédiments hémipélagiques du delta profond du fleuvre Congo es ses indications sur les paléoclimats de la fin du Quaternaire,
B. Soc. Geol. Fr.,
24, 803–815, 1982.
Glock, N., Erdem, Z., Wallmann, K., Somes, C. J., Liebetrau, V., Schönfeld, J., Gorb, S., and Eisenhauer, A.:
Coupling of oceanic carbon and nitrogen facilitates spatially resolved quantitative reconstruction of nitrate inventories,
Nat. Commun.,
9, 1217, https://doi.org/10.1038/s41467-018-03647-5, 2018.
Gorbarenko, S. A. and Southon, J. R.:
Detailed Japan Sea paleoceanography during the last 25 kyr: constraints from AMS dating and δ18O of planktonic foraminifera,
Palaeogeogr. Palaeocl.,
156, 177–193, https://doi.org/10.1016/S0031-0182(99)00137-6, 2000.
Gorbarenko, S. A., Khusid, T. A., Basov, I. A., Oba, T., Southon, J. R., and Koizumi, I.:
Glacial Holocene environment of the southeastern Okhotsk Sea: evidence from geochemical and palaeontological data,
Palaeogeogr. Palaeocl.,
177, 237–263, https://doi.org/10.1016/S0031-0182(01)00335-2, 2002.
Gottschalk, J., Skinner, L. C., and Waelbroeck, C.:
Contribution of seasonal sub-Antarctic surface water variability to millennial-scale changes in atmospheric CO2 over the last deglaciation and Marine Isotope Stage 3,
Earth Planet. Sc. Lett.,
411, 87–99, https://doi.org/10.1016/j.epsl.2014.11.051, 2015.
Gottschalk, J., Vázquez Riveiros, N., Waelbroeck, C., Skinner, L. C., Michel, E., Duplessy, J.-C., Hodell, D., and Mackensen, A.:
Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic,
Paleoceanography,
31, 1583–1602, https://doi.org/10.1002/2016PA003029, 2016.
Govil, P. and Naidu, P. D.:
Evaporation-precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability,
Paleoceanography,
25, 159, https://doi.org/10.1029/2008PA001687, 2010.
Govil, P. and Naidu, P. D.:
Variations of Indian monsoon precipitation during the last 32 kyr reflected in the surface hydrography of the Western Bay of Bengal,
Quaternary Sci. Rev.,
30, 3871–3879, https://doi.org/10.1016/j.quascirev.2011.10.004, 2011.
Govin, A., Michel, E., Labeyrie, L., Waelbroeck, C., Dewilde, F., and Jansen, E.:
Evidence for northward expansion of Antarctic Bottom Water mass in the Southern Ocean during the last glacial inception,
Paleoceanography,
24, PA1202, https://doi.org/10.1029/2008PA001603, 2009.
Govin, A., Chiessi, C. M., Zabel, M., Sawakuchi, A. O., Heslop, D., Hörner, T., Zhang, Y., and Mulitza, S.: Terrigenous input off northern South America driven by changes in Amazonian climate and the North Brazil Current retroflection during the last 250 ka, Clim. Past, 10, 843–862, https://doi.org/10.5194/cp-10-843-2014, 2014.
Grelaud, M., Beaufort, L., Cuven, S., and Buchet, N.:
Glacial to interglacial primary production and El Niño-Southern Oscillation dynamics inferred from coccolithophores of the Santa Barbara Basin,
Paleoceanography,
24, PA1203, https://doi.org/10.1029/2007PA001578, 2009.
Grobe, H.:
Sedimentation processes on the antarctic continental margin at Kapp Norvegia during the late Pleistocene,
Geol. Rundsch.,
75, 97–104, https://doi.org/10.1007/BF01770181, 1986a.
Grobe, H.: Spätpleistozäne Sedimentationsprozesse am antarktischen
Kontinentalhang vor Kapp Norvegia, östliche Weddell See, Berichte zur
Polarforschung, 27, Alfred-Wegener-Inst. für Polar- und Meeresforschung,
Bremerhaven, 121 pp., 1986b.
Grobe, H.:
Sedimentology of core PS1368-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51580, 1996a.
Grobe, H.:
Sedimentology of core PS1369-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51582, 1996b.
Grobe, H.:
Sedimentology of core PS1370-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51584, 1996c.
Grobe, H.:
Sedimentology of core PS1375-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51589, 1996d.
Grobe, H.:
Sedimentology of core PS1378-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51594, 1996e.
Grobe, H.:
Sedimentology of core PS1379-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51596, 1996f.
Grobe, H.:
Sedimentology of core PS1381-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51600, 1996g.
Grobe, H.:
Sedimentology of core PS1387-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51607, 1996h.
Grobe, H.:
Sedimentology of core PS1392-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51628, 1996i.
Grobe, H.:
Sedimentology of core PS1461-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51657, 1996j.
Grobe, H.:
Sedimentology of core PS1588-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51673, 1996k.
Grobe, H.:
Sedimentology of core PS1805-6,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51727, 1996l.
Grobe, H.:
Sedimentology of core PS1811-8,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51732, 1996m.
Grobe, H.:
Sedimentology of core PS1812-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51733, 1996n.
Grobe, H.:
Sedimentology of core PS1812-6,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51734, 1996o.
Grobe, H.:
Sedimentology of core PS1813-6,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51735, 1996p.
Grobe, H.:
Sedimentology of core PS1816-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51736, 1996q.
Grobe, H.:
Sedimentology and stable isotope ratios of core PS1563-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.80819, 2002a.
Grobe, H.:
Sedimentology and stable isotope ratios of core PS1564-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.81001, 2002b.
Grobe, H., Fütterer, D. K., and Spieß, V.: Oligocene to Quaternary Sedimentation
Processes on the Antarctic Continental Margin, ODP Leg 113, Site 693, in:
Proceedings of the Ocean Drilling Program, 113 Scientific Reports, edited by:
Barker, P. E. and Kennett, J. P., Ocean Drilling Program,
https://doi.org/10.2973/odp.proc.sr.113.193.1990, 1990.
Grobe, H. and Mackensen, A.:
Late Quaternary climatic cycles as recorded in sediments from the Antarctic continental margin,
in: The Antarctic Paleoenvironment: A Perspective on Global Change: Part One,
edited by: Kennett, J. P. and Warkne, D. A.,
American Geophysical Union, Washington, DC, 349–376, https://doi.org/10.1029/AR056p0349, 1992.
Grousset, F. E., Labeyrie, L., Sinko, J. A., Cremer, M., Bond, G., Duprat, J., Cortijo, E., and Huon, S.:
Patterns of Ice-Rafted Detritus in the Glacial North Atlantic (40–55∘ N),
Paleoceanography,
8, 175–192, https://doi.org/10.1029/92PA02923, 1993.
Grousset, F. E., Cortijo, E., Huon, S., Hervé, L., Richter, T., Burdloff, D., Duprat, J., and Weber, O.:
Zooming in on Heinrich layers,
Paleoceanography,
16, 240–259, https://doi.org/10.1029/2000PA000559, 2001.
Guptha, M. V. S., Naidu, P. D., Haake, B. G., and Schiebel, R.:
Carbonate and carbon fluctuations in the Eastern Arabian Sea over 140 ka: Implications on productivity changes?,
Deep-Sea Res. Pt. II,
52, 1981–1993, https://doi.org/10.1016/j.dsr2.2005.05.003, 2005.
Haddad, G. A., Droxler, A. W., Kroon, D., and Müller, D. W.:
Quaternary CaCO3 Input and Preservation within Antarctic Intermediate Water Mineralogic and Isotopic Results from Holes 818B and 817A, Townsville Trough (Northeast Australian Margin),
in: Proceedings of the Ocean Drilling Program, 133 Scientific Results,
edited by: McKenzie, J. A., Davies, P. J., and Palmer-Julson, A.,
Ocean Drilling Program, https://doi.org/10.2973/odp.proc.sr.133.229.1993, 1993.
Hagen, S. and Hald, M.:
Variation in surface and deep water circulation in the Denmark Strait, North Atlantic, during marine isotope stages 3 and 2,
Paleoceanography,
17, 13-1–13-16, https://doi.org/10.1029/2001PA000632, 2002.
Hagen, S. and Keigwin, L. D.:
Sea-surface temperature variability and deep water reorganisation in the subtropical North Atlantic during Isotope Stage 2–4,
Mar. Geol.,
189, 145–162, https://doi.org/10.1016/S0025-3227(02)00327-4, 2002.
Hale, W. and Pflaumann, U.:
Sea-surface Temperature Estimations using a Modern Analog Technique with Foraminiferal Assemblages from Western Atlantic Quaternary Sediments,
in: Use of Proxies in Paleoceanography: Examples from the South Atlantic,
edited by: Fischer, G. and Wefer, G.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 69–90, 1999a.
Hale, W. and Pflaumann, U.:
Stable isotopes on Globigerinoides ruber in sediment core GeoB2109-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.140002, 1999b.
Hale, W. and Pflaumann, U.:
Stable isotopes on Globigerinoides ruber in sediment core GeoB3808-6,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.140005, 1999c.
Hall, I. R., Bianchi, G. G., and Evans, J. R.:
Centennial to millennial scale Holocene climate-deep water linkage in the North Atlantic,
Quaternary Sci. Rev.,
23, 1529–1536, https://doi.org/10.1016/j.quascirev.2004.04.004, 2004.
Harada, N., Ahagon, N., Uchida, M., and Murayama, M.:
Northward and southward migrations of frontal zones during the past 40 kyr in the Kuroshio-Oyashio transition area,
Geochem. Geophy. Geosy.,
5, Q09004, https://doi.org/10.1029/2004GC000740, 2004.
Hays, J. D., Imbrie, J., and Shackleton, N. J.:
Variations in the Earth's Orbit: Pacemaker of the Ice Ages,
Science,
194, 1121–1132, https://doi.org/10.1126/science.194.4270.1121, 1976.
Hebbeln, D.:
Weichselian glacial history of the Svalbard area: correlating the marine and terrestrial records,
Boreas,
21, 295–302, https://doi.org/10.1111/j.1502-3885.1992.tb00035.x, 1992.
Heil, G.:
Abrupt climate shifts in the western tropical to subtropical Atlantic region during the last glacial,
PhD thesis,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany, 121 pp., 2006.
Henderiks, J., Freudenthal, T., Meggers, H., Nave, S., Abrantes, F., Bollmann, J., and Thierstein, H. R.:
Glacial–interglacial variability of particle accumulation in the Canary Basin: a time-slice approach,
Deep-Sea Res. Pt. II,
49, 3675–3705, https://doi.org/10.1016/S0967-0645(02)00102-9, 2002.
Hendrizan, M., Kuhnt, W., and Holbourn, A.:
High resolution reconstruction of hydrological changes over the last 14 kyr from sediment core GIK18517-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.880971, 2017a.
Hendrizan, M., Kuhnt, W., and Holbourn, A.:
Variability of Indonesian Throughflow and Borneo Runoff During the Last 14 kyr,
Paleoceanography,
32, 1054–1069, https://doi.org/10.1002/2016PA003030, 2017b.
Hennekam, R., Donders, T. H., Zwiep, K., and de Lange, G. J.:
Integral view of Holocene precipitation and vegetation changes in the Nile catchment area as inferred from its delta sediments,
Quaternary Sci. Rev.,
130, 189–199, https://doi.org/10.1016/j.quascirev.2015.05.031, 2015.
Henrich, R., Cherubini, Y., and Meggers, H.:
Climate and sea level induced turbidite activity in a canyon system offshore the hyperarid Western Sahara (Mauritania): The Timiris Canyon,
Mar. Geol.,
275, 178–198, https://doi.org/10.1016/j.margeo.2010.05.011, 2010.
Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., and Keigwin, L. D.:
North Atlantic ocean circulation and abrupt climate change during the last glaciation,
Science,
353, 470–474, https://doi.org/10.1126/science.aaf5529, 2016.
Hickey, B. J.: Reconstructing past flow rates of southern component water masses
using sedimentary , PhD thesis, University of Oxford, 232 pp., 2010.
Hill, T. M., Kennett, J. P., Pak, D. K., Behl, R. J., Robert, C., and Beaufort, L.:
Pre-Bølling warming in Santa Barbara Basin, California: surface and intermediate water records of early deglacial warmth,
Quaternary Sci. Rev.,
25, 2835–2845, https://doi.org/10.1016/j.quascirev.2006.03.012, 2006.
Hillaire-Marcel, C., de Vernal, A., Aksu, A. E., and Macko, S.:
High-Resolution Isotopic and Micropaleontological Studies of Upper Pleistocene Sediments at ODP Site 645, Baffin Bay,
in: Proceedings of the Ocean Drilling Program, 105 Scientific Results,
edited by: Srivastava, S. P., Arthur, M. A., and Clement, B.,
Ocean Drilling Program, https://doi.org/10.2973/odp.proc.sr.105.138.1989, 1989.
Hillaire-Marcel, C., de Vernal, A., Bilodeau, G., and Wu, G.:
Isotope stratigraphy, sedimentation rates, deep circulation, and carbonate events in the Labrador Sea during the last ∼ 200 ka,
Can. J. Earth Sci.,
31, 63–89, https://doi.org/10.1139/e94-007, 1994.
Hillenbrand, C.-D.:
Sedimentological and stable isotope analysis of sediment core PS1565-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.50003, 1995.
Hillenbrand, C.-D., Fütterer, D., Grobe, H., and Frederichs, T.:
No evidence for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea,
Geo-Mar. Lett.,
22, 51–59, https://doi.org/10.1007/s00367-002-0097-7, 2002.
Hillenbrand, C.-D., Grobe, H., Diekmann, B., Kuhn, G., and Fütterer, D. K.:
Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica) – Relation to modern environmental conditions,
Mar. Geol.,
193, 253–271, https://doi.org/10.1016/S0025-3227(02)00659-X, 2003.
Hillenbrand, C.-D., Larter, R. D., Dowdeswell, J. A., Ehrmann, W., Ó Cofaigh, C., Benetti, S., Graham, A. G. C., and Grobe, H.:
The sedimentary legacy of a palaeo-ice stream on the shelf of the southern Bellingshausen Sea: Clues to West Antarctic glacial history during the Late Quaternary,
Quaternary Sci. Rev.,
29, 2741–2763, https://doi.org/10.1016/j.quascirev.2010.06.028, 2010.
Hillenbrand, C.-D., Smith, J. A., Hodell, D. A., Greaves, M., Poole, C. R., Kender, S., Williams, M., Andersen, T. J., Jernas, P. E., Elderfield, H., Klages, J. P., Roberts, S. J., Gohl, K., Larter, R. D., and Kuhn, G.:
West Antarctic Ice Sheet retreat driven by Holocene warm water incursions,
Nature,
547, 43–48, https://doi.org/10.1038/nature22995, 2017.
Ho, S. L., Mollenhauer, G., Lamy, F., Martínez-Garcia, A., Mohtadi, M., Gersonde, R., Hebbeln, D., Nunez-Ricardo, S., Rosell-Melé, A., and Tiedemann, R.:
Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr,
Paleoceanography,
27, 380, https://doi.org/10.1029/2012PA002317, 2012.
Hodell, D. A., Charles, C. D., Curtis, J. H., Mortyn, P. G., Ninnemann, U. S., and Venz, K. A.:
Data report: Oxygen isotope stratigraphy of ODP Leg 177 Sites 1088, 1089, 1090, 1093, and 1094,
in: Proceedings of the Ocean Drilling Program, 177 Scientific Results,
edited by: Gersonde, R., Hodell, D. A., and Blum, P.,
Ocean Drilling Program, https://doi.org/10.2973/odp.proc.sr.177.120.2003, 2003.
Hodell, D. A., Evans, H. F., Channell, J. E. T., and Curtis, J. H.:
Phase relationships of North Atlantic ice-rafted debris and surface-deep climate proxies during the last glacial period,
Quaternary Sci. Rev.,
29, 3875–3886, https://doi.org/10.1016/j.quascirev.2010.09.006, 2010.
Hoff, U., Rasmussen, T. L., Stein, R., Ezat, M. M., and Fahl, K.:
Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present,
Nat. Commun.,
7, 12247, https://doi.org/10.1038/ncomms12247, 2016.
Hoffman, J. L. and Lund, D. C.:
Refining the stable isotope budget for Antarctic Bottom Water: New foraminiferal data from the abyssal southwest Atlantic,
Paleoceanography,
27, https://doi.org/10.1029/2011PA002216, 2012.
Hoffman, J. S.:
Ocean Temperature Variability during the Late Pleistocene,
PhD thesis,
Oregon State University, Corvallis, OR, 287 pp., 2016.
Hoffmann, J., Bahr, A., Voigt, S., Schönfeld, J., Nürnberg, D., and Rethemeyer, J.:
Disentangling abrupt deglacial hydrological changes in northern South America: Insolation versus oceanic forcing,
Geology,
42, 579–582, https://doi.org/10.1130/G35562.1, 2014.
Holbourn, A., Kuhnt, W., Kawamura, H., Jian, Z., Grootes, P., Erlenkeuser, H., and Xu, J.:
Orbitally paced paleoproductivity variations in the Timor Sea and Indonesian Throughflow variability during the last 460 kyr,
Paleoceanography,
20, PA3002, https://doi.org/10.1029/2004PA001094, 2005.
Hommers, H., Voelker, A. H. L., and Sarnthein, M.:
Stable isotope data of Globigerinoides ruber white (315–400 µm) for deep-sea core GIK13291-1 off Cape Blanc, NW Africa, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.903669, 2019.
Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N., and Rickaby, R. E. M.:
Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin,
Nat. Geosci.,
8, 40–43, https://doi.org/10.1038/ngeo2317, 2015.
Hoogakker, B. A. A., Lu, Z., Umling, N., Jones, L., Zhou, X., Rickaby, R. E. M., Thunell, R., Cartapanis, O., and Galbraith, E.:
Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific,
Nature,
562, 410–413, https://doi.org/10.1038/s41586-018-0589-x, 2018.
Hörner, T.:
Relation between Amazonian precipitation, insolation and ocean circulation during the last 250 kyr,
Master Thesis,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, 84 pp., 2012.
Hou, A., Bahr, A., Raddatz, J., Voigt, S., Greule, M., Albuquerque, A. L., Chiessi, C. M., and Friedrich, O.:
Insolation and Greenhouse Gas Forcing of the South American Monsoon System Across Three Glacial-Interglacial Cycles,
Geophys. Res. Lett.,
47, 259, https://doi.org/10.1029/2020GL087948, 2020.
Hovan, S. A., Rea, D. K., and Pisias, N. G.:
Late Pleistocene Continental Climate and Oceanic Variability Recorded in Northwest Pacific Sediments,
Paleoceanography,
6, 349–370, https://doi.org/10.1029/91PA00559, 1991.
Howard, W. R. and Prell, W. L.:
Late Quaternary Surface Circulation of the Southern Indian Ocean and its Relationship to Orbital Variations,
Paleoceanography,
7, 79–117, https://doi.org/10.1029/91PA02994, 1992.
Huang, C.-Y., Wu, S.-F., Zhao, M., Chen, M.-T., Wang, C.-H., Tu, X., and Yuan, P. B.:
Surface ocean and monsoon climate variability in the South China Sea since the last glaciation,
Mar. Micropaleontol.,
32, 71–94, https://doi.org/10.1016/S0377-8398(97)00014-5, 1997.
Huang, E.:
Atlantic Meridional Overturning Circulation during the Last Glacial and Deglacial: Inferences from the Atlantic Tropical Thermocline Temperature and Seawater Radiocarbon Activity,
PhD thesis,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, 121 pp., 2013.
Huang, E. and Tian, J.:
Sea-level rises at Heinrich stadials of early Marine Isotope Stage 3: Evidence of terrigenous n-alkane input in the southern South China Sea,
Global Planet. Change,
94–95, 1–12, https://doi.org/10.1016/j.gloplacha.2012.06.003, 2012.
Huang, E., Tian, J., Qiao, P., Wan, S., Xie, X., and Yang, W.:
Early interglacial carbonate-dilution events in the South China Sea: Implications for strengthened typhoon activities over subtropical East Asia,
Quaternary Sci. Rev.,
125, 61–77, https://doi.org/10.1016/j.quascirev.2015.08.007, 2015.
Hüls, C. M.:
Millennial-scale SST variability as inferred from planktonic foraminiferal census counts in the western subtropical Atlantic,
GEOMAR-Report, 95,
GEOMAR, Kiel, 118 pp., 2000.
Hüls, M.:
Meeresoberflächentemperaturen im Atlantik vor Liberia in den letzten 400.00 Jahren (Meteor Kern 16776),
Diploma Thesis,
Geologisch–Paläontologisches Institut, Christian-Albrechts-Universität, Kiel, Germany, 77 pp., 1991.
Hüls, M. and Zahn, R.:
Millennial-scale sea surface temperature variability in the western tropical North Atlantic from planktonic foraminiferal census counts,
Paleoceanography,
15, 659–678, https://doi.org/10.1029/1999PA000462, 2000.
Huppertz, N.:
Variability of surface water stratification offshore Brazil over the past 25 ka,
Master Thesis,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, 35 pp., 2014.
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias,
N. G., Prell, W. L., and Shackleton, N. J.: The orbital theory of Pleistocene climate:
Support from a revised chronology of the marine δ18O record, in: Milankovitch and
Climate (Part 1), edited by: Berger, A. L., Imbrie, J., Hays, J. D., Kukla, G., and
Saltzman, B., 269–305, Hingham, Mass. (Reidel), ISBN 978-90-277-1778-8, 1984.
Itambi, A. C., von Dobeneck, T., Mulitza, S., Bickert, T., and Heslop, D.:
Millennial-scale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: Evidence in marine sediments from offshore Senegal,
Paleoceanography,
24, PA1205, https://doi.org/10.1029/2007PA001570, 2009.
Ivanova, E., Schiebel, R., Singh, A. D., Schmiedl, G., Niebler, H.-S., and Hemleben, C.:
Primary production in the Arabian Sea during the last 135 000 years,
Palaeogeogr. Palaeocl.,
197, 61–82, https://doi.org/10.1016/S0031-0182(03)00386-9, 2003.
Jacobel, A. W., McManus, J. F., Anderson, R. F., and Winckler, G.:
Large deglacial shifts of the Pacific Intertropical Convergence Zone,
Nat. Commun.,
7, 10449, https://doi.org/10.1038/ncomms10449, 2016.
Jansen, E. and Veum, T.:
Evidence for two-step deglaciation and its impact on North Atlantic deep-water circulation,
Nature,
343, 612–616, https://doi.org/10.1038/343612a0, 1990.
Jasper, J. P., Hayes, J. M., Mix, A. C., and Prahl, F. G.:
Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years,
Paleoceanography,
9, 781–798, https://doi.org/10.1029/94PA02116, 1994.
Jenkins, J. A. and Williams, D. F.: Stable isotope analysis on planktic foraminifera in
sediment core MD81-LC03, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.186153, 2004.
Jennings, A., Sheldon, C., Cronin, T., Francus, P., Stoner, J., and Andrews, J.:
The Holocene History of Nares Strait: Transition from Glacial Bay to Arctic-Atlantic Throughflow,
Oceanography,
24, 26–41, https://doi.org/10.5670/oceanog.2011.52, 2011.
Jennings, A., Andrews, J., Pearce, C., Wilson, L., and Ólfasdótttir, S.:
Detrital carbonate peaks on the Labrador shelf, a 13–7 ka template for freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet into the subpolar gyre,
Quaternary Sci. Rev.,
107, 62–80, https://doi.org/10.1016/j.quascirev.2014.10.022, 2015.
Johnstone, H. J. H., Kiefer, T., Elderfield, H., and Schulz, M.:
Calcite saturation, foraminiferal test mass, and Mg/Ca-based temperatures dissolution corrected using XDX-A 150 ka record from the western Indian Ocean,
Geochem. Geophy. Geosy.,
15, 781–797, https://doi.org/10.1002/2013GC004994, 2014.
Jones, G. A. and Keigwin, L. D.:
Evidence from Fram Strait (78∘ N) for early deglaciation,
Nature,
336, 56–59, https://doi.org/10.1038/336056a0, 1988.
Jonkers, L., Cartapanis, O., Langner, M., McKay, N., Mulitza, S., Strack, A., and Kucera, M.: Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis, Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, 2020.
Jorissen, F. J., Asioli, A., Borsetti, A. M., Capotondi, L., Visser, J. P. de, Hilgen, F. J., Rohling, E. J., van der Borg, K., Vergnaud Grazzini, C., and Zachariasse, W. J.:
Late Quaternary central Mediterranean biochronology,
Mar. Micropaleontol.,
21, 169–189, https://doi.org/10.1016/0377-8398(93)90014-O, 1993.
Jung, S. J. A.:
Wassermassenaustausch zwischen NE-Atlantik und Nordmeer während der letzten 300.000/80.000 Jahre im Abbild stabiler 0- und C-lsotope,
Christian-Albrechts-Universität zu Kiel, 1996.
Jung, S. J. A. and Sarnthein, M.:
Stable isotope data of sediment cores GIK17050-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.112909, 2003a.
Jung, S. J. A. and Sarnthein, M.:
Stable isotope data of sediment cores GIK17051-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.112910, 2003b.
Jung, S. J. A. and Sarnthein, M.:
Stable isotope data of sediment cores GIK23416-4,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.112913, 2003c.
Jung, S. J. A. and Sarnthein, M.:
Stable isotope data of sediment cores GIK23417-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.112914, 2003d.
Just, J., Dekkers, M. J., von Dobeneck, T., van Hoesel, A., and Bickert, T.:
Signatures and significance of aeolian, fluvial, bacterial and diagenetic magnetic mineral fractions in Late Quaternary marine sediments off Gambia, NW Africa,
Geochem. Geophy. Geosy.,
13, 191, https://doi.org/10.1029/2012GC004146, 2012.
Kaiser, A.:
Ozeanographie, Produktivität und Meereisverbreitung im Ochotskischen Meer während der letzten ca. 350 ka,
PhD thesis,
Kiel, Germany, 114 pp., 2001.
Kalansky, J., Rosenthal, Y., Herbert, T., Bova, S., and Altabet, M.:
Southern Ocean contributions to the Eastern Equatorial Pacific heat content during the Holocene,
Earth Planet. Sc. Lett.,
424, 158–167, https://doi.org/10.1016/j.epsl.2015.05.013, 2015.
Kallel, N., Paterne, M., Duplessy, J. C., Vergnaud-Grazzini, C., Pujol, C., Labeyrie, L., Arnold, M., Fontugne, M., and Pierre, C.:
Enhanced rainfall in the Mediterranean region during the last sapropel event,
Oceanol. Acta,
20, 697–712, 1997.
Kanfoush, S. L., Hodell, D. A., Charles, C. D., Guilderson, T. P., Mortyn, P. G., and
Ninnemann, U. S.:
Millennial-scale instability of the antarctic ice sheet during the last glaciation,
Science,
288, 1815–1818, https://doi.org/10.1126/science.288.5472.1815, 2000.
Kanfoush, S. L., Hodell, D. A., Charles, C. D., Janecek, T. R., and Rack, F. R.:
Comparison of ice-rafted debris and physical properties in ODP Site 1094 (South Atlantic) with the Vostok ice core over the last four climatic cycles,
Palaeogeogr. Palaeocl.,
182, 329–349, https://doi.org/10.1016/S0031-0182(01)00502-8, 2002.
Karpuz, N. K. and Jansen, E.:
A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: Documentation of rapid climatic changes,
Paleoceanography,
7, 499–520, https://doi.org/10.1029/92PA01651, 1992.
Keigwin, L. D.:
North Pacific deep water formation during the latest glaciation,
Nature,
330, 362–364, https://doi.org/10.1038/330362a0, 1987.
Keigwin, L. D.:
Glacial-age hydrography of the far northwest Pacific Ocean,
Paleoceanography,
13, 323–339, https://doi.org/10.1029/98PA00874, 1998.
Keigwin, L. D.:
Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic,
Paleoceanography,
19, PA4012, https://doi.org/10.1029/2004PA001029, 2004.
Keigwin, L. D. and Boyle, E. A.:
Late quaternary paleochemistry of high-latitude surface waters,
Palaeogeogr. Palaeocl.,
73, 85–106, https://doi.org/10.1016/0031-0182(89)90047-3, 1989.
Keigwin, L. D. and Jones, G. A.:
Western North Atlantic evidence for millennial-scale changes in ocean circulation and climate,
J. Geophys. Res.,
99, 12397, https://doi.org/10.1029/94JC00525, 1994.
Keigwin, L. D. and Jones, G. A.:
The marine record of deglaciation from the continental margin off Nova Scotia,
Paleoceanography,
10, 973–985, https://doi.org/10.1029/95PA02643, 1995.
Keigwin, L. D. and Lehman, S. J.:
Deep circulation change linked to HEINRICH Event 1 and Younger Dryas in a middepth North Atlantic Core,
Paleoceanography,
9, 185–194, https://doi.org/10.1029/94PA00032, 1994.
Keigwin, L. D. and Lehman, S. J.:
Radiocarbon evidence for a possible abyssal front near 3.1 km in the glacial equatorial Pacific Ocean,
Earth Planet. Sc. Lett.,
425, 93–104, https://doi.org/10.1016/j.epsl.2015.05.025, 2015.
Keigwin, L. D. and Schlegel, M. A.:
Ocean ventilation and sedimentation since the glacial maximum at 3 km in the western North Atlantic,
Geochem. Geophy. Geosy.,
3, 1–14, https://doi.org/10.1029/2001GC000283, 2002.
Keigwin, L. D. and Swift, S. A.:
Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic,
P. Natl. Acad. Sci. USA,
114, 2831–2835, https://doi.org/10.1073/pnas.1614693114, 2017.
Keigwin, L. D., Jones, G. A., Lehman, S. J., and Boyle, E. A.:
Deglacial meltwater discharge, North Atlantic Deep Circulation, and abrupt climate change,
J. Geophys. Res.,
96, 16811, https://doi.org/10.1029/91JC01624, 1991.
Keigwin, L. D., Sachs, J. P., and Rosenthal, Y.:
A 1600-year history of the Labrador Current off Nova Scotia,
Clim. Dynam.,
21, 53–62, https://doi.org/10.1007/s00382-003-0316-6, 2003.
Keigwin, L. D., Sachs, J. P., Rosenthal, Y., and Boyle, E. A.:
The 8200 year B. P. event in the slope water system, western subpolar North Atlantic,
Paleoceanography,
20, https://doi.org/10.1029/2004PA001074, 2005.
Keigwin, L. D., Klotsko, S., Zhao, N., Reilly, B., Giosan, L., and Driscoll, N. W.:
Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling,
Nat. Geosci.,
11, 599–604, https://doi.org/10.1038/s41561-018-0169-6, 2018.
Kemle-von Mücke, S.:
Oberflächenwasserstruktur und -zirkulation des Südostatlantiks im Spätquartär,
Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 55,
Bremen, 151 pp., 1994.
Khider, D., Jackson, C. S., and Stott, L. D.:
Assessing millennial-scale variability during the Holocene: A perspective from the western tropical Pacific,
Paleoceanography,
29, 143–159, https://doi.org/10.1002/2013PA002534, 2014.
Kiefer, T.:
Produktivität und Temperaturen im subtropischen Nordatlantik: Zyklische und abrupte Veränderungen im späten Quartär,
Berichte, 90,
Geologisch-Paläontolog. Inst. und Museum Christian-Albrechts-Univ, Kiel, 127 pp., 1998.
Kiefer, T., McCave, I. N., and Elderfield, H.:
Antarctic control on tropical Indian Ocean sea surface temperature and hydrography,
Geophys. Res. Lett.,
33, 1050, https://doi.org/10.1029/2006GL027097, 2006.
Kienast, S. S., Kienast, M., Mix, A. C., Calvert, S. E., and François, R.:
Thorium-230 normalized particle flux and sediment focusing in the Panama Basin region during the last 30,000 years,
Paleoceanography,
22, 406, https://doi.org/10.1029/2006PA001357, 2007.
Kienast, S. S., Friedrich, T., Dubois, N., Hill, P. S., Timmermann, A., Mix, A. C., and Kienast, M.:
Near collapse of the meridional SST gradient in the eastern equatorial Pacific during Heinrich Stadial 1,
Paleoceanography,
28, 663–674, https://doi.org/10.1002/2013PA002499, 2013.
Kim, J.-H. and Schneider, R. R.:
Low-latitude control of interhemispheric sea-surface temperature contrast in the tropical Atlantic over the past 21 k years: the possible role of SE trade winds,
Clim. Dynam.,
21, 337–347, https://doi.org/10.1007/s00382-003-0341-5, 2003.
Kim, J.-H., Schneider, R. R., Mulitza, S., and Müller, P. J.:
Reconstruction of SE trade-wind intensity based on sea-surface temperature gradients in the Southeast Atlantic over the last 25 kyr,
Geophys. Res. Lett.,
30, 297, https://doi.org/10.1029/2003GL017557, 2003.
Kim, J.-H., Romero, O. E., Lohmann, G., Donner, B., Laepple, T., Haam, E., and Sinninghe Damsté, J. S.:
Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during Dansgaard–Oeschger interstadials,
Earth Planet. Sc. Lett.,
339–340, 95–102, https://doi.org/10.1016/j.epsl.2012.05.018, 2012.
Kim, J.-M., Kennett, J. P., Park, B.-K., Kim, D. C., Kim, G. Y., and Roark, E. B.:
Paleoceanographic change during the last deglaciation, east Sea of Korea,
Paleoceanography,
15, 254–266, https://doi.org/10.1029/1999PA000393, 2000.
Knaack, J.:
Eine neue Transferfunktion zur Rekonstruktion der Paläoproduktivität aus Gemeinschaften mariner Diatomeen,
Geologisch–Paläontologisches Institut und Museum, Christian-Albrechts-Universität, Kiel, 1997.
Knaack, J.-J. and Sarnthein, M.:
Stable isotopes of foraminifera of ODP Hole 108-658C,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.227736, 2005.
Knies, J. and Stein, R.:
New aspects of organic carbon deposition and its paleoceanographic implications along the Northern Barents Sea Margin during the last 30,000 years,
Paleoceanography,
13, 384–394, https://doi.org/10.1029/98PA01501, 1998a.
Knies, J. and Stein, R.: Stable isotope analysis on sediment core PS2446-4,
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.54687, 1998b.
Knies, J., Vogt, C., and Stein, R.:
Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean,
Geo-Mar. Lett.,
18, 195–202, https://doi.org/10.1007/s003670050068, 1998.
Knudsen, K. L., Stabell, B., Seidenkrantz, M.-S., Eiriksson, J. O. N., and Blake, W.:
Deglacial and Holocene conditions in northernmost Baffin Bay: sediments, foraminifera, diatoms and stable isotopes,
Boreas,
37, 346–376, https://doi.org/10.1111/j.1502-3885.2008.00035.x, 2008.
Kohn, M., Steinke, S., Baumann, K.-H., Donner, B., Meggers, H., and Zonneveld, K. A. F.:
Stable oxygen isotopes from the calcareous-walled dinoflagellate Thoracosphaera heimii as a proxy for changes in mixed layer temperatures off NW Africa during the last 45,000 yr,
Palaeogeogr. Palaeocl.,
302, 311–322, https://doi.org/10.1016/j.palaeo.2011.01.019, 2011.
Köhler, S. E. I.:
Spätquartäre paläo-ozeanographische Entwicklung des Nordpolarmeeres und Europäischen Nordmeeres anhand von Sauerstoff- und Kohlenstoff-Isotopenverhältnissen der planktischen Foraminifere Neogloboquadrina pachyderma (sin.),
PhD thesis, Kiel, Germany, 104 pp., 1991.
Koutavas, A. and Lynch-Stieglitz, J.:
Glacial-interglacial dynamics of the eastern equatorial Pacific cold tongue-Intertropical Convergence Zone system reconstructed from oxygen isotope records,
Paleoceanography,
18, 1089, https://doi.org/10.1029/2003PA000894, 2003.
Kroopnick, P. M.:
The distribution of 13C of ΣCO2 in the world oceans,
Deep-Sea Res.,
32, 57–84, https://doi.org/10.1016/0198-0149(85)90017-2, 1985.
Krueger, S., Leuschner, D. C., Ehrmann, W., Schmiedl, G., Mackensen, A., and Diekmann, B.:
Ocean circulation patterns and dust supply into the South Atlantic during the last glacial cycle revealed by statistical analysis of kaolinite/chlorite ratios,
Mar. Geol.,
253, 82–91, https://doi.org/10.1016/j.margeo.2008.04.015, 2008.
Krummrei, M.:
Spätquartäre Schichtung des Oberflächenwassers im westlichen tropischen Atlantik,
Bachelorarbeit,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, 31 pp., 2015.
Kuhnert, H., Kuhlmann, H., Mohtadi, M., Meggers, H., Baumann, K.-H., and Pätzold, J.:
Holocene tropical western Indian Ocean sea surface temperatures in covariation with climatic changes in the Indonesian region,
Paleoceanography,
29, 423–437, https://doi.org/10.1002/2013PA002555, 2014.
Kuhr, J.:
Spätquartäre Niederschlagsveränderungen im Amazonasbecken: Einfluss von Sonneneinstrahlung und Ozeanzirkulation,
Masterarbeit,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, 58 pp., 2011.
Kurahashi-Nakamura, T., Paul, A., and Losch, M.: Dynamical reconstruction of the
global ocean state during the Last Glacial Maximum, Paleoceanography, 32, 326–350, https://doi.org/10.1002/2016PA003001, 2017.
Kusch, S., Eglinton, T. I., Mix, A. C., and Mollenhauer, G.:
Timescales of lateral sediment transport in the Panama Basin as revealed by radiocarbon ages of alkenones, total organic carbon and foraminifera,
Earth Planet. Sc. Lett.,
290, 340–350, https://doi.org/10.1016/j.epsl.2009.12.030, 2010.
Labeyrie, L.:
Quaternary paleoceanography: unpublished stable isotope records,
IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #1996-036, 1996.
Labeyrie, L., Vidal, L., Cortijo, E., Arnold, M., Duplessy, J. C., Vautravers, M., Labracherie, M., Duprat, J., Turon, J. L., F. Grousset, F., and van Weering, T.:
Surface and deep hydrology of the Northern Atlantic Ocean during the past 150 000 years,
Philos. T. R. Soc. Lon. B,
348, 255–264, https://doi.org/10.1098/rstb.1995.0067, 1995.
Labeyrie, L., Labracherie, M., Gorfti, N., Pichon, J. J., Vautravers, M., Arnold, M., Duplessy, J.-C., Paterne, M., Michel, E., Duprat, J., Caralp, M., and Turon, J.-L.:
Hydrographic changes of the Southern Ocean (southeast Indian Sector) Over the last 230 kyr,
Paleoceanography,
11, 57–76, https://doi.org/10.1029/95PA02255, 1996.
Labeyrie, L., Leclaire, H., Waelbroeck, C., Cortijo, E., Duplessy, J.-C., Vidal, L., Elliot, M., Le Coat, B., and Auffret, G.:
Temporal variability of the surface and deep waters of the North West Atlantic Ocean at orbital and millenial scales,
in: Mechanisms of Global Climate Change at Millennial Time Scales,
edited by: Clark, U., Webb, S., and Keigwin, D.,
American Geophysical Union, Washington, DC, 77–98, https://doi.org/10.1029/GM112, 1999.
Labeyrie, L., Waelbroeck, C., Cortijo, E., Michel, E., and Duplessy, J.-C.:
Changes in deep water hydrology during the Last Deglaciation,
C. R. Geosci.,
337, 919–927, https://doi.org/10.1016/j.crte.2005.05.010, 2005.
Labeyrie, L. D. and Duplessy, J. C.:
Changes in the oceanic ratio during the last 140 000 years: High-latitude surface water records,
Palaeogeogr. Palaeocl.,
50, 217–240, https://doi.org/10.1016/0031-0182(85)90069-0, 1985.
Labracherie, M., Labeyrie, L. D., Duprat, J., Bard, E., Arnold, M., Pichon, J.-J., and Duplessy, J.-C.:
The Last Deglaciation in the Southern Ocean,
Paleoceanography,
4, 629–638, https://doi.org/10.1029/PA004i006p00629, 1989.
Lackschewitz, K. S., Baumann, K.-H., Gehrke, B., Wallrabe-Adams, H.-J., Thiede, J., Bonani, G., Endler, R., Erlenkeuser, H., and Heinemeier, J.:
North Atlantic Ice Sheet Fluctuations 10,000–70,000 yr Ago as Inferred from Deposits on the Reykjanes Ridge, Southeast of Greenland,
Quaternary Res.,
49, 171–182, https://doi.org/10.1006/qres.1997.1948, 1998.
Lamy, F.:
Spätquartäre Variationen des terrigenen Sedimenteintrags entlang des chilenischen Kontinentalhangs als Abbild von Klimavariabilität im Milanković- und Sub-Milanković-Zeitbereich,
Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 120,
Bremen, 1998.
Lamy, F., Hebbeln, D., and Wefer, G.:
Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5∘ S) and palaeoclimatic implications,
Palaeogeogr. Palaeocl.,
141, 233–251, https://doi.org/10.1016/S0031-0182(98)90052-9, 1998.
Lamy, F., Klump, J., Hebbeln, D., and Wefer, G.:
Late Quaternary rapid climate change in northern Chile,
Terra Nova,
12, 8–13, https://doi.org/10.1046/j.1365-3121.2000.00265.x, 2000.
Lamy, F., Rühlemann, C., Hebbeln, D., and Wefer, G.:
High- and low-latitude climate control on the position of the southern Peru–Chile Current during the Holocene,
Paleoceanography,
17, 16–1-16-10, https://doi.org/10.1029/2001PA000727, 2002.
Langner, M. and Mulitza, S.: Technical note: PaleoDataView – a software toolbox for the collection, homogenization and visualization of marine proxy data, Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, 2019.
Lauterbach, S., Andersen, N., Wang, Y. V., Blanz, T., Larsen, T., and Schneider, R. R.:
An ∼ 130 kyr Record of Surface Water Temperature and δ18O From the Northern Bay of Bengal: Investigating the Linkage Between Heinrich Events and Weak Monsoon Intervals in Asia,
Paleoceanography and Paleoclimatology,
35, PA1003, https://doi.org/10.1029/2019PA003646, 2020.
Lebreiro, S. M., Moreno, J. C., Abrantes, F. F., and Pflaumann, U.:
Productivity and paleoceanographic implications on the Tore Seamount (Iberian Margin) during the last 225 kyr: Foraminiferal evidence,
Paleoceanography,
12, 718–727, https://doi.org/10.1029/97PA01748, 1997.
Lebreiro, S. M., Voelker, A. H. L., Vizcaino, A., Abrantes, F. G., Alt-Epping, U., Jung, S., Thouveny, N., and Gràcia, E.:
Sediment instability on the Portuguese continental margin under abrupt glacial climate changes (last 60 kyr),
Quaternary Sci. Rev.,
28, 3211–3223, https://doi.org/10.1016/j.quascirev.2009.08.007, 2009.
Lee, K. E., Slowey, N. C., and Herbert, T. D.:
Glacial sea surface temperatures in the subtropical North Pacific: A comparison of δ18O, and foraminiferal assemblage temperature estimates,
Paleoceanography,
16, 268–279, https://doi.org/10.1029/1999pa000493, 2001.
Lee, M.-Y., Wei, K.-Y., and Chen, Y.-G.:
High Resolution Oxygen Isotope Straigraphy for the Last 150,000 Years in the Southern South China Sea:Core MD972151,
Terr. Atmos. Ocean. Sci.,
10, 239, https://doi.org/10.3319/TAO.1999.10.1.239(IMAGES), 1999.
Leech, P. J., Lynch-Stieglitz, J., and Zhang, R.:
Western Pacific thermocline structure and the Pacific marine Intertropical Convergence Zone during the Last Glacial Maximum,
Earth Planet. Sc. Lett.,
363, 133–143, https://doi.org/10.1016/j.epsl.2012.12.026, 2013.
Lembke-Jene, L., Tiedemann, R., Nürnberg, D., Kokfelt, U., Kozdon, R., Max, L., Röhl, U., and Gorbarenko, S. A.:
Deglacial variability in Okhotsk Sea Intermediate Water ventilation and biogeochemistry: Implications for North Pacific nutrient supply and productivity,
Quaternary Sci. Rev.,
160, 116–137, https://doi.org/10.1016/j.quascirev.2017.01.016, 2017.
Leonhardt, A., Toledo, F. A. L., and Carlos Coimbra, J.:
The Mid-Brunhes event in the southwestern Atlantic Ocean: coccolithophore assemblages during the Mis 11-9,
Rev. Bras. Paleontolog.,
18, 343–354, https://doi.org/10.4072/rbp.2015.3.01, 2015.
Lessa, D. V. O., Venancio, I. M., dos Santos, T. P., Belem, A. L., Turcq, B. J., Sifeddine, A., and Albuquerque, A. L. S.:
Holocene oscillations of Southwest Atlantic shelf circulation based on planktonic foraminifera from an upwelling system (off Cabo Frio, Southeastern Brazil),
Holocene,
26, 1175–1187, https://doi.org/10.1177/0959683616638433, 2016.
Levi, C., Labeyrie, L., Bassinot, F., Guichard, F., Cortijo, E., Waelbroeck, C., Caillon, N., Duprat, J., de Garidel-Thoron, T., and Elderfield, H.:
Low-latitude hydrological cycle and rapid climate changes during the last deglaciation,
Geochem. Geophy. Geosy.,
8, Q05N12, https://doi.org/10.1029/2006GC001514, 2007.
Li, G., Rashid, H., Zhong, L., Xu, X., Yan, W., and Chen, Z.:
Changes in Deep Water Oxygenation of the South China Sea Since the Last Glacial Period,
Geophys. Res. Lett.,
45, 9058–9066, https://doi.org/10.1029/2018GL078568, 2018.
Li, L., Wang, H., Li, J., Zhao, M., and Wang, P.:
Changes in sea surface temperature in western South China Sea over the past 450 ka,
Chinese. Sci. Bull.,
54, 3335–3343, https://doi.org/10.1007/s11434-009-0083-9, 2009.
Li, Q., Zheng, F., Chen, M., Xiang, R., Qiao, P., Shao, L., and Cheng, X.:
Glacial Paleoceanography off the Mouth of the Mekong River, Southern South China Sea, During the last 500 ka,
Quaternary Res.,
73, 563–572, https://doi.org/10.1016/j.yqres.2010.03.003, 2010.
Linsley, B. K.:
Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150,000 years,
Nature,
380, 234–237, https://doi.org/10.1038/380234a0, 1996.
Lisiecki, L. E. and Raymo, M. E.:
A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records,
Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lisiecki, L. E. and Stern, J. V.:
Regional and global benthic δ18O stacks for the last glacial cycle,
Paleoceanography,
31, 1368–1394, https://doi.org/10.1002/2016pa003002, 2016.
Little, M. G., Schneider, R. R., Kroon, D., Price, B., Bickert, T., and Wefer, G.:
Rapid palaeoceanographic changes in the Benguela Upwelling System for the last 160,000 years as indicated by abundances of planktonic foraminifera,
Palaeogeogr. Palaeocl.,
130, 135–161, https://doi.org/10.1016/S0031-0182(96)00136-8, 1997.
Liu, X., Rendle-Bühring, R., and Henrich, R.:
Climate and sea-level controls on turbidity current activity on the Tanzanian upper slope during the last deglaciation and the Holocene,
Quaternary Sci. Rev.,
133, 15–27, https://doi.org/10.1016/j.quascirev.2015.12.002, 2016.
Lo, L., Chang, S.-P., Wei, K.-Y., Lee, S.-Y., Ou, T.-H., Chen, Y.-C., Chuang, C.-K., Mii, H.-S., Burr, G. S., Chen, M.-T., Tung, Y.-H., Tsai, M.-C., Hodell, D. A., and Shen, C.-C.:
Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles,
Sci. Rep.-UK,
7, 4626, https://doi.org/10.1038/s41598-017-04031-x, 2017.
Lo Giudice Cappelli, E., Holbourn, A., Kuhnt, W., and Regenberg, M.:
Changes in Timor Strait hydrology and thermocline structure during the past 130 ka,
Palaeogeogr. Palaeocl.,
462, 112–124, https://doi.org/10.1016/j.palaeo.2016.09.010, 2016.
LoDico, J. M., Flower, B. P., and Quinn, T. M.:
Subcentennial-scale climatic and hydrologic variability in the Gulf of Mexico during the early Holocene,
Paleoceanography,
21, 771, https://doi.org/10.1029/2005PA001243, 2006.
Lopes dos Santos, R. A., de Deckker, P., Hopmans, E. C., Magee, J. W., Mets, A., Sinninghe Damsté, J. S., and Schouten, S.:
Abrupt vegetation change after the Late Quaternary megafaunal extinction in southeastern Australia,
Nat. Geosci.,
6, 627–631, https://doi.org/10.1038/ngeo1856, 2013.
Löwemark, L., Schönfeld, J., Werner, F., and Schäfer, P.:
Trace fossils as a paleoceanographic tool: evidence from Late Quaternary sediments of the southwestern Iberian margin,
Mar. Geol.,
204, 27–41, https://doi.org/10.1016/S0025-3227(03)00351-7, 2004.
Lowry, R. K. and Machin, P.:
Compilation of the results of EU-project BOFS,
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.859221, 2016.
Lu, Z., Hoogakker, B. A. A., Hillenbrand, C.-D., Zhou, X., Thomas, E., Gutchess, K. M., Lu, W., Jones, L., and Rickaby, R. E. M.:
Oxygen depletion recorded in upper waters of the glacial Southern Ocean,
Nat. Commun.,
7, 11146, https://doi.org/10.1038/ncomms11146, 2016.
Lund, D. C. and Mix, A. C.:
Millennial-scale deep water oscillations: Reflections of the North Atlantic in the deep Pacific from 10 to 60 ka,
Paleoceanography,
13, 10–19, https://doi.org/10.1029/97PA02984, 1998.
Lund, D. C., Tessin, A. C., Hoffman, J. L., and Schmittner, A.:
Southwest Atlantic water mass evolution during the last deglaciation,
Paleoceanography,
30, 477–494, https://doi.org/10.1002/2014PA002657, 2015.
Lyle, M., Zahn, R., Prahl, F., Dymond, J., Collier, R., Pisias, N., and Suess, E.:
Paleoproductivity and carbon burial across the California Current: The multitracers transect, 42∘ N,
Paleoceanography,
7, 251–272, https://doi.org/10.1029/92PA00696, 1992.
Lyle, M., Mix, A., and Pisias, N.:
Patterns of CaCO3 deposition in the eastern tropical Pacific Ocean for the last 150 kyr: Evidence for a southeast Pacific depositional spike during marine isotope stage (MIS) 2,
Paleoceanography,
17, 3-1–3-13, https://doi.org/10.1029/2000PA000538, 2002.
Lynch-Stieglitz, J., Fairbanks, R. G., and Charles, C. D.:
Glacial-interglacial history of Antarctic Intermediate Water: Relative strengths of Antarctic versus Indian Ocean sources,
Paleoceanography,
9, 7–29, https://doi.org/10.1029/93PA02446, 1994.
Lynch-Stieglitz, J., Curry, W. B., Oppo, D. W., Ninneman, U. S., Charles, C. D., and Munson, J.:
Meridional overturning circulation in the South Atlantic at the last glacial maximum,
Geochem. Geophy. Geosy.,
7, Q10N03, https://doi.org/10.1029/2005GC001226, 2006.
Lynch-Stieglitz, J., Curry, W. B., and Lund, D. C.:
Florida Straits density structure and transport over the last 8000 years,
Paleoceanography,
24, 147, https://doi.org/10.1029/2008PA001717, 2009.
Lynch-Stieglitz, J., Schmidt, M. W., and Curry, W. B.:
Evidence from the Florida Straits for Younger Dryas ocean circulation changes,
Paleoceanography,
26, 147, https://doi.org/10.1029/2010PA002032, 2011.
Lynch-Stieglitz, J., Polissar, P. J., Jacobel, A. W., Hovan, S. A., Pockalny, R. A., Lyle, M., Murray, R. W., Ravelo, A. C., Bova, S. C., Dunlea, A. G., Ford, H. L., Hertzberg, J. E., Wertman, C. A., Maloney, A. E., Shackford, J. K., Wejnert, K., and Xie, R. C.:
Glacial-interglacial changes in central tropical Pacific surface seawater property gradients,
Paleoceanography,
30, 423–438, https://doi.org/10.1002/2014PA002746, 2015.
Lynch-Stieglitz, J., Ito, T., and Michel, E.:
Antarctic density stratification and the strength of the circumpolar current during the Last Glacial Maximum,
Paleoceanography,
31, 539–552, https://doi.org/10.1002/2015pa002915, 2016.
Mackensen, A., Grobe, H., Hubberten, H.-W., Spiess, V., and Fütterer, D. K.:
Stable isotope stratigraphy from the Antarctic continental margin during the last one million years,
Mar. Geol.,
87, 315–321, https://doi.org/10.1016/0025-3227(89)90068-6, 1989.
Mackensen, A., Grobe, H., Hubberten, H.-W., and Kuhn, G.:
Benthic foraminiferal assemblages and the δ13C-signal in the Atlantic sector of the Southern Ocean: Glacial-to-interglacial contrasts,
in: Carbon cycling in the glacial ocean: Constraints on the ocean's role in global change,
edited by: Zahn, R., Pedersen, T. F., Kaminski, M. A., and Labeyrie, L.,
NATO ASI series, Springer, Berlin, I 17, 105–144, 1994.
Mackensen, A., Rudolph, M., and Kuhn, G.:
Late Pleistocene deep-water circulation in the subantarctic eastern Atlantic,
Global Planet. Change,
30, 197–229, https://doi.org/10.1016/S0921-8181(01)00102-3, 2001.
Magnus, S.:
Benthische Foraminiferen im Boreas-Becken, Grönlandsee: Verbreitung und paläo-ozeanographische Rekonstruktionen für die letzten 450.000 Jahre,
Berichte zur Polarforschung, 373,
Alfred-Wegener-Inst. für Polar- und Meeresforschung, Bremerhaven, 137 pp., 2000.
Maier, E., Méheust, M., Abelmann, A., Gersonde, R., Chapligin, B., Ren, J., Stein, R., Meyer, H., and Tiedemann, R.:
Deglacial subarctic Pacific surface water hydrography and nutrient dynamics and links to North Atlantic climate variability and atmospheric CO2,
Paleoceanography,
30, 949–968, https://doi.org/10.1002/2014PA002763, 2015.
Maier, E., Zhang, X., Abelmann, A., Gersonde, R., Mulitza, S., Werner, M., Méheust, M., Ren, J., Chapligin, B., Meyer, H., Stein, R., Tiedemann, R., and Lohmann, G.:
North Pacific freshwater events linked to changes in glacial ocean circulation,
Nature,
559, 241–245, https://doi.org/10.1038/s41586-018-0276-y, 2018.
Manighetti, B., McCave, I. N., Maslin, M., and Shackleton, N. J.:
Chronology for climate change: Developing age models for the biogeochemical ocean flux study cores,
Paleoceanography,
10, 513–525, https://doi.org/10.1029/94PA03062, 1995.
Marchal, O. and Curry, W. B.:
On the abyssal circulation in the glacial Atlantic,
J. Phys. Oceanogr.,
38, 2014–2037, https://doi.org/10.1175/2008JPO3895.1, 2008.
Marino, M., Maiorano, P., Tarantino, F., Voelker, A., Capotondi, L., Girone, A., Lirer, F., Flores, J.-A., and Naafs, B. D. A.:
Coccolithophores as proxy of seawater changes at orbital-to-millennial scale during middle Pleistocene Marine Isotope Stages 14-9 in North Atlantic core MD01-2446,
Paleoceanography,
29, 518–532, https://doi.org/10.1002/2013PA002574, 2014.
Martínez-Méndez, G., Zahn, R., Hall, I. R., Peeters, F. J. C., Pena, L. D., Cacho, I., and Negre, C.:
Contrasting multiproxy reconstructions of surface ocean hydrography in the Agulhas Corridor and implications for the Agulhas Leakage during the last 345,000 years,
Paleoceanography,
25, PA4227, https://doi.org/10.1029/2009PA001879, 2010.
Martínez-Méndez, G., Hebbeln, D., Mohtadi, M., Lamy, F., Pol-Holz, R. de, Reyes-Macaya, D., and Freudenthal, T.:
Changes in the advection of Antarctic Intermediate Water to the northern Chilean coast during the last 970 kyr,
Paleoceanography,
28, 607–618, https://doi.org/10.1002/palo.20047, 2013.
Mashiotta, T. A., Lea, D. W., and Spero, H. J.:
Glacial–interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg,
Earth Planet. Sc. Lett.,
170, 417–432, https://doi.org/10.1016/S0012-821X(99)00116-8, 1999.
Matos, L., Wienberg, C., Titschack, J., Schmiedl, G., Frank, N., Abrantes, F., Cunha, M. R., and Hebbeln, D.:
Coral mound development at the Campeche cold-water coral province, southern Gulf of Mexico: Implications of Antarctic Intermediate Water increased influence during interglacials,
Mar. Geol.,
392, 53–65, https://doi.org/10.1016/j.margeo.2017.08.012, 2017.
Matsumoto, K. and Lynch-Stieglitz, J.:
Persistence of Gulf Stream separation during the Last Glacial Period: Implications for current separation theories,
J. Geophys. Res.,
108, 215, https://doi.org/10.1029/2001jc000861, 2003.
Max, L., Lembke-Jene, L., Riethdorf, J.-R., Tiedemann, R., Nürnberg, D., Kühn, H., and Mackensen, A.: Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation, Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, 2014.
Maxson, C. R., Bostock, H. C., Mackintosh, A., Mikaloff-Fletcher, S., McCave, N., and Neil, H. L.:
Modern, Preindustrial, and Past (Last 25 ka) Carbon Isotopic (δ13C) Variability in the Surface Waters of the Southwest Pacific,
Paleoceanography and Paleoclimatology,
34, 692–714, https://doi.org/10.1029/2018PA003441, 2019.
McCave, I. N., Carter, L., and Hall, I. R.:
Glacial–interglacial changes in water mass structure and flow in the SW Pacific Ocean,
Quaternary Sci. Rev.,
27, 1886–1908, https://doi.org/10.1016/j.quascirev.2008.07.010, 2008.
McGregor, H. V., Dima, M., Fischer, H. W., and Mulitza, S.:
Rapid 20th-century increase in coastal upwelling off northwest Africa,
Science,
315, 637–639, https://doi.org/10.1126/science.1134839, 2007.
McKay, C. L., Filipsson, H. L., Romero, O. E., Stuut, J.-B. W., and Donner, B.:
Pelagic–benthic coupling within an upwelling system of the subtropical northeast Atlantic over the last 35 ka BP,
Quaternary Sci. Rev.,
106, 299–315, https://doi.org/10.1016/j.quascirev.2014.04.027, 2014.
Meinecke, G.:
Spätquartäre Oberflächenwassertemperaturen im östlichen äquatorialen Atlantik,
Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 29,
Bremen, 181 pp., 1992.
Melki, T., Kallel, N., and Fontugne, M.:
The nature of transitions from dry to wet condition during sapropel events in the Eastern Mediterranean Sea,
Palaeogeogr. Palaeocl.,
291, 267–285, https://doi.org/10.1016/j.palaeo.2010.02.039, 2010.
Melles, M.:
Paläoglaziologie und Paläozeanographie im Spätquartär am Kontinentalrand des südlichen Weddellmeeres, Antarktis,
Berichte zur Polarforschung, 81,
Alfred-Wegener-Inst. für Polar- und Meeresforschung, Bremerhaven, 190 pp., 1991.
Middleton, J. L., Mukhopadhyay, S., Langmuir, C. H., McManus, J. F., and Huybers, P. J.:
Millennial-scale variations in dustiness recorded in Mid-Atlantic sediments from 0 to 70 ka,
Earth Planet. Sc. Lett.,
482, 12–22, https://doi.org/10.1016/j.epsl.2017.10.034, 2018.
Mienert, J., Abrantes, F., Auffret, G., Evans, D., Kenyon, N., Kuijpers, A., Sejrup, H. P., and van Weering, T.:
European North Atlantic Margin (ENAM I): sediment pathways, processes, and fluxes – an introduction,
Mar. Geol.,
152, 3–6, https://doi.org/10.1016/S0025-3227(98)00061-9, 1998.
Millo, C., Sarnthein, M., Voelker, A., and Erlenkeuser, H.:
Variability of the Denmark Strait Overflow during the Last Glacial Maximum,
Boreas,
35, 50–60, https://doi.org/10.1111/j.1502-3885.2006.tb01112.x, 2006.
Mirzaloo, M., Nürnberg, D., Kienast, M., and Lubbe, H. J. L.:
Synchronous Changes in Sediment Transport and Provenance at the Iceland-Faroe Ridge Linked to Millennial Climate Variability From 55 to 6 ka BP,
Geochem. Geophy. Geosy.,
20, 4184–4201, https://doi.org/10.1029/2019GC008298, 2019.
Missiaen, L., Waelbroeck, C., Pichat, S., Jaccard, S. L., Eynaud, F., Greenop, R., and Burke, A.:
Improving North Atlantic Marine Core Chronologies Using 230Th Normalization,
Paleoceanography and Paleoclimatology,
34, 1057–1073, https://doi.org/10.1029/2018PA003444, 2019.
Missiaen, L., Wacker, L., Lougheed, B. C., Skinner, L., Hajdas, I., Nouet, J., Pichat, S., and Waelbroeck, C.:
Radiocarbon Dating of Small-sized Foraminifer Samples: Insights into Marine sediment Mixing,
Radiocarbon,
62, 313–333, https://doi.org/10.1017/RDC.2020.13, 2020.
Mix, A. C., Ruddiman, W. F., and McIntyre, A.:
Late Quaternary paleoceanography of the Tropical Atlantic, 1: Spatial variability of annual mean sea-surface temperatures, 0–20,000 years B.P,
Paleoceanography,
1, 43–66, https://doi.org/10.1029/PA001i001p00043, 1986.
Mohtadi, M. and Hebbeln, D.:
Mechanisms and variations of the paleoproductivity off northern Chile (24∘ S–33∘ S) during the last 40,000 years,
Paleoceanography,
19, PA2023, https://doi.org/10.1029/2004PA001003, 2004.
Mohtadi, M., Romero, O. E., and Hebbeln, D.:
Changing marine productivity off northern Chile during the past 19 000 years: a multivariable approach,
J. Quaternary Sci.,
19, 347–360, https://doi.org/10.1002/jqs.832, 2004.
Mohtadi, M., Rossel, P., Lange, C. B., Pantoja, S., Böning, P., Repeta, D. J., Grunwald, M., Lamy, F., Hebbeln, D., and Brumsack, H.-J.:
Deglacial pattern of circulation and marine productivity in the upwelling region off central-south Chile,
Earth Planet. Sc. Lett.,
272, 221–230, https://doi.org/10.1016/j.epsl.2008.04.043, 2008.
Mohtadi, M., Lückge, A., Steinke, S., Groeneveld, J., Hebbeln, D., and Westphal, N.:
Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean,
Quaternary Sci. Rev.,
29, 887–896, https://doi.org/10.1016/j.quascirev.2009.12.006, 2010a.
Mohtadi, M., Steinke, S., Lückge, A., Groeneveld, J., and Hathorne, E. C.:
Glacial to Holocene surface hydrography of the tropical eastern Indian Ocean,
Earth Planet. Sc. Lett.,
292, 89–97, https://doi.org/10.1016/j.epsl.2010.01.024, 2010b.
Mohtadi, M., Oppo, D. W., Steinke, S., Stuut, J.-B. W., de Pol-Holz, R., Hebbeln, D., and Lückge, A.:
Glacial to Holocene swings of the Australian–Indonesian monsoon,
Nat. Geosci.,
4, 540–544, https://doi.org/10.1038/ngeo1209, 2011.
Mohtadi, M., Prange, M., Oppo, D. W., de Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., and Lückge, A.:
North Atlantic forcing of tropical Indian Ocean climate,
Nature,
509, 76–80, https://doi.org/10.1038/nature13196, 2014.
Molina-Kescher, M., Frank, M., Tapia, R., Ronge, T. A., Nürnberg, D., and Tiedemann, R.:
Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods,
Paleoceanography,
31, 651–668, https://doi.org/10.1002/2015PA002863, 2016.
Mollenhauer, G.:
Organic carbon accumulation in the South Atlantic Ocean,
Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 204,
Bremen, 139 pp., 2002.
Mollenhauer, G., Eglinton, T. I., Ohkouchi, N., Schneider, R. R., Müller, P. J., Grootes, P. M., and Rullkötter, J.:
Asynchronous alkenone and foraminifera records from the Benguela Upwelling System,
Geochim. Cosmochim. Ac.,
67, 2157–2171, https://doi.org/10.1016/S0016-7037(03)00168-6, 2003.
Mollier-Vogel, E., Leduc, G., Böschen, T., Martinez, P., and Schneider, R. R.:
Rainfall response to orbital and millennial forcing in northern Peru over the last 18 ka,
Quaternary Sci. Rev.,
76, 29–38, https://doi.org/10.1016/j.quascirev.2013.06.021, 2013.
Monteagudo, M. M., Lynch-Stieglitz, J., Marchitto, T. M., and Schmidt, M. W.:
Central Equatorial Pacific Cooling During the Last Glacial Maximum,
Geophys. Res. Lett.,
48, e2020GL088592, https://doi.org/10.1029/2020GL088592, 2021.
Moros, M. and de Deckker, P.:
Planktic foraminifera stable carbon and oxygen isotopes from sediment cores MD03-2611G and MUC-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.923026, 2020.
Moros, M., Endler, R., Lackschewitz, K. S., Wallrabe-Adams, H.-J., Mienert, J., and Lemke, W.:
Physical properties of Reykjanes Ridge sediments and their linkage to high-resolution Greenland Ice Sheet Project 2 ice core data,
Paleoceanography,
12, 687–695, https://doi.org/10.1029/97PA02030, 1997.
Moros, M., de Deckker, P., Jansen, E., Perner, K., and Telford, R. J.:
Holocene climate variability in the Southern Ocean recorded in a deep-sea sediment core off South Australia,
Quaternary Sci. Rev.,
28, 1932–1940, https://doi.org/10.1016/j.quascirev.2009.04.007, 2009.
Mortyn, P. G., Thunell, R. C., Anderson, D. M., Stott, L. D., and Le, J.:
Sea surface temperature changes in the southern California borderlands during the last glacial-Interglacial cycle,
Paleoceanography,
11, 415–429, https://doi.org/10.1029/96PA01236, 1996.
Moy, A. D., Howard, W. R., and Gagan, M. K.:
Late Quaternary palaeoceanography of the Circumpolar Deep Water from the South Tasman Rise,
J. Quaternary Sci.,
21, 763–777, https://doi.org/10.1002/jqs.1067, 2006.
Muglia, J., Skinner, L. C., and Schmittner, A.:
Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon,
Earth Planet. Sc. Lett.,
496, 47–56, https://doi.org/10.1016/j.epsl.2018.05.038, 2018.
Mulitza, S.:
Spätquartäre Variationen der oberflächennahen Hydrographie im westlichen äquatorialen Atlantik,
Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 57,
Bremen, 95 pp., 1994.
Mulitza, S.:
Stable isotopes of sediment core GeoB2116-4,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223625, 2004.
Mulitza, S.:
Globigerinoides ruber (white) isotopes of sediment core GeoB1408-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.713175, 2009a.
Mulitza, S.:
Globigerinoides ruber (white) isotopes of sediment core GeoB1523-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.713176, 2009b.
Mulitza, S.:
Globigerinoides ruber (white) isotopes of sediment core GeoB2004-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.713178, 2009c.
Mulitza, S.:
Globigerinoides ruber (white) isotopes of sediment core GeoB2109-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.713179, 2009d.
Mulitza, S.:
Globigerinoides ruber (white) isotopes of sediment core GeoB3801-6,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.713180, 2009e.
Mulitza, S.:
Globigerinoides ruber (white) isotopes of sediment core GeoB3813-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.713181, 2009f.
Mulitza, S. and Rühlemann, C.:
African Monsoonal Precipitation Modulated by Interhemispheric Temperature Gradients,
Quaternary Res.,
53, 270–274, https://doi.org/10.1006/qres.1999.2110, 2000.
Mulitza, S., Arz, H., Kemle-von Mücke, S., Moos, C., Niebler, H.-S., Pätzold, J., and Segl, M.:
The South Atlantic Carbon Isotope Record of Planktic Foraminifera,
in: Use of Proxies in Paleoceanography: Examples from the South Atlantic,
edited by: Fischer, G. and Wefer, G.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 427–445, https://doi.org/10.1007/978-3-642-58646-0_17, 1999.
Mulitza, S., Prange, M., Stuut, J.-B., Zabel, M., Dobeneck, T. von, Itambi, A. C., Nizou, J., Schulz, M., and Wefer, G.:
Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning,
Paleoceanography,
23, PA4206, https://doi.org/10.1029/2008PA001637, 2008.
Mulitza, S., Heslop, D., Pittauerova, D., Fischer, H. W., Meyer, I., Stuut, J.-B., Zabel, M., Mollenhauer, G., Collins, J. A., Kuhnert, H., and Schulz, M.:
Increase in African dust flux at the onset of commercial agriculture in the Sahel region,
Nature,
466, 226–228, https://doi.org/10.1038/nature09213, 2010.
Mulitza, S., Chiessi, C. M., Schefuß, E., Lippold, J., Wichmann, D., Antz, B., Mackensen, A., Paul, A., Prange, M., Rehfeld, K., Werner, M., Bickert, T., Frank, N., Kuhnert, H., Lynch-Stieglitz, J., Portilho-Ramos, R. C., Sawakuchi, A. O., Schulz, M., Schwenk, T., Tiedemann, R., Vahlenkamp, M., and Zhang, Y.:
Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation,
Paleoceanography,
32, 622–633, https://doi.org/10.1002/2017PA003084, 2017.
Mulitza, S., Bickert, T., Bostock, H. C., Chiessi, C. M., Donner, B., Govin, A., Harada, N., Huang, E., Johnstone, H., Kuhnert, H., Langner, M., Lamy, F., Lembke-Jene, L., Lisiecki, L. E., Lynch-Stieglitz, J., Max, L., Mohtadi, M., Mollenhauer, G., Muglia, J., Nürnberg, D., Paul, A., Rühlemann, C., Repschläger, J., Saraswat, R., Schmittner, A., Sikes, E., Spielhagen, R. F., and Tiedemann, R.:
World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios (WA_Foraminiferal_Isotopes_2022),
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.936747, 2021a.
Mulitza, S., Bickert, T., Bostock, H. C., Chiessi, C. M., Donner, B., Govin, A., Harada,
N., Huang, E., Johnstone, H., Kuhnert, H., Langner, M., Lamy, F., Lembke-Jene, L.,
Lisiecki, L., Lynch-Stieglitz, J., Max, L., Mohtadi, M., Mollenhauer, G., Muglia, J.,
Nürnberg, D., Paul, A., Rühlemann, C., Repschläger, J., Saraswat, R., Schmittner, A.,
Sikes, E. L., Spielhagen, R. F., and Tiedemann, R.: Data Sources for the World Atlas
of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios 2021, Zenodo [data
set], https://doi.org/10.5281/zenodo.6337519, 2021b.
Müller, C.:
Spätquartäre Sedimentationsprozesse in der östlichen Framstrasse,
Diploma Thesis,
Fachbereich Geowissenschaften, Westfälische Wilhelms-Universität zu Münster, 84 pp., 1995.
Müller, P. J. and Budziak, D.: C37-alkenones of sediment core GeoB3005-1,
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.143727, 2004.
Naik, D. K., Saraswat, R., Khare, N., Pandey, A. C., and Nigam, R.: Hydrographic changes in the Agulhas Recirculation Region during the late Quaternary, Clim. Past, 10, 745–758, https://doi.org/10.5194/cp-10-745-2014, 2014.
Naik, S. S. and Naidu, P. D.:
Carbonate preservation during the 'mystery interval' in the northern Indian Ocean,
Geochem. J.,
50, 357–362, https://doi.org/10.2343/geochemj.2.0420, 2016.
Nam, S.-I.:
Late Quaternary glacial history and paleoceanographic reconstructions along the East Greenland continental margin: Evidence from high-resolution records of stable isotopes and ice-rafted debris,
Berichte zur Polarforschung, 241,
Alfred-Wegener-Inst. für Polar- und Meeresforschung, Bremerhaven, 157 pp., 1997.
Naqvi, W. A., Charles, C. D., and Fairbanks, R. G.:
Carbon and oxygen isotopic records of benthic foraminifera from the Northeast Indian Ocean: implications on glacial-interglacial atmospheric CO2 changes,
Earth Planet. Sc. Lett.,
121, 99–110, https://doi.org/10.1016/0012-821x(94)90034-5, 1994.
Nees, S.:
Spätquartäre Benthosforaminiferen des Europäischen Nordmeeres: Veränderungen der Artengesellschaften und Akkumulationsraten bei Klimawechseln,
Berichte aus dem Sonderforschungsbereich 313, Veränderungen der Umwelt – Der Nördliche Nordatlantik, 44,
Kiel, 80 pp., 1993.
Nelson, C. S., Hendy, C. H., Cuthbertson, A. M., and Jarrett, G. R.:
Late Quaternary Carbonate and Isotope Stratigraphy, Subantarctic Site 594, Southwest Pacific,
in: Initial Reports of the Deep Sea Drilling Project, 90,
edited by: Kennett, J. P. and von der Borch, C. C.,
U.S. Government Printing Office, https://doi.org/10.2973/dsdp.proc.90.144.1986, 1986.
Nelson, C. S., Hendy, C. H., and Cuthbertson, A. M.:
Compendium of stable oxygen and carbon isotope data for the late Quaternary interval of deep sea cores from the New Zealand sector of the Tasman Sea and Southwest Pacific Ocean,
Occasional Report, 16,
Dept. of Earth Sciences, Univ. of Waikato, Hamilton, New Zealand, 87 pp., 1993.
Nelson, C. S., Hendy, C. H., and Cuthbertson, A. M.:
Oxygen isotope evidence for climatic contrasts between Tasman Sea and Southwest Pacific Ocean during the late Quaternary,
in: Evolution of the Tasman Sea,
edited by: van der Linden, G. J., Swanson, K. M., and Muir, R. J.,
Balkema, Rotterdam, 181–197, 1994.
Nelson, C. S., Hendy, I. L., Neil, H. L., Hendy, C. H., and Weaver, P. P. E.:
Last glacial jetting of cold waters through the Subtropical Convergence zone in the Southwest Pacific off eastern New Zealand, and some geological implications,
Palaeogeogr. Palaeocl.,
156, 103–121, https://doi.org/10.1016/S0031-0182(99)00134-0, 2000.
Niebler, H.-S.:
Rekonstruktionen von Paläo-Umweltparametern anhand von stabilen Isotopen und Faunen-Vergesellschaftungen planktischer Foraminiferen im Südatlantik,
Berichte zur Polarforschung, 167,
Alfred-Wegener-Inst. für Polar- und Meeresforschung, Bremerhaven, 198 pp., 1995.
Niebler, H.-S.:
Isotopes (G. bulloides) of sediment core PS2495-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.55893, 2004a.
Niebler, H.-S.:
Isotopes (G. inflata) of sediment core PS2495-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.55891, 2004b.
Niebler, H.-S.:
Isotopes (N. pachyderma, dextral) of sediment core PS2495-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.55890, 2004c.
Niebler, H.-S.:
Stable isotopes measured on Globigerina bulloides of sediment core PS2498-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.55892, 2004d.
Niebler, H.-S.:
Stable isotopes measured on Globorotalia inflata of sediment core PS2498-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.55889, 2004e.
Niebler, H.-S.:
Stable isotopes measured on Neogloboquadrina pachyderma sinistral of sediment core PS2498-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.55888, 2004f.
Niebler, H.-S.:
Stable isotopes of sediment core GeoB2016-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223624, 2004g.
Niebler, H.-S.:
Stable isotopes of sediment core GeoB2019-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223477, 2004h.
Niebler, H.-S.:
Stable isotopes of sediment core GeoB2021-5,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223478, 2004i.
Niebler, H.-S.:
Stable isotopes of sediment core GeoB2116-4,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223652, 2004j.
Niebler, H.-S.:
Stable isotopes of sediment core GeoB5115-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223628, 2004k.
Niebler, H.-S.:
Stable isotopes of sediment core GeoB5121-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.223629, 2004l.
Niebler, H.-S. and Mulitza, S.:
Globigerinoides ruber (white) isotopes of sediment core GeoB1903-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.713177, 2009.
Niebler, H.-S., Arz, H. W., Donner, B., Mulitza, S., Pätzold, J., and Wefer, G.:
Sea surface temperatures in the equatorial and South Atlantic Ocean during the Last Glacial Maximum (23–19 ka),
Paleoceanography,
18, 1069, https://doi.org/10.1029/2003PA000902, 2003.
Nørgaard-Pedersen, N.:
Sedimentology and stratigraphy of core OD96_30:3:1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.56573, 2000a.
Nørgaard-Pedersen, N.:
Sedimentology and stratigraphy of core PS2887-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.56142, 2000b.
Nørgaard-Pedersen, N.:
Grains size distribution and stable isotope ratios in N. pachyderma from sediment core PS51/038-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.399764, 2006.
Nørgaard-Pedersen, N. and Spielhagen, R. F.:
Sedimentology and stratigraphy of core PS2887-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.56571, 2000.
Nørgaard-Pedersen, N., Spielhagen, R. F., Thiede, J., and Kassens, H.:
Central Arctic surface ocean environment during the past 80,000 years,
Paleoceanography,
13, 193–204, https://doi.org/10.1029/97PA03409, 1998.
Nørgaard-Pedersen, N., Spielhagen, R. F., Erlenkeuser, H., Grootes, P. M., Heinemeier, J., and Knies, J.:
Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover,
Paleoceanography,
18, 1063, https://doi.org/10.1029/2002PA000781, 2003.
Notholt, H.:
Die Auswirkungen der “NorthEastWater”-Polynya auf die Sedimentation vor NO-Grönland und Untersuchungen zur PaläoOzeanographie seit dem Mittelweichsel,
Berichte zur Polarforschung, 275,
Alfred-Wegener-Institut für Polar- and Meeresforschung, Bremen, Bremerhaven, 183 pp., 1998.
Nowaczyk, N. R., Antonow, M., Knies, J., and Spielhagen, R. F.:
Further rock magnetic and chronostratigraphic results on reversal excursions during the last 50 ka as derived from northern high latitudes and discrepancies in precise AMS 14C dating,
Geophys. J. Int.,
155, 1065–1080, https://doi.org/10.1111/j.1365-246X.2003.02115.x, 2003.
Nürnberg, D. and Groeneveld, J.:
Pleistocene variability of the Subtropical Convergence at East Tasman Plateau: Evidence from planktonic foraminiferal (ODP Site 1172A),
Geochem. Geophy. Geosy.,
7, Q04P11, https://doi.org/10.1029/2005GC000984, 2006.
Nürnberg, D., Brughmans, N., Schönfeld, J., Ninnemann, U., and Dullo, C.:
Paleo-export production, terrigenous flux and sea surface temperatures around Tasmania: Implications for glacial/interglacial changes in the Subtropical Convergence zone,
in: The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica,
edited by: Exon, N. F., Kennett, J. P., and Malone, M. J.,
American Geophysical Union, Washington, DC, 291–318, https://doi.org/10.1029/151GM17, 2004.
Nürnberg, D., Ziegler, M., Karas, C., Tiedemann, R., and Schmidt, M. W.:
Interacting Loop Current variability and Mississippi River discharge over the past 400 kyr,
Earth Planet. Sc. Lett.,
272, 278–289, https://doi.org/10.1016/j.epsl.2008.04.051, 2008.
Nürnberg, D., Böschen, T., Doering, K., Mollier-Vogel, E., Raddatz, J., and Schneider, R.:
Sea surface and subsurface circulation dynamics off equatorial Peru during the last ∼ 17 kyr,
Paleoceanography,
30, 984–999, https://doi.org/10.1002/2014PA002706, 2015.
Oba, T. and Murayama, M.:
Sea-surface temperature and salinity changes in the northwest Pacific since the Last Glacial Maximum,
J. Quaternary Sci.,
19, 335–346, https://doi.org/10.1002/jqs.843, 2004.
Oppo, D. W. and Fairbanks, R. G.:
Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern Hemisphere modulation of the Southern Ocean,
Earth Planet. Sc. Lett.,
86, 1–15, https://doi.org/10.1016/0012-821X(87)90183-X, 1987.
Oppo, D. W. and Fairbanks, R. G.:
Atlantic Ocean thermohaline circulation of the last 150,000 years: Relationship to climate and atmospheric CO2,
Paleoceanography,
5, 277–288, https://doi.org/10.1029/PA005i003p00277, 1990.
Oppo, D. W. and Horowitz, M.:
Glacial deep water geometry: South Atlantic benthic foraminiferal and δ13C evidence,
Paleoceanography,
15, 147–160, https://doi.org/10.1029/1999PA000436, 2000.
Oppo, D. W. and Lehman, S. J.:
Mid-depth circulation of the subpolar north atlantic during the last glacial maximum,
Science,
259, 1148–1152, https://doi.org/10.1126/science.259.5098.1148, 1993.
Oppo, D. W., McManus, J. F., and Cullen, J. L.:
Palaeo-oceanography: Deepwater variability in the Holocene epoch,
Nature,
422, 277, https://doi.org/10.1038/422277b, 2003.
Oppo, D. W., Curry, W. B., and McManus, J. F.:
What do benthic δ13C and δ18O data tell us about Atlantic circulation during Heinrich Stadial 1?,
Paleoceanography,
30, 353–368, https://doi.org/10.1002/2014PA002667, 2015.
Oppo, D. W., Gebbie, G., Huang, K.-F., Curry, W. B., Marchitto, T. M., and Pietro, K. R.:
Data Constraints on Glacial Atlantic Water Mass Geometry and Properties,
Paleoceanography and Paleoclimatology,
33, 1013–1034, https://doi.org/10.1029/2018PA003408, 2018.
Ortiz, J., Mix, A., Hostetler, S., and Kashgarian, M.:
The California Current of the Last Glacial Maximum: Reconstruction at 42∘ N based on multiple proxies,
Paleoceanography,
12, 191–205, https://doi.org/10.1029/96PA03165, 1997.
Osborne, E. B., Thunell, R. C., Gruber, N., Feely, R. A., and Benitez-Nelson, C. R.:
Decadal variability in twentieth-century ocean acidification in the California Current Ecosystem,
Nat. Geosci.,
13, 43–49, https://doi.org/10.1038/s41561-019-0499-z, 2020.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1436-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51768, 1997a.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1649-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51770, 1997b.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1650-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51771, 1997c.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1650-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51772, 1997d.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1651-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51774, 1997e.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1651-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51775, 1997f.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1652-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51776, 1997g.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1652-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51777, 1997h.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1653-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51779, 1997i.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1653-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51783, 1997j.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1654-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51786, 1997k.
Ott, G. and Gersonde, R.:
Sedimentology and stable isotopes on core PS1654-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.51788, 1997l.
Parker, A. O., Schmidt, M. W., Jobe, Z. R., and Slowey, N. C.:
A new perspective on West African hydroclimate during the last deglaciation,
Earth Planet. Sc. Lett.,
449, 79–88, https://doi.org/10.1016/j.epsl.2016.05.038, 2016.
Pastouret, L., Chamley, H., Delibrias, G., Duplessy, J. C., and Thiede, J.:
Late quaternary climatic changes in western tropical Africa deduced from deep-sea sedimentation off Niger delta,
Oceanol. Acta,
1, 217–232, 1978.
Patrick, A. and Thunell, R. C.:
Tropical Pacific sea surface temperatures and upper water column thermal structure during the Last Glacial Maximum,
Paleoceanography,
12, 649–657, https://doi.org/10.1029/97PA01553, 1997.
Paul, A., Reijmer, J. J. G., Fürstenau, J., Kinkel, H., and Betzler, C.:
Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean),
Sedimentology,
59, 1640–1658, https://doi.org/10.1111/j.1365-3091.2011.01319.x, 2012.
Pearson, P. N.:
Oxygen Isotopes in Foraminifera: Overview and Historical Review, Paleontol. Soc. pap., 18, 1–38, https://doi.org/10.1017/S1089332600002539, 2012.
Peck, V. L., Hall, I. R., Zahn, R., Grousset, F., Hemming, S. R., and Scourse, J. D.:
The relationship of Heinrich events and their European precursors over the past 60 ka BP: a multi-proxy ice-rafted debris provenance study in the North East Atlantic,
Quaternary Sci. Rev.,
26, 862–875, https://doi.org/10.1016/j.quascirev.2006.12.002, 2007.
Peck, V. L., Hall, I. R., Zahn, R., and Elderfield, H.:
Millennial-scale surface and subsurface paleothermometry from the northeast Atlantic, 55–8 ka BP,
Paleoceanography,
23, https://doi.org/10.1029/2008PA001631, 2008.
Peerdeman, F. M., Davies, P. J., and Chivas, A. R.:
The Stable Oxygen Isotope Signal in Shallow-Water, Upper-Slope Sediments off the Great Barrier Reef (Hole 820A),
in: Proceedings of the Ocean Drilling Program, 133 Scientific Results,
edited by: McKenzie, J. A., Davies, P. J., and Palmer-Julson, A.,
Ocean Drilling Program, https://doi.org/10.2973/odp.proc.sr.133.288.1993, 1993.
Peterson, L. C., Lawrence, K. T., Herbert, T. D., Caballero-Gill, R., Wilson, J., Huska, K., Miller, H., Kelly, C., Seidenstein, J., Hovey, D., and Holte, L.:
Plio-Pleistocene Hemispheric (A)Symmetries in the Northern and Southern Hemisphere Midlatitudes,
Paleoceanography and Paleoclimatology,
35, PA2216, https://doi.org/10.1029/2019PA003720, 2020.
Pichevin, L., Martinez, P., Bertrand, P., Schneider, R., Giraudeau, J., and Emeis, K.:
Nitrogen cycling on the Namibian shelf and slope over the last two climatic cycles: Local and global forcings,
Paleoceanography,
20, PA2006, https://doi.org/10.1029/2004pa001001, 2005.
Pichon, J.-J., Labeyrie, L. D., Bareille, G., Labracherie, M., Duprat, J., and Jouzel, J.:
Surface water temperature changes in the high latitudes of the southern hemisphere over the Last Glacial-Interglacial Cycle,
Paleoceanography,
7, 289–318, https://doi.org/10.1029/92PA00709, 1992.
Piotrowski, A. M., Goldstein, S. L., Hemming, S. R., and Fairbanks, R. G.:
Intensification and variability of ocean thermohaline circulation through the last deglaciation,
Earth Planet. Sc. Lett.,
225, 205–220, https://doi.org/10.1016/j.epsl.2004.06.002, 2004.
Pivel, M. A. G., Santarosa, A. C. A., Toledo, F. A. L., and Costa, K. B.:
The Holocene onset in the southwestern South Atlantic,
Palaeogeogr. Palaeocl.,
374, 164–172, https://doi.org/10.1016/j.palaeo.2013.01.014, 2013.
Poggemann, D.-W., Nürnberg, D., Hathorne, E. C., Frank, M., Rath, W., Reißig, S., and Bahr, A.:
Deglacial Heat Uptake by the Southern Ocean and Rapid Northward Redistribution Via Antarctic Intermediate Water,
Paleoceanography and Paleoclimatology,
33, 1292–1305, https://doi.org/10.1029/2017PA003284, 2018.
Poore, R. Z., Ostermann, D. R., and McGeehin, J. P.:
Stable isotope data and AMS 14C dates from Arctic Ocean Section 1994 surface sediment transect and box core samples from the Mendeleyev Ridge area,
Open-File Report,
99–48, 17 pp., 1999.
Portilho-Ramos, R. C., Ferreira, F., Lago, L. C., Da Silva, A. G. V., Jaworski, K. S., and Toledo, M. B.:
Globorotalia crassaformis optimum event: a new late Quaternary biostratigraphic marker for the southeastern Brazilian margin,
PALAIOS,
29, 578–593, https://doi.org/10.2110/palo.2013.097, 2014.
Portilho-Ramos, R. C., Cruz, A. P. S., Barbosa, C. F., Rathburn, A. E., Mulitza, S., Venancio, I. M., Schwenk, T., Rühlemann, C., Vidal, L., Chiessi, C. M., and Silveira, C. S.:
Methane release from the southern Brazilian margin during the last glacial,
Sci. Rep.-UK,
8, 5948, https://doi.org/10.1038/s41598-018-24420-0, 2018.
Praetorius, S., Mix, A., Jensen, B., Froese, D., Milne, G., Wolhowe, M., Addison, J., and Prahl, F.:
Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation,
Earth Planet. Sc. Lett.,
452, 79–89, https://doi.org/10.1016/j.epsl.2016.07.033, 2016.
Praetorius, S. K. and Mix, A. C.:
Paleoclimate. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming,
Science,
345, 444–448, https://doi.org/10.1126/science.1252000, 2014.
Praetorius S. K., McManus, J. F., Oppo, D. W., and Curry, W. B.: Episodic reductions in bottom-water currents since the last ice age,
Nat. Geosci.,
1, 449–452, https://doi.org/10.1038/ngeo227, 2008.
Praetorius, S. K., Mix, A. C., Walczak, M. H., Wolhowe, M. D., Addison, J. A., and Prahl, F. G.:
North Pacific deglacial hypoxic events linked to abrupt ocean warming,
Nature,
527, 362–366, https://doi.org/10.1038/nature15753, 2015.
Prell, W. L., Imbrie, J., Martinson, D. G., Morley, J. J., Pisias, N. G., Shackleton, N. J., and Streeter, H. F.:
Graphic correlation of oxygen isotope stratigraphy application to the Late Quaternary,
Paleoceanography,
1, 137–162, https://doi.org/10.1029/PA001i002p00137, 1986.
R Core Team:
R: A Language and Environment for Statistical Computing,
Vienna, Austria, https://www.R-project.org/ (last access: 23 May 2022), 2017.
Raddatz, J., Nürnberg, D., Tiedemann, R., and Rippert, N.:
Southeastern marginal West Pacific Warm Pool sea-surface and thermocline dynamics during the Pleistocene (2.5–0.5 Ma),
Palaeogeogr. Palaeocl.,
471, 144–156, https://doi.org/10.1016/j.palaeo.2017.01.024, 2017.
Rashid, H., Flower, B. P., Poore, R. Z., and Quinn, T. M.:
A ∼ 25 ka Indian Ocean monsoon variability record from the Andaman Sea,
Quaternary Sci. Rev.,
26, 2586–2597, https://doi.org/10.1016/j.quascirev.2007.07.002, 2007.
Rasmussen, T. L. and Thomsen, E.:
Changes in planktic foraminiferal faunas, temperature and salinity in the Gulf Stream during the last 30,000 years: influence of meltwater via the Mississippi River,
Quaternary Sci. Rev.,
33, 42–54, https://doi.org/10.1016/j.quascirev.2011.11.019, 2012.
Rasmussen, T. L., Thomsen, E., van Weering, T. C. E., and Labeyrie, L.:
Rapid changes in surface and deep water conditions at the Faeroe Margin during the last 58,000 years,
Paleoceanography,
11, 757–771, https://doi.org/10.1029/96PA02618, 1996.
Rathburn, A. E., Pichon, J.-J., Ayress, M. A., and de Deckker, P.:
Microfossil and stable-isotope evidence for changes in Late Holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica,
Palaeogeogr. Palaeocl.,
131, 485–510, https://doi.org/10.1016/s0031-0182(97)00017-5, 1997.
Rau, A.:
δ13C and δ18O from Globorotalia inflata of sediment core MD96-2084,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.113001, 2003.
Rau, A. J., Rogers, J., Lutjeharms, J. R. E., Giraudeau, J., Lee-Thorp, J. A., Chen, M.-T., and Waelbroeck, C.:
A 450-kyr record of hydrological conditions on the western Agulhas Bank Slope, south of Africa,
Mar. Geol.,
180, 183–201, https://doi.org/10.1016/S0025-3227(01)00213-4, 2002.
Raza, T., Ahmad, S. M., Sahoo, M., Banerjee, B., Bal, I., Dash, S., Suseela, G., and Mukherjee, I.:
Hydrographic changes in the southern Bay of Bengal during the last ∼ 65,000 y inferred from carbon and oxygen isotopes of foraminiferal fossil shells,
Quatern. Int.,
333, 77–85, https://doi.org/10.1016/j.quaint.2014.02.010, 2014.
Reißig, S., Nürnberg, D., Bahr, A., Poggemann, D.-W., and Hoffmann, J.:
Southward Displacement of the North Atlantic Subtropical Gyre Circulation System During North Atlantic Cold Spells,
Paleoceanography and Paleoclimatology,
18, 1050, https://doi.org/10.1029/2018PA003376, 2019.
Ren, H., Sigman, D. M., Martínez-García, A., Anderson, R. F., Chen, M.-T., Ravelo, A. C., Straub, M., Wong, G. T. F., and Haug, G. H.:
Impact of glacial/interglacial sea level change on the ocean nitrogen cycle,
P. Natl. Acad. Sci. USA,
114, E6759-E6766, https://doi.org/10.1073/pnas.1701315114, 2017.
Repschläger, J., Weinelt, M., Andersen, N., Garbe-Schönberg, D., and Schneider, R.:
Northern source for Deglacial and Holocene deepwater composition changes in the Eastern North Atlantic Basin,
Earth Planet. Sc. Lett.,
425, 256–267, https://doi.org/10.1016/j.epsl.2015.05.009, 2015.
Rew, R. and Davis, G.:
NetCDF: an interface for scientific data access,
IEEE Comput. Graph.,
10, 76–82, https://doi.org/10.1109/38.56302, 1990.
Richter, T.:
Sedimentary fluxes at the Mid-Atlantic ridge: Sediment sources, accumulation rates, and geochemical characterisation,
GEOMAR-Report, 73,
GEOMAR Research Center for Marine Geosciences, Christian Albrechts University in Kiel, Kiel, 173 pp., 1998.
Rickaby, R. E. M. and Elderfield, H.:
Planktonic foraminiferal Cd/Ca: Paleonutrients or paleotemperature?,
Paleoceanography,
14, 293–303, https://doi.org/10.1029/1999PA900007, 1999.
Rickaby, R. E. M. and Elderfield, H.:
Evidence from the high-latitude North Atlantic for variations in Antarctic Intermediate water flow during the last deglaciation,
Geochem. Geophy. Geosy.,
6, Q05001, https://doi.org/10.1029/2004GC000858, 2005.
Riethdorf, J.-R., Max, L., Nürnberg, D., Lembke-Jene, L., and Tiedemann, R.:
Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: Implications for upper-ocean stratification,
Paleoceanography,
28, 91–104, https://doi.org/10.1002/palo.20014, 2013.
Roberts, J., Gottschalk, J., Skinner, L. C., Peck, V. L., Kender, S., Elderfield, H., Waelbroeck, C., Vázquez Riveiros, N., and Hodell, D. A.:
Evolution of South Atlantic density and chemical stratification across the last deglaciation,
P. Natl. Acad. Sci. USA,
113, 514–519, https://doi.org/10.1073/pnas.1511252113, 2016.
Rodrigues, T., Grimalt, J. O., Abrantes, F., Naughton, F., and Flores, J.-A.:
The last glacial–interglacial transition (LGIT) in the western mid-latitudes of the North Atlantic: Abrupt sea surface temperature change and sea level implications,
Quaternary Sci. Rev.,
29, 1853–1862, https://doi.org/10.1016/j.quascirev.2010.04.004, 2010.
Rohling, E. J., Grant, K., Hemleben, C., Kucera, M., Roberts, A. P., Schmeltzer, I., Schulz, H., Siccha, M., Siddall, M., and Trommer, G.:
New constraints on the timing of sea level fluctuations during early to middle marine isotope stage 3,
Paleoceanography,
23, PA3219, https://doi.org/10.1029/2008PA001617, 2008.
Romahn, S., Mackensen, A., Groeneveld, J., and Pätzold, J.: Deglacial intermediate water reorganization: new evidence from the Indian Ocean, Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, 2014.
Romero, O., Mollenhauer, G., Schneider, R. R., and Wefer, G.:
Oscillations of the siliceous imprint in the central Benguela Upwelling System from MIS 3 through to the early Holocene: the influence of the Southern Ocean,
J. Quaternary Sci.,
18, 733–743, https://doi.org/10.1002/jqs.789, 2003.
Romero, O. E., Kim, J.-H., and Donner, B.:
Submillennial-to-millennial variability of diatom production off Mauritania, NW Africa, during the last glacial cycle,
Paleoceanography,
23, PA3218, https://doi.org/10.1029/2008PA001601, 2008.
Ronge, T. A.: Stable and radiogenic isotope record for sediments cores from the
Southern Indian Ocean, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.906365, 2019a.
Ronge, T. A.:
Stable carbon and oxygen isotope record of sediment profile PS69/912,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.906364, 2019b.
Ronge, T. A., Steph, S., Tiedemann, R., Prange, M., Merkel, U., Nürnberg, D., and Kuhn, G.:
Pushing the boundaries: Glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years,
Paleoceanography,
30, 23–38, https://doi.org/10.1002/2014PA002727, 2015.
Ronge, T. A., Tiedemann, R., Lamy, F., Köhler, P., Alloway, B. V., de Pol-Holz, R., Pahnke, K., Southon, J., and Wacker, L.:
Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool,
Nat. Commun.,
7, 11487, https://doi.org/10.1038/ncomms11487, 2016.
Rosenthal, Y., Boyle, E. A., and Labeyrie, L.:
Last Glacial Maximum paleochemistry and deepwater circulation in the Southern Ocean: Evidence from foraminiferal cadmium,
Paleoceanography,
12, 787–796, https://doi.org/10.1029/97PA02508, 1997.
Rüggeberg, A., Dorschel, B., Dullo, W.-C., and Hebbeln, D.:
Sedimentary patterns in the vicinity of a carbonate mound in the Hovland Mound Province, northern Porcupine Seabight,
in: Cold-Water Corals and Ecosystems,
edited by: Freiwald, A. and Roberts, J. M.,
Springer-Verlag, Berlin/Heidelberg, 87–112, https://doi.org/10.1007/3-540-27673-4_5, 2005.
Rühlemann, C., Frank, M., Hale, W., Mangini, A., Mulitza, S., Müller, P. J., and Wefer, G.:
Late Quaternary productivity changes in the western equatorial Atlantic: Evidence from 230Th-normalized carbonate and organic carbon accumulation rates,
Mar. Geol.,
135, 127–152, https://doi.org/10.1016/S0025-3227(96)00048-5, 1996.
Rühlemann, C., Mulitza, S., Müller, P. J., Wefer, G., and Zahn, R.:
Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation,
Nature,
402, 511–514, https://doi.org/10.1038/990069, 1999.
Rühlemann, C., Diekmann, B., Mulitza, S., and Frank, M.:
Late Quaternary changes of western equatorial Atlantic surface circulation and Amazon lowland climate recorded in Ceará Rise deep-sea sediments,
Paleoceanography,
16, 293–305, https://doi.org/10.1029/1999PA000474, 2001.
Rühlemann, C., Mulitza, S., Lohmann, G., Paul, A., Prange, M., and Wefer, G.:
Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: Combining paleoclimate data and modeling results for the last deglaciation,
Paleoceanography,
19, PA1025, https://doi.org/10.1029/2003PA000948, 2004.
Russon, T., Elliot, M., Kissel, C., Cabioch, G., de Deckker, P., and Corrège, T.:
Middle-late Pleistocene deep water circulation in the southwest subtropical Pacific,
Paleoceanography,
24, 159, https://doi.org/10.1029/2009PA001755, 2009.
Russon, T., Elliot, M., Sadekov, A., Cabioch, G., Corrège, T., and de Deckker, P.:
The mid-Pleistocene transition in the subtropical southwest Pacific,
Paleoceanography,
26, C07023, https://doi.org/10.1029/2010PA002019, 2011.
Rustic, G. T., Koutavas, A., Marchitto, T. M., and Linsley, B. K.:
Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling,
Science,
350, 1537–1541, https://doi.org/10.1126/science.aac9937, 2015.
Samson, C. R., Sikes, E. L., and Howard, W. R.:
Deglacial paleoceanographic history of the Bay of Plenty, New Zealand,
Paleoceanography,
20, PA4017, https://doi.org/10.1029/2004PA001088, 2005.
Santos, T. P., Franco, D. R., Barbosa, C. F., Belem, A. L., Dokken, T., and Albuquerque, A. L. S.:
Millennial- to centennial-scale changes in sea surface temperature in the tropical South Atlantic throughout the Holocene,
Palaeogeogr. Palaeocl.,
392, 1–8, https://doi.org/10.1016/j.palaeo.2013.08.019, 2013.
Santos, T. P., Belem, A. L., Barbosa, C. F., Dokken, T., and Albuquerque, A. L. S.:
Paleoceanographic reconstruction of the western equatorial Atlantic during the last 40 kyr,
Palaeogeogr. Palaeocl.,
415, 14–20, https://doi.org/10.1016/j.palaeo.2014.01.001, 2014.
Santos, T. P., Lessa, D. O., Venancio, I. M., Chiessi, C. M., Mulitza, S., Kuhnert, H., and Albuquerque, A. L. S.:
The Impact of the AMOC Resumption in the Western South Atlantic Thermocline at the Onset of the Last Interglacial,
Geophys. Res. Lett.,
44, 11547-11554, https://doi.org/10.1002/2017GL074457, 2017a.
Santos, T. P., Lessa, D. O., Venancio, I. M., Chiessi, C. M., Mulitza, S., Kuhnert, H., Govin, A., Machado, T., Costa, K. B., Toledo, F., Dias, B. B., and Albuquerque, A. L. S.:
Prolonged warming of the Brazil Current precedes deglaciations,
Earth Planet. Sc. Lett.,
463, 1–12, https://doi.org/10.1016/j.epsl.2017.01.014, 2017b.
Santos, T. P., Ballalai, J. M., Franco, D. R., Oliveira, R. R., Lessa, D. O., Venancio, I. M., Chiessi, C. M., Kuhnert, H., Johnstone, H., and Albuquerque, A. L. S.:
Asymmetric response of the subtropical western South Atlantic thermocline to the Dansgaard-Oeschger events of Marine Isotope Stages 5 and 3,
Quaternary Sci. Rev.,
237, 106307, https://doi.org/10.1016/j.quascirev.2020.106307, 2020.
Saraswat, R., Nigam, R., Weldeab, S., Mackensen, A., and Naidu, P. D.:
A first look at past sea surface temperatures in the equatorial Indian Ocean from in foraminifera,
Geophys. Res. Lett.,
32, 217, https://doi.org/10.1029/2005GL024093, 2005.
Saraswat, R., Lea, D. W., Nigam, R., Mackensen, A., and Naik, D. K.:
Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections,
Earth Planet. Sc. Lett.,
375, 166–175, https://doi.org/10.1016/j.epsl.2013.05.022, 2013.
Saraswat, R., Singh, D. P., Lea, D. W., Mackensen, A., and Naik, D. K.:
Indonesian throughflow controlled the westward extent of the Indo–Pacific Warm Pool during glacial-interglacial intervals,
Global Planet. Change,
183, 103031, https://doi.org/10.1016/j.gloplacha.2019.103031, 2019.
Sarnthein, M.:
Stable isotope analysis on planktic foraminifera on sediment core profile GIK16867-1/-2/-3,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.54392, 1997a.
Sarnthein, M.:
Stable isotope analysis on planktic foraminifera on sediment core profile GIK17048-3/-4,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.54394, 1997b.
Sarnthein, M.:
Stable istope analysis on planktic foraminifera on sediment core GIK16459-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.134936, 2004.
Sarnthein, M. and Winn, K.:
Carbon and oxygen isotope measurements on Globigerinoides ruber white and Cibicides wuellerstorfi, dry density, carbonate and organic carbon contents in southeast tropical Pacific core SO26-189,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.805129, 1991.
Sarnthein, M. and Winn, K.: Carbon and oxygen isotope measurements on
Globigerinoides ruber white and Cibicides wuellerstorfi, dry density, carbonate and
organic carbon contents in southeast tropical Pacific core SO26-222, PANGAEA
[data set], https://doi.org/10.1594/PANGAEA.805131, 2013a.
Sarnthein, M. and Winn, K.: Carbon and oxygen isotope measurements on
Globoquadrina dutertrei dextral and Cibicides wuellerstorfi, dry density, carbonate
and organic carbon contents in equatorial Pacific core SO26-141, PANGAEA [data
set], https://doi.org/10.1594/PANGAEA.805126, 2013b.
Sarnthein, M., Erlenkeuser, H., von Grafenstein, R., and Schröder, C.:
Stable isotope stratigraphy for the last 750.000 years: “Meteor” core 13519 from the eastern equatorial Atlantic,
Meteor Forschungsergebnisse, Deutsche Forschungsgemeinschaft, Reihe C Geologie und Geophysik, C38,
9–24, 1984.
Sarnthein, M., Winn, K., Duplessy, J.-C., and Fontugne, M. R.:
Global variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years,
Paleoceanography,
3, 361–399, https://doi.org/10.1029/PA003i003p00361, 1988.
Sarnthein, M., Winn, K., Jung, S. J. A., Duplessy, J.-C., Labeyrie, L., Erlenkeuser, H., and Ganssen, G.:
Changes in East Atlantic Deepwater Circulation over the last 30,000 years: Eight time slice reconstructions,
Paleoceanography,
9, 209–267, https://doi.org/10.1029/93PA03301, 1994.
Sarnthein, M., Kreveld, S., Erlenkeuser, H., Grootes, P. M., Kucera, M., Pflaumann, U., and Schulz, M.:
Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75∘ N,
Boreas,
32, 447–461, https://doi.org/10.1111/j.1502-3885.2003.tb01227.x, 2003.
Sarnthein, M., Balmer, S., Grootes, P. M., and Mudelsee, M.:
Planktic and Benthic 14C Reservoir Ages for Three Ocean Basins, Calibrated by a Suite of 14C Plateaus in the Glacial-to-Deglacial Suigetsu Atmospheric 14C Record,
Radiocarbon,
57, 129–151, https://doi.org/10.2458/azu_rc.57.17916, 2015.
Sbaffi, L., Wezel, F. C., Kallel, N., Paterne, M., Cacho, I., Ziveri, P., and Shackleton, N.:
Response of the pelagic environment to palaeoclimatic changes in the central Mediterranean Sea during the Late Quaternary,
Mar. Geol.,
178, 39–62, https://doi.org/10.1016/S0025-3227(01)00185-2, 2001.
Schefuss, E., Schouten, S., and Schneider, R. R.:
Climatic controls on central African hydrology during the past 20,000 years,
Nature,
437, 1003–1006, https://doi.org/10.1038/nature03945, 2005.
Schiebel, R. and Hemleben, C.:
Planktic Foraminifers in the Modern Ocean,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2017.
Schiraldi, B., Sikes, E. L., Elmore, A. C., Cook, M. S., and Rose, K. A.:
Southwest Pacific subtropics responded to last deglacial warming with changes in shallow water sources,
Paleoceanography,
29, 595–611, https://doi.org/10.1002/2013PA002584, 2014.
Schirrmacher, J., Kneisel, J., Knitter, D., Hamer, W., Hinz, M., Schneider, R. R., and Weinelt, M.:
Spatial patterns of temperature, precipitation, and settlement dynamics on the Iberian Peninsula during the Chalcolithic and the Bronze Age,
Quaternary Sci. Rev.,
233, 106220, https://doi.org/10.1016/j.quascirev.2020.106220, 2020.
Schlünz, B., Schneider, R. R., Müller, P. J., and Wefer, G.:
Late Quaternary organic carbon accumulation south of Barbados: influence of the Orinoco and Amazon rivers?,
Deep-Sea Res. Pt. I,
47, 1101–1124, https://doi.org/10.1016/S0967-0637(99)00076-X, 2000.
Schmidt, G. A. and Mulitza, S.:
Global calibration of ecological models for planktic foraminifera from coretop carbonate oxygen-18,
Mar. Micropaleontol.,
44, 125–140, https://doi.org/10.1016/S0377-8398(01)00041-X, 2002.
Schmidt, M. W. and Lynch-Stieglitz, J.:
Florida Straits deglacial temperature and salinity change: Implications for tropical hydrologic cycle variability during the Younger Dryas,
Paleoceanography,
26, PA4205, https://doi.org/10.1029/2011PA002157, 2011.
Schmidt, M. W., Spero, H. J., and Lea, D. W.:
Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation,
Nature,
428, 160–163, https://doi.org/10.1038/nature02346, 2004.
Schmidt, M. W., Chang, P., Hertzberg, J. E., Them, T. R., Ji, L., J, L., and Otto-Bliesner, B. L.:
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures,
P. Natl. Acad. Sci. USA,
109, 14348–14352, https://doi.org/10.1073/pnas.1207806109, 2012.
Schmiedl, G. and Mackensen, A.:
Late Quaternary paleoproductivity and deep water circulation in the eastern South Atlantic Ocean: Evidence from benthic foraminifera,
Palaeogeogr. Palaeocl.,
130, 43–80, https://doi.org/10.1016/S0031-0182(96)00137-X, 1997.
Schmiedl, G. and Mackensen, A.:
Multispecies stable isotopes of benthic foraminifers reveal past changes of organic matter decomposition and deepwater oxygenation in the Arabian Sea,
Paleoceanography,
21, 2831, https://doi.org/10.1029/2006PA001284, 2006.
Schneider, R. R.:
Spätquartäre Produktivitätsänderungen im östlichen Angola-Becken: Reaktion auf Variationen im Pasat-Spätquartäre Produktivitätsänderungen im östlichen Angola-Becken: Reaktion auf Variationen im Pasat-Monsun-Windsystem und in der Advektion des Benguela-Küstenstroms,
Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 21,
198 pp., 1991.
Schneider, R. R., Müller, P. J., and Ruhland, G.:
Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from Alkenone sea surface temperatures,
Paleoceanography,
10, 197–219, https://doi.org/10.1029/94PA03308, 1995.
Schönfeld, J., Zahn, R., and de Abreu, L.:
Surface and deep water response to rapid climate changes at the Western Iberian Margin,
Global Planet. Change,
36, 237–264, https://doi.org/10.1016/S0921-8181(02)00197-2, 2003.
Schröder, J. F., Kuhnt, W., Holbourn, A., Beil, S., Zhang, P., Hendrizan, M., and Xu, J.:
Deglacial Warming and Hydroclimate Variability in the Central Indonesian Archipelago,
Paleoceanography and Paleoclimatology,
33, 974–993, https://doi.org/10.1029/2018PA003323, 2018.
Schulz, H.:
Meeresoberflächentemperaturen vor 10.000 Jahren – Auswirkungen des frühholozänen Insolationsmaximums,
Geologisch–Paläontologisches Institut und Museum, Christian-Albrechts-Universität, Kiel, 1995.
Schwab, C., Kinkel, H., Weinelt, M., and Repschläger, J.:
Coccolithophore paleoproductivity and ecology response to deglacial and Holocene changes in the Azores Current System,
Paleoceanography,
27, PA3210, https://doi.org/10.1029/2012PA002281, 2012.
Scussolini, P. and Peeters, F. J. C.:
A record of the last 460 thousand years of upper ocean stratification from the central Walvis Ridge, South Atlantic,
Paleoceanography,
28, 426–439, https://doi.org/10.1002/palo.20041, 2013.
Seidenkrantz, M.-S., Kuijpers, A., Aagaard-Sørensen, S., Lindgreen, H., Olsen, J., and Pearce, C.:
Evidence for influx of Atlantic water masses to the Labrador Sea during the Last Glacial Maximum,
Sci. Rep.-UK,
11, 627, https://doi.org/10.1038/s41598-021-86224-z, 2021.
Sejrup, H. P., Lehman, S. J., Haflidason, H., Noone, D., Muscheler, R., Berstad, I. M., and Andrews, J. T.:
Response of Norwegian Sea temperature to solar forcing since 1000 A.D.,
J. Geophys. Res.,
115, 3713, https://doi.org/10.1029/2010JC006264, 2010.
Shackleton, N. J.:
Carbon-13 in Uvigerina: Tropical rain forest history and the equatorial Pacific carbonate dissolution cycle,
in: The fate of fossil fuel CO2 in the oceans,
edited by: Andersen, N. R. and Malahoff, A.,
Plenum Pr, New York, 401–427, 1977.
Shackleton, N. J.:
Stable isotope analysis on sediment core RC11-86,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.106546, 2003.
Shackleton, N. J. and Opdyke, N. D.:
Oxygen Isotope and Palaeomagnetic Stratigraphy of Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a 105 Year and 106 Year Scale,
Quaternary Res.,
3, 39–55, https://doi.org/10.1016/0033-5894(73)90052-5, 1973.
Shackleton, N. J., Le, J., Mix, A., and Hall, M. A.:
Carbon isotope records from pacific surface waters and atmospheric carbon dioxide,
Quaternary Sci. Rev.,
11, 387–400, https://doi.org/10.1016/0277-3791(92)90021-Y, 1992.
Shackleton, N. J., Hall, M. A., and Vincent, E.:
Phase relationships between millennial-scale events 64,000–24,000 years ago,
Paleoceanography,
15, 565–569, https://doi.org/10.1029/2000PA000513, 2000.
Shackleton, N. J., Fairbanks, R. G., Chiu, T.-C., and Parrenin, F.:
Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C,
Quaternary Sci. Rev.,
23, 1513–1522, https://doi.org/10.1016/j.quascirev.2004.03.006, 2004.
Shao, J., Stott, L. D., Gray, W. R., Greenop, R., Pecher, I., Neil, H. L., Coffin, R. B., Davy, B., and Rae, J. W. B.:
Atmosphere-Ocean CO2 Exchange Across the Last Deglaciation From the Boron Isotope Proxy,
Paleoceanography and Paleoclimatology,
34, 1650–1670, https://doi.org/10.1029/2018PA003498, 2019.
Shemesh, A., Burckle, L. H., and Hays, J. D.:
Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean,
Paleoceanography,
10, 179–196, https://doi.org/10.1029/94PA03060, 1995.
Shemesh, A., Hodell, D., Crosta, X., Kanfoush, S., Charles, C., and Guilderson, T.:
Sequence of events during the last deglaciation in Southern Ocean sediments and Antarctic ice cores,
Paleoceanography,
17, 8-1–8-7, https://doi.org/10.1029/2000PA000599, 2002.
Shimmield, G.: Stable isotope analysis on planktic foraminifera in sediment core
BOFS17K, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.194838, 2004.
Shimmield, G.:
Stable isotope analysis on planktic foraminifera in sediment core BOFS5K,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.194839, 2004b.
Showers, W. J. and Margolis, S. V.:
Evidence for a tropical freshwater spike during the last glacial/interglacial transition in the Venezuela Basin: δ18O and δ13C of calcareous plankton,
Mar. Geol.,
68, 145–165, https://doi.org/10.1016/0025-3227(85)90009-X, 1985.
Sikes, E. L. and Keigwin, L. D.:
Equatorial Atlantic sea surface temperature for the last 30 kyr: A comparison of δ18O and foraminiferal assemblage temperature estimates,
Paleoceanography,
9, 31–45, https://doi.org/10.1029/93PA02198, 1994.
Sikes, E. L., Howard, W. R., Samson, C. R., Mahan, T. S., Robertson, L. G., and Volkman, J. K.:
Southern Ocean seasonal temperature and Subtropical Front movement on the South Tasman Rise in the late Quaternary,
Paleoceanography,
24, PA2201, https://doi.org/10.1029/2008PA001659, 2009.
Sikes, E. L., Elmore, A. C., Allen, K. A., Cook, M. S., and Guilderson, T. P.:
Glacial water mass structure and rapid δ18O and δ13C changes during the last glacial termination in the Southwest Pacific,
Earth Planet. Sc. Lett.,
456, 87–97, https://doi.org/10.1016/j.epsl.2016.09.043, 2016.
Singh, A. D., Jung, S. J. A., Darling, K., Ganeshram, R., Ivanochko, T., and Kroon, D.:
Productivity collapses in the Arabian Sea during glacial cold phases,
Paleoceanography,
26, PA3210, https://doi.org/10.1029/2009PA001923, 2011.
Sirocko, F.:
Zur Akkumulation von Staubsedimenten im nördlichen Indischen Ozean; Anzeiger der Klimageschichte Arabiens und Indiens, Berichte – Reports,
Geologisch–Paläontologisches Institut und Museum (Kiel, Univ.). Berichte. 27, 27,
Geol.-Paläont. Inst. u. Museum Univ, Kiel, 185 pp., 1989.
Sirocko, F., Garbe-Schönberg, D., and Devey, C.:
Processes controlling trace element geochemistry of Arabian Sea sediments during the last 25,000 years,
Global Planet. Change,
26, 217–303, https://doi.org/10.1016/S0921-8181(00)00046-1, 2000.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.:
Ventilation of the deep Southern Ocean and deglacial CO2 rise,
Science,
328, 1147–1151, https://doi.org/10.1126/science.1183627, 2010.
Slowey, N. C. and Curry, W. B.:
Structure of the glacial thermocline at Little Bahama Bank,
Nature,
328, 54–58, https://doi.org/10.1038/328054a0, 1987.
Slowey, N. C. and Curry, W. B.:
Glacial-interglacial differences in circulation and carbon cycling within the upper western North Atlantic,
Paleoceanography,
10, 715–732, https://doi.org/10.1029/95pa01166, 1995.
Smith, J. A., Hillenbrand, C.-D., Kuhn, G., Klages, J. P., Graham, A. G. C., Larter, R. D., Ehrmann, W., Moreton, S. G., Wiers, S., and Frederichs, T.:
New constraints on the timing of West Antarctic Ice Sheet retreat in the eastern Amundsen Sea since the Last Glacial Maximum,
Global Planet. Change,
122, 224–237, https://doi.org/10.1016/j.gloplacha.2014.07.015, 2014.
Sortor, R. N. and Lund, D. C.:
No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic,
Earth Planet. Sc. Lett.,
310, 65–72, https://doi.org/10.1016/j.epsl.2011.07.017, 2011.
Spero, H. J., Mielke, K. M., Kalve, E. M., Lea, D. W., and Pak, D. K.:
Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr,
Paleoceanography,
18, 1022, https://doi.org/10.1029/2002PA000814, 2003.
Spielhagen, R., Erlenkeuser, H., and Siegert, C.:
History of freshwater runoff across the Laptev Sea (Arctic) during the last deglaciation,
Global Planet. Change,
48, 187–207, https://doi.org/10.1016/j.gloplacha.2004.12.013, 2005.
Spielhagen, R. F., Barash, M. S., Ivanov, G. I., and Thiede, J. (Eds.): G
erman–Russian cooperation: biogeographic and biostratigraphic investigations on selected sediment cores from the Eurasian continental margin and marginal seas to analyze the Late Quaternary climatic variability,
Berichte zur Polarforschung, 306,
Alfred-Wegener-Inst. für Polar- und Meeresforschung, Bremerhaven, 170 pp., 1999.
Spielhagen, R. F., Baumann, K.-H., Erlenkeuser, H., Nowaczyk, N., Nørgaard-Pedersen, N., Vogt, C., and Weiel, D.:
Arctic Ocean deep-sea record of northern Eurasian ice sheet history,
Quaternary Sci. Rev.,
23, 1455–1483, https://doi.org/10.1016/j.quascirev.2003.12.015, 2004.
Spooner, M. I., de Deckker, P., Barrows, T. T., and Fifield, L. K.:
The behaviour of the Leeuwin Current offshore NW Australia during the last five glacial–interglacial cycles,
Global Planet. Change,
75, 119–132, https://doi.org/10.1016/j.gloplacha.2010.10.015, 2011.
Stein, R. and Fahl, K.:
Age determinations on sediment core PS2446-4,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.358536, 2000.
Stein, R. and Schneider, D. A.:
Age determinations on sediment core PS2208-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.91162, 2003.
Stein, R., Schubert, C., Vogt, C., and Fütterer, D.:
Stable isotope stratigraphy, sedimentation rates, and salinity changes in the Latest Pleistocene to Holocene eastern central Arctic Ocean,
Mar. Geol.,
119, 333–355, https://doi.org/10.1016/0025-3227(94)90189-9, 1994.
Stein, R., Nam, S.-I., Grobe, H., and Hubberten, H.:
Late Quaternary glacial history and short-term ice-rafted debris fluctuations along the East Greenland continental margin,
Geological Society, London, Special Publications,
111, 135–151, https://doi.org/10.1144/GSL.SP.1996.111.01.09, 1996.
Steinborn, W.:
Rekonstruktion der glazialen Wassermassenstratifizierung im westlichen subtropischen Südatlantik (Sao Paulo Plateau),
Diplomarbeit,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, 55 pp., 2003.
Stephens, C., Antonov, J. I., Boyer, T. P., Conkright, M. E., Locarnini, R. A., O'Brien, T. D., and Garcia, H. E.:
World Ocean Atlas 2001, 2001, Volume 1: Temperature, NOAA atlas NESDIS, 50,
Washington, DC, 176 pp., 2002.
Stott, L. D.:
Comment on “Anomalous radiocarbon ages for foraminifera shells” by W. Broecker et al.:
A correction to the western tropical Pacific MD9821-81 record,
Paleoceanography,
22, PA1211, https://doi.org/10.1029/2006PA001379, 2007.
Stott, L. D., Neumann, M., and Hammond, D.:
Intermediate water ventilation on the Northeastern Pacific Margin during the Late Pleistocene inferred from benthic foraminiferal δ13C,
Paleoceanography,
15, 161–169, https://doi.org/10.1029/1999PA000375, 2000.
Stott, L., Poulsen, C., Lund, S., and Thunell, R.:
Super ENSO and global climate oscillations at millennial time scales,
Science,
297, 222–226, https://doi.org/10.1126/science.1071627, 2002.
Stott, L., Timmermann, A., and Thunell, R.:
Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming,
Science,
318, 435–438, https://doi.org/10.1126/science.1143791, 2007.
Stüber, A.:
Spätpleistozäne Variabilität der Zwischenwasserzirkulation im subtropischen Westatlantik auf glazial-interglazialen und suborbitalen Zeitskalen: Rekonstruktion anhand stabiler Kohlenstoffisotope und Spurenmetallverhältnisse in kalkschaligen Benthosforaminiferen,
PhD thesis,
CAU, Kiel, Germany, 118 pp., 1999.
Sturm, A.:
Changes in ocean circulation and carbonate chemistry in the Australian sector of the southern ocean during the last 500,000 years,
PhD thesis,
Mathematisch-Naturwissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 114 pp., 2003.
Stuut, J.-B. W., de Deckker, P., Saavedra-Pellitero, M., Bassinot, F., Drury, A. J., Walczak, M. H., Nagashima, K., and Murayama, M.:
A 5.3-Million-Year History of Monsoonal Precipitation in Northwestern Australia,
Geophys. Res. Lett.,
46, 6946–6954, https://doi.org/10.1029/2019GL083035, 2019.
Sun, Y., Oppo, D. W., Xiang, R., Liu, W., and Gao, S.:
Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate,
Paleoceanography,
20, PA4005, https://doi.org/10.1029/2004PA001061, 2005.
Tapia, R., Nürnberg, D., Ronge, T., and Tiedemann, R.:
Disparities in glacial advection of Southern Ocean Intermediate Water to the South Pacific Gyre,
Earth Planet. Sc. Lett.,
410, 152–164, https://doi.org/10.1016/j.epsl.2014.11.031, 2015.
Taylor, M. A., Hendy, I. L., and Pak, D. K.:
Deglacial ocean warming and marine margin retreat of the Cordilleran Ice Sheet in the North Pacific Ocean,
Earth Planet. Sc. Lett.,
403, 89–98, https://doi.org/10.1016/j.epsl.2014.06.026, 2014.
Telesiński, M. M., Spielhagen, R. F., and Bauch, H. A.: Water mass evolution of the Greenland Sea since late glacial times, Clim. Past, 10, 123–136, https://doi.org/10.5194/cp-10-123-2014, 2014a.
Telesiński, M. M., Spielhagen, R. F., and Lind, E. M.:
A high-resolution Lateglacial and Holocene palaeoceanographic record from the Greenland Sea,
Boreas,
43, 273–285, https://doi.org/10.1111/bor.12045, 2014b.
Tessin, A. C. and Lund, D. C.:
Isotopically depleted carbon in the mid-depth South Atlantic during the last deglaciation,
Paleoceanography,
28, 296–306, https://doi.org/10.1002/palo.20026, 2013.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.:
Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic,
Nature,
457, 711–714, https://doi.org/10.1038/nature07717, 2009.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.:
Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years,
Paleoceanography,
25, 1769, https://doi.org/10.1029/2009PA001833, 2010.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.:
Reconstructing North Atlantic deglacial surface hydrography and its link to the Atlantic overturning circulation,
Global Planet. Change,
79, 163–175, https://doi.org/10.1016/j.gloplacha.2010.06.003, 2011.
Thunell, R. C.: Stable isotopes of sediment core KS82-32, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407577, 2006a.
Thunell, R. C.: Stable isotopes of sediment core MD81-BC15, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407578, 2006b.
Thunell, R. C., Williams, D. F., and Kennett, J. P.:
Late Quaternary paleoclimatology, stratigraphy and sapropel history in eastern Mediterranean deep-sea sediments,
Mar. Micropaleontol.,
2, 371–388, https://doi.org/10.1016/0377-8398(77)90018-4, 1977.
Tian, J., Huang, E., and Pak, D. K.:
East Asian winter monsoon variability over the last glacial cycle: Insights from a latitudinal sea-surface temperature gradient across the South China Sea,
Palaeogeogr. Palaeocl.,
292, 319–324, https://doi.org/10.1016/j.palaeo.2010.04.005, 2010.
Tierney, J. E., deMenocal, P. B., and Zander, P. D.:
A climatic context for the out-of-Africa migration,
Geology,
45, 1023–1026, https://doi.org/10.1130/g39457.1, 2017.
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen, C. J.:
Glacial cooling and climate sensitivity revisited,
Nature,
584, 569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020.
Tiwari, M., Nagoji, S. S., and Ganeshram, R. S.:
Multi-centennial scale SST and Indian summer monsoon precipitation variability since the mid-Holocene and its nonlinear response to solar activity,
Holocene,
25, 1415–1424, https://doi.org/10.1177/0959683615585840, 2015.
Tjallingii, R., Claussen, M., Stuut, J.-B. W., Fohlmeister, J., Jahn, A., Bickert, T., Lamy, F., and Röhl, U.:
Coherent high- and low-latitude control of the northwest African hydrological balance,
Nat. Geosci.,
1, 670–675, https://doi.org/10.1038/ngeo289, 2008.
Toledo, F. A. L., Costa, K. B., and Pivel, M. A. G.:
Salinity changes in the western tropical South Atlantic during the last 30 kyr,
Global Planet. Change,
57, 383–395, https://doi.org/10.1016/j.gloplacha.2007.01.001, 2007.
Toledo, F. A. L., Quadros, J. P., Camillo, E., Santarosa, A. C. A., Flores, J.-A., and Costa, K. B.:
Plankton biochronology for the last 772,000 years from the western South Atlantic Ocean,
Mar. Micropaleontol.,
127, 50–62, https://doi.org/10.1016/j.marmicro.2016.07.002, 2016.
Troedson, A. L. and Davies, P. J.:
Contrasting facies patterns in subtropical and temperate continental slope sediments: inferences from east Australian late Quaternary records,
Mar. Geol.,
172, 265–285, https://doi.org/10.1016/S0025-3227(00)00132-8, 2001.
Ullermann, J., Lamy, F., Ninnemann, U., Lembke-Jene, L., Gersonde, R., and Tiedemann, R.:
Pacific-Atlantic Circumpolar Deep Water coupling during the last 500 ka,
Paleoceanography,
31, 639–650, https://doi.org/10.1002/2016PA002932, 2016.
Urey, H. C.:
The thermodynamic properties of isotopic substances,
J. Chem. Soc.,
562–581, https://doi.org/10.1039/jr9470000562, 1947.
Vahlenkamp, M.:
The Anatomy of Heinrich Event 1 – A Multiproxy Study of Centennial to Millennial Scale Climate Change off Brazil,
Master Thesis,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, 70 pp., 2013.
van Geen, A., Fairbanks, R. G., Dartnell, P., McGann, M., Gardner, J. V., and Kashgarian, M.:
Ventilation changes in the northeast Pacific during the Last Deglaciation,
Paleoceanography,
11, 519–528, https://doi.org/10.1029/96PA01860, 1996.
van Kreveld, S., Sarnthein, M., Erlenkeuser, H., Grootes, P., Jung, S., Nadeau, M. J., Pflaumann, U., and Voelker, A.:
Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger Cycles in the Irminger Sea, 60–18 Kyr,
Paleoceanography,
15, 425–442, https://doi.org/10.1029/1999PA000464, 2000.
Vázquez Riveiros, N., Waelbroeck, C., Skinner, L., Roche, D. M., Duplessy, J.-C., and Michel, E.:
Response of South Atlantic deep waters to deglacial warming during Terminations V and I,
Earth Planet. Sc. Lett.,
298, 323–333, https://doi.org/10.1016/j.epsl.2010.08.003, 2010.
Venancio, I. M., Gomes, V. P., Belem, A. L., and Albuquerque, A. L. S.:
Surface-to-subsurface temperature variations during the last century in a western boundary upwelling system (Southeastern, Brazil),
Cont. Shelf Res.,
125, 97–106, https://doi.org/10.1016/j.csr.2016.07.003, 2016.
Venancio, I. M., Mulitza, S., Govin, A., Santos, T. P., Lessa, D. O., Albuquerque, A. L. S., Chiessi, C. M., Tiedemann, R., Vahlenkamp, M., Bickert, T., and Schulz, M.:
Millennial- to Orbital-Scale Responses of Western Equatorial Atlantic Thermocline Depth to Changes in the Trade Wind System Since the Last Interglacial,
Paleoceanography and Paleoclimatology,
33, 1490–1507, https://doi.org/10.1029/2018PA003437, 2018.
Vergnaud-Grazzini, C. and Pierre, C.:
High Fertility in the Alboran Sea Since the last Glacial Maximum,
Paleoceanography,
6, 519–536, https://doi.org/10.1029/91PA00501, 1991.
Vernaleken, J.:
Sedimentologische Untersuchungen spätquartärer glazialmariner Sedimente vom antarktischen Kontinentalhang vor Kapp Norvegia,
Diploma Thesis,
Geologisches Institut der Universität zu Köln/Alfred-Wegener-lnstitut für Polar- und Meeresforschung, Bremerhaven, 62 pp., 1999.
Vetoshkina, O. S., Lyyurov, S. V., and Byshnev, D. A.:
Carbon and oxygen isotopic composition of Jurassic foraminifers in the Unzha River basin,
Dokl. Earth Sci.,
454, 21–24, https://doi.org/10.1134/S1028334X14010061, 2014.
Vidal, L., Labeyrie, L., Cortijo, E., Arnold, M., Duplessy, J. C., Michel, E., Becqué, S., and van Weering, T. C. E.:
Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events,
Earth Planet. Sc. Lett.,
146, 13–27, https://doi.org/10.1016/S0012-821X(96)00192-6, 1997.
Vidal, L., Schneider, R. R., Marchal, O., Bickert, T., Stocker, T. F., and Wefer, G.:
Link between the North and South Atlantic during the Heinrich events of the last glacial period,
Clim. Dynam.,
15, 909–919, https://doi.org/10.1007/s003820050321, 1999.
Vink, A., Rühlemann, C., Zonneveld, K. A. F., Mulitza, S., Hüls, M., and Willems, H.:
Shifts in the position of the north equatorial current and rapid productivity changes in the western tropical Atlantic during the last glacial,
Paleoceanography,
16, 479–490, https://doi.org/10.1029/2000PA000582, 2001.
Voelker, A., Leibro, S., Schönfeld, J., Cacho, I., Erlenkeuser, H., and Abrantes, F.:
Mediterranean outflow strengthening during northern hemisphere coolings: A salt source for the glacial Atlantic?,
Earth Planet. Sc. Lett.,
245, 39–55, https://doi.org/10.1016/j.epsl.2006.03.014, 2006.
Voelker, A. H. L.:
Zur Deutung der Dansgaard–Oeschger-Ereignisse in ultra-hochauflösenden Sedimentprofilen aus dem Europäischen Nordmeer,
Berichte/Institut für Geowissenschaften, Christian-Albrechts-Universität Kiel, 9,
Inst. für Geowissenschaften der Christian-Albrechts-Univ, Kiel, 271 pp., 1999.
Voelker, A. H. L. and de Abreu, L.:
A Review of Abrupt Climate Change Events in the Northeastern Atlantic Ocean (Iberian Margin): Latitudinal, Longitudinal, and Vertical Gradients,
in: Abrupt Climate Change: Mechanisms, Patterns, and Impacts,
edited by: Rashid, H., Polyak, L., and Mosley-Thompson, E.,
American Geophysical Union, Washington, DC, 15–37, https://doi.org/10.1029/2010GM001021, 2011.
Voelker, A. H. L., Rodrigues, T., Billups, K., Oppo, D., McManus, J., Stein, R., Hefter, J., and Grimalt, J. O.: Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9–14) and their implications for the thermohaline circulation, Clim. Past, 6, 531–552, https://doi.org/10.5194/cp-6-531-2010, 2010.
Völpel, R., Paul, A., Krandick, A., Mulitza, S., and Schulz, M.: Stable water isotopes in the MITgcm, Geosci. Model Dev., 10, 3125–3144, https://doi.org/10.5194/gmd-10-3125-2017, 2017.
Völpel, R., Mulitza, S., Paul, A., Lynch-Stieglitz, J., and Schulz, M.:
Water Mass Versus Sea Level Effects on Benthic Foraminiferal Oxygen Isotope Ratios in the Atlantic Ocean During the LGM,
Paleoceanography and Paleoclimatology,
34, 98–121, https://doi.org/10.1029/2018PA003359, 2019.
Voigt, I., Chiessi, C. M., Prange, M., Mulitza, S., Groeneveld, J., Varma, V., and Henrich, R.:
Holocene shifts of the southern westerlies across the South Atlantic,
Paleoceanography,
30, 39–51, https://doi.org/10.1002/2014PA002677, 2015.
Voigt, I., Cruz, A. P. S., Mulitza, S., Chiessi, C. M., Mackensen, A., Lippold, J., Antz, B., Zabel, M., Zhang, Y., Barbosa, C. F., and Tisserand, A. A.:
Variability in mid-depth ventilation of the western Atlantic Ocean during the last deglaciation,
Paleoceanography,
32, 948–965, https://doi.org/10.1002/2017PA003095, 2017.
von Rad, U., Schulz, H., Riech, V., den Dulk, M., Berner, U., and Sirocko, F.:
Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan,
Palaeogeogr. Palaeocl.,
152, 129–161, https://doi.org/10.1016/S0031-0182(99)00042-5, 1999.
von Rad, U., Sarnthein, M., Grootes, P. M., Doose-Rolinski, H., and Erbacher, J.: 14C Ages of a Varved Last Glacial Maximum Section Off Pakistan,
Radiocarbon, 45, 467–477, https://doi.org/10.1017/S0033822200032811, 2003.
Waddell, L. M., Hendy, I. L., Moore, T. C., and Lyle, M. W.:
Ventilation of the abyssal Southern Ocean during the late Neogene: A new perspective from the subantarctic Pacific,
Paleoceanography,
24, 1769, https://doi.org/10.1029/2008PA001661, 2009.
Waelbroeck, C., Duplessy, J. C., Michel, E., Labeyrie, L., Paillard, D., and Duprat, J.:
The timing of the last deglaciation in North Atlantic climate records,
Nature,
412, 724–727, https://doi.org/10.1038/35089060, 2001.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.:
Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev.,
21, 295–305, https://doi.org/10.1016/S0277-3791(01)00101-9, 2002.
Waelbroeck, C., Levi, C., Duplessy, J., Labeyrie, L., Michel, E., Cortijo, E., Bassinot, F., and Guichard, F.:
Distant origin of circulation changes in the Indian Ocean during the last deglaciation,
Earth Planet. Sc. Lett.,
243, 244–251, https://doi.org/10.1016/j.epsl.2005.12.031, 2006.
Waelbroeck, C., Skinner, L. C., Labeyrie, L., Duplessy, J.-C., Michel, E., Vazquez Riveiros, N., Gherardi, J.-M., and Dewilde, F.:
The timing of deglacial circulation changes in the Atlantic,
Paleoceanography,
26, PA3213, https://doi.org/10.1029/2010PA002007, 2011.
Waelbroeck, C., Lougheed, B. C., Vazquez Riveiros, N., Missiaen, L., Pedro, J., Dokken, T., Hajdas, I., Wacker, L., Abbott, P., Dumoulin, J.-P., Thil, F., Eynaud, F., Rossignol, L., Fersi, W., Albuquerque, A. L., Arz, H., Austin, W. E. N., Came, R., Carlson, A. E., Collins, J. A., Dennielou, B., Desprat, S., Dickson, A., Elliot, M., Farmer, C., Giraudeau, J., Gottschalk, J., Henderiks, J., Hughen, K., Jung, S., Knutz, P., Lebreiro, S., Lund, D. C., Lynch-Stieglitz, J., Malaizé, B., Marchitto, T., Martínez-Méndez, G., Mollenhauer, G., Naughton, F., Nave, S., Nürnberg, D., Oppo, D., Peck, V., Peeters, F. J. C., Penaud, A., Portilho-Ramos, R. d. C., Repschläger, J., Roberts, J., Rühlemann, C., Salgueiro, E., Sanchez Goni, M. F., Schönfeld, J., Scussolini, P., Skinner, L. C., Skonieczny, C., Thornalley, D., Toucanne, S., van Rooij, D., Vidal, L., Voelker, A. H. L., Wary, M., Weldeab, S., and Ziegler, M.:
Consistently dated Atlantic sediment cores over the last 40 thousand years,
Scientific Data,
6, 165, https://doi.org/10.1038/s41597-019-0173-8, 2019.
Wan, S. and Jian, Z.:
Deep water exchanges between the South China Sea and the Pacific since the last glacial period,
Paleoceanography,
29, 1162–1178, https://doi.org/10.1002/2013PA002578, 2014.
Wang, H., Lo Iacono, C., Wienberg, C., Titschack, J., and Hebbeln, D.:
Cold-water coral mounds in the southern Alboran Sea (western Mediterranean Sea): Internal waves as an important driver for mound formation since the last deglaciation,
Mar. Geol.,
412, 1–18, https://doi.org/10.1016/j.margeo.2019.02.007, 2019.
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U.:
East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea,
Mar. Geol.,
156, 245–284, https://doi.org/10.1016/S0025-3227(98)00182-0, 1999a.
Wang, L., Sarnthein, M., Grootes, P. M., and Erlenkeuser, H.:
Millennial reoccurrence of century-scale abrupt events of East Asian Monsoon: A possible heat conveyor for the global deglaciation,
Paleoceanography,
14, 725–731, https://doi.org/10.1029/1999PA900028, 1999b.
Wang, P., Li, Q., Tian, J., He, J., Jian, Z., Ma, W., and Dang, H.:
Monsoon influence on planktic δ18O records from the South China Sea,
Quaternary Sci. Rev.,
142, 26–39, https://doi.org/10.1016/j.quascirev.2016.04.009, 2016.
Wang, Y. V., Leduc, G., Regenberg, M., Andersen, N., Larsen, T., Blanz, T., and Schneider, R. R.:
Northern and southern hemisphere controls on seasonal sea surface temperatures in the Indian Ocean during the last deglaciation,
Paleoceanography,
28, 619–632, https://doi.org/10.1002/palo.20053, 2013a.
Wang, Y. V., Larsen, T., Leduc, G., Andersen, N., Blanz, T., and Schneider, R. R.:
What does leaf wax δD from a mixed C3/C4 vegetation region tell us?,
Geochim. Cosmochim. Ac.,
111, 128–139, https://doi.org/10.1016/j.gca.2012.10.016, 2013b.
Weaver, P. P. E., Carter, L., and Neil, H. L.:
Response of surface water masses and circulation to Late Quaternary climate change east of New Zealand,
Paleoceanography,
13, 70–83, https://doi.org/10.1029/97PA02982, 1998.
Weber, M.:
Spätquartäre Sedimentation am Kontinentalrand des südöstlichen Weddellmeeres, Antarktis,
Berichte zur Polarforschung, 109,
Alfred-Wegener-Inst. für Polar- und Meeresforschung, Bremerhaven, 165 pp., 1992.
Weber, M. E.:
Quantitative Ableitung sedimentphysikalischer Parameter mit Hilfe eines Multi-Sensor Core Loggers – neue Wege in der Analytik mariner Sedimente,
Z. Angew. Geol.,
43, 144–153, 1997.
Weber, M. E., Bonani, G., and Fütterer, K. D.:
Sedimentation processes within channel-ridge systems, southeastern Weddell Sea, Antarctica,
Paleoceanography,
9, 1027–1048, https://doi.org/10.1029/94PA01443, 1994.
Wefer, G., Berger, W. H., Bickert, T., Donner, B., Fischer, G., Mücke, S. K. von, Meinecke, G., Müller, P. J., Mulitza, S., Niebler, H.-S., Pätzold, J., Schmidt, H., Schneider, R. R., and Segl, M.:
Late Quaternary Surface Circulation of the South Atlantic: The Stable Isotope Record and Implications for Heat Transport and Productivity,
in: The South Atlantic: Present and Past Circulation,
Springer Berlin Heidelberg, Berlin, Heidelberg, 461–502, https://doi.org/10.1007/978-3-642-80353-6_25, 1996.
Wei, G.-J., Huang, C.-Y., Wang, C.-C., Lee, M.-Y., and Wei, K.-Y.:
High-resolution benthic foraminifer δ13C records in the South China Sea during the last 150 ka,
Mar. Geol.,
232, 227–235, https://doi.org/10.1016/j.margeo.2006.08.005, 2006.
Weinelt, M.:
Veränderungen der Oberflächenzirkulation im Europäischen Nordmeer während der letzten 60 000 Jahre: Hinweise aus stabilen Isotopen,
Berichte aus dem Sonderforschungsbereich 313, Veränderungen der Umwelt – Der Nördliche Nordatlantik, 41, Sonderforschungsbereich 313,
Kiel, Germany, 106 pp., 1993.
Weinelt, M. and Sarnthein, M.:
Stable isotope analysis on sediment core GIK15666-6,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.97105, 2003a.
Weinelt, M. and Sarnthein, M.:
Stable isotope analysis on sediment core GIK15670-5,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.97106, 2003b.
Weldeab, S., Emeis, K.-C., Hemleben, C., Schmiedl, G., and Schulz, H.:
Spatial productivity variations during formation of sapropels S5 and S6 in the Mediterranean Sea: evidence from Ba contents,
Palaeogeogr. Palaeocl.,
191, 169–190, https://doi.org/10.1016/S0031-0182(02)00711-3, 2003.
Weldeab, S., Schneider, R. R., Kölling, M., and Wefer, G.:
Holocene African droughts relate to eastern equatorial Atlantic cooling,
Paleoceanography,
33, 981, https://doi.org/10.1130/G21874.1, 2005.
Weldeab, S., Lea, D. W., Schneider, R. R., and Andersen, N.:
155,000 years of West African monsoon and ocean thermal evolution,
Science,
316, 1303–1307, https://doi.org/10.1126/science.1140461, 2007.
Weldeab, S., Friedrich, T., Timmermann, A., and Schneider, R. R.:
Strong middepth warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and Younger Dryas,
Paleoceanography,
31, 1070–1082, https://doi.org/10.1002/2016PA002957, 2016.
Weldeab, S., Rühlemann, C., Bookhagen, B., Pausata, F. S. R., and Perez-Lua, F. M.:
Enhanced Himalayan Glacial Melting During YD and H1 Recorded in the Northern Bay of Bengal,
Geochem. Geophy. Geosy.,
149, 51, https://doi.org/10.1029/2018GC008065, 2019.
Wells, P., Wells, G., Cali, J., and Chivas, A.:
Response of deep-sea benthic foraminifera to Late Quaternary climate changes, southeast Indian Ocean, offshore Western Australia,
Mar. Micropaleontol.,
23, 185–229, https://doi.org/10.1016/0377-8398(94)90013-2, 1994.
Werner, K., Müller, J., Husum, K., Spielhagen, R. F., Kandiano, E. S., and Polyak, L.:
Holocene sea subsurface and surface water masses in the Fram Strait – Comparisons of temperature and sea–ice reconstructions,
Quaternary Sci. Rev.,
147, 194–209, https://doi.org/10.1016/j.quascirev.2015.09.007, 2016.
Williams, C., Flower, B. P., Hastings, D. W., Guilderson, T. P., Quinn, K. A., and Goddard, E. A.:
Deglacial abrupt climate change in the Atlantic Warm Pool: A Gulf of Mexico perspective,
Paleoceanography,
25, PA4221, https://doi.org/10.1029/2010PA001928, 2010.
Winkelmann, D., Schäfer, C., Stein, R., and Mackensen, A.:
Terrigenous events and climate history of the Sophia Basin, Arctic Ocean,
Geochem. Geophy. Geosy.,
9, Q07023, https://doi.org/10.1029/2008GC002038, 2008.
Winn, K.:
Carbon and oxygen isotope measurements on Globigerinoides ruber (w) and Cibicides wuellerstorfi, organic carbon and dry density in equatorial Pacific sediment core SO12-98,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.802163, 2012.
Winn, K.:
Carbon and oxygen isotope measurements on Globigerina bulloides and Cibicides wuellerstorfi, carbonate and organic carbon contents in core Q 208, Bounty Trough, Southwest Pacific,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.811792, 2013a.
Winn, K.:
Carbon and oxygen isotope measurements on Globigerinoides ruber (white) and Cibicides wuellerstorfi in core GIK17790-3 from the Sala Y Gomez Volcanic Chain east of Easter Island, subtropical South Pacific,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.816484, 2013b.
Winn, K.:
Carbon and oxygen isotope measurements on Globigerinoides ruber (white) and Cibicides wuellerstorfi in core GIK17795-2 located just west of the EPR to the west of Easter Island, subtropical South Pacific,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.817696, 2013c.
Winn, K.:
Carbon and oxygen isotope measurements on Globigerinoides ruber (white) and Cibicides wuellerstorfi in core GIK17812-1 located west of the EPR, subtropical South Pacific,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.817727, 2013d.
Winn, K.:
Carbon and oxygen isotope measurements on Globorotalia inflata, Globigerinoides ruber white, Cibicides wuellerstorfi (sinistral and dextral) in southeast Pacific core SO65-5KL,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.811695, 2013e.
Winn, K.:
Carbon and oxygen isotope measurements on Globorotalia inflata, Globigerinoides ruber white, Cibicides wuellerstorfi (sinistral and dextral) in southeast Pacific core SO65-6 KG,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.811699, 2013f.
Winn, K.:
Carbon and oxygen isotope ratios on planktonic foraminifera in subtropical Southeast Pacific core GIK17747-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.815874, 2013g.
Winn, K.:
Carbon and oxygen isotope ratios on planktonic foraminifera in subtropical Southeast Pacific core GIK17747-2,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.815877, 2013h.
Winn, K.:
Density, carbon and stable isotope ratios of foraminifera from sediment core SO35-272,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.806902, 2013i.
Winn, K.:
Stable isotope ratios from sediment core SO135_03GKG,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.830284, 2014a.
Winn, K.:
Stable isotope ratios from sediment core SO135_04SL,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.830285, 2014b.
Winn, K.:
Stable isotope ratios from sediment core SO135_05GKG,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.830377, 2014c.
Winn, K.:
Stable isotope ratios of foraminifera in sediment core PS1458-1 from Maud Rise, Southern Ocean,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.834969, 2014d.
Winn, K.:
Stable isotope ratios of foraminifera in sediment core PS1458-2 from Maud Rise, Southern Ocean,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.834971, 2014e.
Winn, K.:
Stable isotope ratios on sediment core GIK16115-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.831347, 2014f.
Winn, K.:
Stable isotope ratios on planktonic and benthic foraminifera in sediment core U306 from the Manihiki Plateau, tropical Southwest Pacific,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.859006, 2016.
Winn, K. and Fenner, J. M.:
Carbon and oxygen isotope measurements on Cibicides wuellerstorfi, C. kullenbergi and Uvigerina peregrina in core Q859, Bounty Trough, Southwest Pacific,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.811794, 2013a.
Winn, K. and Fenner, J. M.:
Carbon and oxygen isotope measurements on Cibicides wuellerstorfi, C. kullenbergi and Uvigerina peregrina in core Q861, Bounty Trough, Southwest Pacific,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.811797, 2013b.
Winn, K. and Sarnthein, M.:
Stable isotopes of sediment core GIK17055,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.323484, 1991.
Winn, K., Wiedicke, M., and Erlenkeuser, H.:
Stable isotope stratigraphy, paleoproductivity and sedimentation rates in the South Lau and North Fiji Basins, Southwest Pacific,
Geologisches Jahrbuch Reihe D, 231–253, 1990.
Winn, K., Sarnthein, M., and Erlenkeuser, H.:
δ18O Stratigraphy and Chronology of Kiel Sediment Cores from the East Atlantic,
Geologisch–Paläontologisches Institut und Museum, Christian-Albrechts-Universität, Kiel, https://doi.org/10.2312/REPORTS-GPI.1991.45, 1991.
Wolf-Gladrow, D. A., Bijma, J., and Zeebe, R. E.:
Model simulation of the carbonate chemistry in the microenvironment of symbiont bearing foraminifera,
Mar. Chem.,
64, 181–198, https://doi.org/10.1016/S0304-4203(98)00074-7, 1999.
Wolff, T.:
Mixed layer characteristics in the equatorial Atlantic during the late quaternary as deduced from planktonic foraminifera,
Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 125,
Fachbereich Geowiss. der Univ. Bremen, Bremen, 132 pp., 1998.
Wollenburg, J. E., Kuhnt, W., and Mackensen, A.:
Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr: The benthic foraminiferal record,
Paleoceanography,
16, 65–77, https://doi.org/10.1029/1999PA000454, 2001.
Wu, G., Herguera, J. C., and Berger, W. H.:
Differential dissolution: Modification of Late Pleistocene oxygen isotope records in the western equatorial Pacific,
Paleoceanography,
5, 581–594, https://doi.org/10.1029/PA005i004p00581, 1990.
Yu, J., Elderfield, H., and Hönisch, B.:
B/Ca in planktonic foraminifera as a proxy for surface seawater pH,
Paleoceanography,
22, 1077, https://doi.org/10.1029/2006PA001347, 2007.
Yu, J., Broecker, W. S., Elderfield, H., Jin, Z., McManus, J., and Zhang, F.:
Loss of carbon from the deep sea since the Last Glacial Maximum,
Science,
330, 1084–1087, https://doi.org/10.1126/science.1193221, 2010.
Zahn, R., Winn, K., and Sarnthein, M.:
Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wuellerstorfi,
Paleoceanography,
1, 27–42, https://doi.org/10.1029/PA001i001p00027, 1986.
Zahn, R., Sarnthein, M., and Erlenkeuser, H.:
Benthic isotope evidence for changes of the Mediterranean outflow during the Late Quaternary,
Paleoceanography,
2, 543–559, https://doi.org/10.1029/PA002i006p00543, 1987.
Zahn, R., Pedersen, T. F., Bornhold, B. D., and Mix, A. C.:
Water Mass Conversion in the Glacial Subarctic Pacific (54∘ N, 148∘ W): Physical Constraints and the Benthic–Planktonic Stable Isotope Record,
Paleoceanography,
6, 543–560, https://doi.org/10.1029/91PA01327, 1991.
Zahn, R., Schönfeld, J., Kudrass, H.-R., Park, M.-H., Erlenkeuser, H., and Grootes, P.:
Thermohaline instability in the North Atlantic during meltwater events: Stable isotope and ice-rafted detritus records from Core SO75-26KL, Portuguese Margin,
Paleoceanography,
12, 696–710, https://doi.org/10.1029/97pa00581, 1997.
Zahn-Knoll, R.:
Spätquartäre Entwicklung von Küstenauftrieb und Tiefenwasserzirkulation im Nordost-Atlantik: Rekonstruktion anhand stabiler Isotope kalkschaliger Foraminiferen,
PhD thesis,
Kiel, Germany, 111 pp., 1986.
Zahn-Knoll, R. and Sarnthein, M.:
Stable isotope analysis on sediment core GIK15637-1,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.106213, 2003.
Zaragosi, S., Bourillet, J.-F., Eynaud, F., Toucanne, S., Denhard, B., van Toer, A., and Lanfumey, V.:
The impact of the last European deglaciation on the deep-sea turbidite systems of the Celtic–Armorican margin (Bay of Biscay),
Geo-Mar. Lett.,
26, 317–329, https://doi.org/10.1007/s00367-006-0048-9, 2006.
Zarrieß, M.:
Primary productivity and ocean circulation changes on orbital and millennial timescales off Northwest Africa during the last glacial/interglacial cycle: Evidence from benthic foraminiferal assemblages, stable carbon and oxygen isotopes and Mg/Ca paleothermometry,
PhD thesis,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany, 120 pp., 2010.
Zarrieß, M. and Mackensen, A.:
The tropical rainbelt and productivity changes off northwest Africa: A 31,000-year high-resolution record,
Mar. Micropaleontol.,
76, 76–91, https://doi.org/10.1016/j.marmicro.2010.06.001, 2010.
Zarrieß, M., Johnstone, H., Prange, M., Steph, S., Groeneveld, J., Mulitza, S., and Mackensen, A.:
Bipolar seesaw in the northeastern tropical Atlantic during Heinrich stadials,
Geophys. Res. Lett.,
38, L04706, https://doi.org/10.1029/2010GL046070, 2011.
Zhang, Y., Chiessi, C. M., Mulitza, S., Zabel, M., Trindade, R. I. F., Hollanda, M. H. B. M., Dantas, E. L., Govin, A., Tiedemann, R., and Wefer, G.:
Origin of increased terrigenous supply to the NE South American continental margin during Heinrich Stadial 1 and the Younger Dryas,
Earth Planet. Sc. Lett.,
432, 493–500, https://doi.org/10.1016/j.epsl.2015.09.054, 2015.
Zheng, Y., van Geen, A., Anderson, R. F., Gardner, J. V., and Dean, W. E.:
Intensification of the Northeast Pacific oxygen minimum zone during the Bölling–Alleröd Warm Period,
Paleoceanography,
15, 528–536, https://doi.org/10.1029/1999PA000473, 2000.
Zheng, Y., Anderson, R. F., Froelich, P. N., Beck, W.,
McNichol, A. P., and Guilderson, T.: Challenges in Radiocarbon Dating Organic Carbon in Opal-Rich
Marine Sediments, Radiocarbon, 44, 123–136, https://doi.org/10.1017/S0033822200064729, 2002.
Ziegler, M., Nürnberg, D., Karas, C., Tiedemann, R., and Lourens, L. J.:
Persistent summer expansion of the Atlantic Warm Pool during glacial abrupt cold events,
Nat. Geosci.,
1, 601–605, https://doi.org/10.1038/ngeo277, 2008.
Zimmermann, R.:
Spätquartäre Geschichte der Oberflächenstratifizierung im Golf von Guinea anhand des Schwerelotkernes GeoB 4905-4,
Bachelorarbeit,
Fachbereich Geowissenschaften, Universität Bremen, Bremen, 2013.
Znaidi-Rivault, J.:
Les grands evenments climatiques du Quaternaire recent en Mediterranee Orientale: La reponse sedimentaire, microfaunique et isotopique,
PhD Thesis,
University of Paris, 1982.
Znaidi-Rivault, J.:
Stable isotopes of sediment core 3MO67,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407872, 2006a.
Znaidi-Rivault, J.:
Stable isotopes of sediment core 75KS23,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407874, 2006b.
Znaidi-Rivault, J.:
Stable isotopes of sediment core 75KS5,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407878, 2006c.
Znaidi-Rivault, J.:
Stable isotopes of sediment core 75KS50,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407877, 2006d.
Znaidi-Rivault, J.:
Stable isotopes of sediment core 75KS76,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407879, 2006e.
Znaidi-Rivault, J.:
Stable isotopes of sediment core 75KS79,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407880, 2006f.
Znaidi-Rivault, J.:
Stable isotopes of sediment core CS70-5,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407881, 2006g.
Znaidi-Rivault, J.:
Stable isotopes of sediment core MD84-629,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.407885, 2006h.
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information...
Altmetrics
Final-revised paper
Preprint