Articles | Volume 14, issue 5
https://doi.org/10.5194/essd-14-2487-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2487-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A decade of glaciological and meteorological observations in the Arctic (Werenskioldbreen, Svalbard)
Dariusz Ignatiuk
CORRESPONDING AUTHOR
Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-007, Poland
Małgorzata Błaszczyk
Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-007, Poland
Tomasz Budzik
Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-007, Poland
Mariusz Grabiec
Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-007, Poland
Jacek A. Jania
Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-007, Poland
Marta Kondracka
CORRESPONDING AUTHOR
Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-007, Poland
Michał Laska
Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-007, Poland
Łukasz Małarzewski
Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-007, Poland
Łukasz Stachnik
Faculty of Earth Sciences and Environmental Management, University of Wrocław, Wrocław, 50-137, Poland
Related authors
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Jarosław Tęgowski, Oskar Glowacki, Michał Ciepły, Małgorzata Błaszczyk, Jacek Jania, Mateusz Moskalik, Philippe Blondel, and Grant B. Deane
The Cryosphere, 17, 4447–4461, https://doi.org/10.5194/tc-17-4447-2023, https://doi.org/10.5194/tc-17-4447-2023, 2023
Short summary
Short summary
Receding tidewater glaciers are important contributors to sea level rise. Understanding their dynamics and developing models for their attrition has become a matter of global concern. Long-term monitoring of glacier frontal ablation is very difficult. Here we show for the first time that calving fluxes can be estimated from the underwater sounds made by icebergs impacting the sea surface. This development has important application to understanding the response of glaciers to warming oceans.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Iwo Wieczorek, Mateusz Czesław Strzelecki, Łukasz Stachnik, Jacob Clement Yde, and Jakub Małecki
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-364, https://doi.org/10.5194/tc-2021-364, 2022
Manuscript not accepted for further review
Short summary
Short summary
Glacial lakes development around the World has been observed since the end of the Little Ice Age. The whole process is especially rapid in Arctic region what shows last researches. One of the last regions which still has not been covered by data about changes of glacial lakes is the Svalbard Archipelago (Norway). We used remote sensing materials and methods to provide information's about changes of glacial lakes and to show major activity of glacial lakes outburst floods.
Cited articles
Baranowski, S.: Naled ice in front of some Spitsbergen glaciers, J. Glaciol., 28, 211–214, https://doi.org/10.3189/S0022143000011928, 1982.
Błaszczyk, M., Jania, J. A., and Kolondra, L.: Fluctuations of tidewater
glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the
20th century, Polish Polar Res., 34, 327–352,
https://doi.org/10.2478/popore-2013-0024, 2013.
Błaszczyk, M., Ignatiuk, D., Grabiec, M., Kolondra, L., Laska, M., Decaux, L., Jania, J., Berthier, E., Luks, B., Barzycka, B., and Czapla, M.: Quality assessment and glaciological applications of digital elevation models derived from space-borne and aerial images over two tidewater glaciers of Southern Spitsbergen, Remote Sens., 11, 1121,
https://doi.org/10.3390/RS11091121, 2019.
Błaszczyk, M., Jania, J. A., Ciepły, M., Grabiec, M., Ignatiuk, D., Kolondra, L., Kruss, A., Luks, B., Moskalik, M., Pastusiak, T.,
Strzelewicz, A., Walczowski, W., and Wawrzyniak, T.: Factors controlling terminus position of Hansbreen, a tidewater glacier in Svalbard, J. Geophys. Res.-Earth Surf., 126, e2020JF005763, https://doi.org/10.1029/2020JF005763, 2021.
Box, J. E., Colgan, W. T., Wouters, B., Burgess, D. O., O'Neel, S., Thomson,
L. I., and Mernild, S. H.: Global sea-level contribution from Arctic land
ice: 1971 to 2017, Environ. Res. Lett., 13, 1–11,
https://doi.org/10.1088/1748-9326/AAF2ED, 2019.
Braithwaite, R. J.: Positive degree-day factors for ablation on the
Greenland ice sheet studied by energy-balance modelling, J. Glaciol., 41,
153–160, https://doi.org/10.1017/S0022143000017846, 1995.
Braithwaite, R. J. and Olesen, O. B.: Calculation of glacier ablation from
air temperature, West Greenland, in: Glacier fluctuations and climatic
change, edited by: Oerlemans, J., Kluwer Academic Publishers, Dordrecht,
219–233,
https://www.research.manchester.ac.uk/portal/en/publications/ calculation-of-glacier-ablation-from-air-temperature-west-greenland(5823a1a2-551e-4270-8d60-b5d23422ebdb)/export.html
(last access: 23 December 2021), 1989.
Christiansen, H. H., Gilbert, G. L., Neumann, U., Demidov, N., Guglielmin, M.,
Isaksen, K., Osuch, M., and Boike, J.: Ground ice content, drilling methods and
equipment and permafrost dynamics in Svalbard 2016–2019 (PermaSval), Zenodo,
https://doi.org/10.5281/ZENODO.4294095, 2021.
Claremar, B., Obleitner, F., Reijmer, C., Pohjola, V., Waxegård, A., Karner, F., and Rutgersson, A.: Applying a mesoscale atmospheric model to Svalbard glaciers, Adv. Meteorol., 2012, 321649,
https://doi.org/10.1155/2012/321649, 2012.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A.,
Jansson, P., Braithwaite, R. J., Kaser, G., Möller, M., Nicholson, L.
and Zemp, M.: Glossary of glacier mass balance and related terms, IHP-VII
Te., UNESCO-IHP, Paris, https://unesdoc.unesco.org/ark:/48223/pf0000192525 (last access: 23 December 2021), 2011.
Decaux, L., Grabiec, M., Ignatiuk, D., and Jania, J.: Role of discrete water recharge from supraglacial drainage systems in modeling patterns of subglacial conduits in Svalbard glaciers, The Cryosphere, 13, 735–752, https://doi.org/10.5194/tc-13-735-2019, 2019.
Førland, E. J., Isaksen, K., Lutz, J., Hanssen-Bauer, I., Schuler, T. V., Dobler, A., Gjelten, H. M., and Vikhamar-Schuler, D.: Measured and modeled historical precipitation trends for Svalbard, J. Hydrometeorol., 21, 1279–1296,
https://doi.org/10.1175/JHM-D-19-0252.1, 2020.
Gabbi, J., Carenzo, M., Pellicciotti, F., Bauder, A., and Funk, M.: A
comparison of empirical and physically based glacier surface melt models for
long-term simulations of glacier response, J. Glaciol., 60, 1140–1154,
https://doi.org/10.3189/2014JOG14J011, 2014.
Grabiec, M., Budzik, T., and Głowacki, P.: Modeling and hindcasting of the mass balance of Werenskioldbreen (Southern Svalbard), Arct. Antarct. Alp. Res., 44, 164–179, https://doi.org/10.1657/1938-4246-44.2.164, 2012.
Grabiec, M., Ignatiuk, D., Jania, J. A., Moskalik, M., Głowacki, P., Błaszczyk, M., Budzik, T., and Walczowski, W.: Coast formation in an Arctic
area due to glacier surge and retreat: The Hornbreen–Hambergbreen case from
Spistbergen, Earth Surf. Process. Landf., 43, 387–400,
https://doi.org/10.1002/ESP.4251, 2018.
Gwizdała, M., Jeleńska, M., and Łęczyński, L.: The magnetic
method as a tool to investigate the Werenskioldbreen environment (south-west
Spitsbergen, Arctic Norway), Polar Res., 37, 1–9,
https://doi.org/10.1080/17518369.2018.1436846, 2018.
Hagen, J., Dunse, T., Eiken, T., Kohler, J., Moholdt, G., Nuth, C., Schuler,
T., and Østby, T.: The mass balance of the Austfonna Ice Cap, Svalbard,
2004–2010, Geophys. Res. Abstr. 14, EGU2012-6085-1, 2012.
Hamed, K. H. and Rao, R.: A modified Mann-Kendall trend test for
autocorrelated data, J. Hydrol., 204, 182–196, 1998.
Hanssen-Bauer, I., Førland, E.J., Hisdal, H., Mayer, S., Sandø, A. B.,
and Sorteberg, A. (Eds.): Climate in Svalbard 2100 – a knowledge base for
climate adaptation, Norway, Norwegian Centre of Climate Services (NCCS) for
Norwegian Environment Agency (Miljødirektoratet), 208 pp., (NCCS report
1/2019), https://doi.org/10.25607/OBP-888, 2019.
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol.,
282, 104–115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003.
Ignatiuk, D.: Meteorological data from the Werenskioldbreen (Svalbard)
2009–2020, Zenodo [data set], https://doi.org/10.5281/zenodo.6528321, 2021a.
Ignatiuk, D.: Glaciological data (point mass balance, SWE, snow depth, bulk
snow density, modelled runoff) from Werenskioldbreen (Svabard) 2009–2020, Zenodo
[data set], https://doi.org/10.5281/zenodo.5792168, 2021b.
Ignatiuk, D.: Glacier mass balance: Werenskioldbreen, https://catalog-intaros.nersc.no/dataset/glacier-mass-balance-werenskioldbreen, INTAROS Data Catalogue [data set], last access: 24 May 2022.
Ignatiuk, D. and Małarzewski, Ł.: https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7A0C3C8EAEA1B8F61D8F0B57177B7098#/metadata/abc6becf-97f0-4dca-b597-2fa3438f43ab, Geonetwork [data set], last access: 24 May 2022a.
Ignatiuk, D. and Małarzewski, Ł.: https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7A0C3C8EAEA1B8F61D8F0B57177B7098#/metadata/bdd6b724-d75c-49a1-83c6-eb2007107cde, Geonetwork [data set], last access: 24 May 2022b.
Ignatiuk, D. and Małarzewski, Ł.: https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7A0C3C8EAEA1B8F61D8F0B57177B7098#/metadata/d0ad64ab-ad70-43d7-9383-8a9213e6c40f, Geonetwork [data set], last access: 24 May 2022c.
Ignatiuk, D. and Małarzewski, Ł.: https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7A0C3C8EAEA1B8F61D8F0B57177B7098#/metadata/12ed9717-8cd7-4583-b2c6-089d50e6ad61, Geonetwork [data set], last access: 24 May 2022d.
Ignatiuk, D. and Małarzewski, Ł.: https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7A0C3C8EAEA1B8F61D8F0B57177B7098#/metadata/fa3bd41b-dfbb-49e8-bdf6-7c56e9bb902f, Geonetwork [data set], last access: 24 May 2022e.
Ignatiuk, D. and Małarzewski, Ł.: https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7A0C3C8EAEA1B8F61D8F0B57177B7098#/metadata/9309a6b1-663c-4227-9eb6-39761c1d868d, Geonetwork [data set], last access: 24 May 2022f.
Ignatiuk, D. and Małarzewski, Ł.: https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7A0C3C8EAEA1B8F61D8F0B57177B7098#/metadata/5aa3b739-af33-4e57-bf68-7a8757985b2d, Geonetwork [data set], last access: 24 May 2022g.
Ignatiuk, D., Piechota, A., Ciepły, M., and Luks, B.: Changes of
altitudinal zones of Werenskioldbreen and Hansbreen in period 1990–2008,
Svalbard, AIP Conf. Proc., 1618, 280, https://doi.org/10.1063/1.4897727,
2015.
IPCC: The ocean and cryosphere in a changing climate, https://www.ipcc.ch/srocc/home/ (last access: 1 April 2020), 2019.
Isaksen, K., Nordli, Førland, E. J., Łupikasza, E., Eastwood, S., and
Niedźwiedź, T.: Recent warming on Spitsbergen – Influence of
atmospheric circulation and sea ice cover, J. Geophys. Res.-Atmos., 121,
11913–11931, https://doi.org/10.1002/2016JD025606, 2016.
Łepkowska, E. and Stachnik, L.: which drivers control the suspended sediment flux in a High Arctic glacierized basin (Werenskioldbreen, Spitsbergen)?, Water, 10, 1408, https://doi.org/10.3390/W10101408, 2018.
Łupikasza, E. B., Ignatiuk, D., Grabiec, M., Cielecka-Nowak, K., Laska, M., Jania, J., Luks, B., Uszczyk, A., and Budzik, T.: The role of winter rain in the glacial system on Svalbard, Water, 11, 334, https://doi.org/10.3390/W11020334, 2019.
Majchrowska, E., Ignatiuk, D., Jania, J., Marszałek, H., and Wasik, M.:
Seasonal and interannual variability in runoff from the Werenskioldbreen
catchment, Spitsbergen, Polish Polar Res., 36, 197–224,
https://doi.org/10.1515/popore-2015-0014, 2015.
Moholdt, G., Nuth, C., Hagen, J. O., and Kohler, J.: Recent elevation changes
of Svalbard glaciers derived from ICESat laser altimetry, Remote Sens.
Environ., 114, 2756–2767, https://doi.org/10.1016/J.RSE.2010.06.008, 2010.
Möller, M., Finkelnburg, R., Braun, M., Hock, R., Jonsell, U., Pohjola,
V. A., Scherer, D., and Schneider, C.: Climatic mass balance of the ice cap
Vestfonna, Svalbard: A spatially distributed assessment using ERA-Interim
and MODIS data, J. Geophys. Res.-Earth Surf., 116, 3009,
https://doi.org/10.1029/2010JF001905, 2011.
Noël, B., Jakobs, C. L., van Pelt, W. J. J., Lhermitte, S., Wouters, B.,
Kohler, J., Hagen, J. O., Luks, B., Reijmer, C. H., van de Berg, W. J., and
van den Broeke, M. R.: Low elevation of Svalbard glaciers drives high mass
loss variability, Nat. Commun., 11, 4597,
https://doi.org/10.1038/s41467-020-18356-1, 2020.
Nordli, Ø., Przybylak, R., Ogilvie, A. E. J., and Isaksen, K.: Long-term temperature trends and variability on Spitsbergen: The extended Svalbard airport temperature series, 1898–2012, Polar Res., 33, 1898–2012, https://doi.org/10.3402/polar.v33.21349, 2014.
Nuth, C., Gilbert, A., Köhler, A., McNabb, R., Schellenberger, T.,
Sevestre, H., Weidle, C., Girod, L., Luckman, A., and Kääb, A.:
Dynamic vulnerability revealed in the collapse of an Arctic tidewater
glacier, Sci. Rep.-UK, 9, 5541, https://doi.org/10.1038/s41598-019-41117-0,
2019.
Ohmura, A.: Physical basis for the temperature-based melt-index method, J.
Appl. Meteorol., 40, 753–761,
https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2, 2001.
Osuch, M. and Wawrzyniak, T.: Inter- and intra-annual changes in air
temperature and precipitation in western Spitsbergen, Int. J. Climatol., 37,
3082–3097, https://doi.org/10.1002/JOC.4901, 2017.
Osuch, M., Wawrzyniak, T., and Łepkowska, E.: Changes in the flow regime of
High Arctic catchments with different stages of glaciation, SW Spitsbergen,
Sci. Total Environ., 817, 152924, https://doi.org/10.1016/J.SCITOTENV.2022.152924, 2022.
Østby, T. I., Schuler, T. V., and Westermann, S.: Severe cloud
contamination of MODIS Land Surface Temperatures over an Arctic ice cap,
Svalbard, Remote Sens. Environ., 142, 95–102,
https://doi.org/10.1016/J.RSE.2013.11.005, 2014.
Østby, T. I., Schuler, T. V., Hagen, J. O., Hock, R., Kohler, J., and Reijmer, C. H.: Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014, The Cryosphere, 11, 191–215, https://doi.org/10.5194/tc-11-191-2017, 2017.
Pälli, A., Moore, J. C., Jania, J.,
Kolondra, L., and Głowacki, P.: The drainage pattern of Hansbreen and
Werenskioldbreen, two polythermal glaciers in Svalbard, Polar Res., 22,
355–371, https://doi.org/10.1111/j.1751-8369.2003.tb00117.x, 2003.
Pellicciotti, F., Ragettli, S., Carenzo, M., and McPhee, J.: Changes of
glaciers in the Andes of Chile and priorities for future work, Sci. Total
Environ., 493, 1197–1210, https://doi.org/10.1016/J.SCITOTENV.2013.10.055, 2014.
Schuler, T. V., Dunse, T., Østby, T. I., and Hagen, J. O.: Meteorological
conditions on an Arctic ice cap – 8 years of automatic weather station data
from Austfonna, Svalbard, Int. J. Climatol., 34, 2047–2058,
https://doi.org/10.1002/joc.3821, 2014.
Schuler, T. V., Kohler, J., Elagina, N., Hagen, J. O. M., Hodson, A. J., Jania, J. A., Kääb, A. M., Luks, B., Małecki, J., Moholdt, G., Pohjola, V. A., Sobota, I., and Van Pelt, W. J. J.: Reconciling Svalbard Glacier Mass Balance, Front. Earth Sci., 8, 156, https://doi.org/10.3389/feart.2020.00156, 2020.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.2307/2285891, 1968.
Stachnik, L., Majchrowska, E., Yde, J. C., Nawrot, A. P., Cichała-Kamrowska, K., Ignatiuk, D., and Piechota, A.: Chemical denudation and the
role of sulfide oxidation at Werenskioldbreen, Svalbard, J. Hydrol., 538,
177–193, https://doi.org/10.1016/J.JHYDROL.2016.03.059, 2016a.
Stachnik, Ł., Yde, J. C., Kondracka, M., Ignatiuk, D., and Grzesik, M.:
Glacier naled evolution and relation to the subglacial drainage system based
on water chemistry and GPR surveys (Werenskioldbreen, SW Svalbard), Ann.
Glaciol., 57, 19–30, https://doi.org/10.1017/AOG.2016.9, 2016b.
Stachnik, Ł., Yde, J. C., Nawrot, A., Uzarowicz, Ł., Łepkowska, E., and
Kozak, K.: Aluminium in glacial meltwater demonstrates an association with
nutrient export (Werenskiöldbreen, Svalbard), Hydrol. Process., 33,
1638–1657, https://doi.org/10.1002/HYP.13426, 2019.
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.: Estimating snow water equivalent using snow depth data and climate classes, J. Hydrometeorol., 11, 1380–1394, https://doi.org/10.1175/2010JHM1202.1, 2010.
Sułowicz, S., Bondarczuk, K., Ignatiuk, D., Jania, J. A., and
Piotrowska-Seget, Z.: Microbial communities from subglacial water of naled
ice bodies in the forefield of Werenskioldbreen, Svalbard, Sci. Total
Environ., 723, 138025, https://doi.org/10.1016/J.SCITOTENV.2020.138025,
2020.
Uszczyk, A., Grabiec, M., Laska, M., Kuhn, M., and Ignatiuk, D.: Importance
of snow as component of surface mass balance of Arctic glacier (Hansbreen,
southern Spitsbergen), Polish Polar Res., 40, 311–338,
https://doi.org/10.24425/PPR.2019.130901, 2019.
van Pelt, W., Pohjola, V., Pettersson, R., Marchenko, S., Kohler, J., Luks, B., Hagen, J. O., Schuler, T. V., Dunse, T., Noël, B., and Reijmer, C.: A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018), The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, 2019.
Vikhamar-Schuler, D., Isaksen, K., Haugen, J. E., Tømmervik, H., Luks, B., Schuler, T. V., and Bjerke, J. W.: Changes in winter warming events in the Nordic Arctic Region, J. Climate, 29, 6223–6244, https://doi.org/10.1175/JCLI-D-15-0763.1, 2016.
Walczowski, W., Beszczynska-Möller, A., Wieczorek, P., Merchel, M., and
Grynczel, A.: Oceanographic observations in the Nordic Sea and Fram Strait
in 2016 under the IO PAN long-term monitoring program AREX, Oceanologia, 59,
187–194, https://doi.org/10.1016/J.OCEANO.2016.12.003, 2017.
Wawrzyniak, T. and Osuch, M.: A 40-year High Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard), Earth Syst. Sci. Data, 12, 805–815, https://doi.org/10.5194/essd-12-805-2020, 2020.
Wawrzyniak, T., Osuch, M., Napiórkowski, J., and Westermann, S.:
Modelling of the thermal regime of permafrost during 1990–2014 in Hornsund,
Svalbard, Polish Polar Res., 37, 219–242,
https://doi.org/10.1515/POPORE-2016-0013, 2016.
WGMS: Fluctuations of Glaciers Database, World Glacier Monitoring Service [data set],
Zurich, Switzerland, https://doi.org/10.5904/wgms-fog-2021-05, 2021.
Yadav, J., Kumar, A., and Mohan, R.: Dramatic decline of Arctic sea ice linked to global warming, Nat. Hazards, 103, 2617–2621, https://doi.org/10.1007/s11069-020-04064-y, 2020.
Short summary
This paper presents details of the glaciological and meteorological dataset (2009–2020) from the Werenskioldbreen (Svalbard). These high-quality and long-term observational data already have been used to assess hydrological models and glaciological studies. The objective of releasing these data is to improve their usage for calibration and validation of the remote sensing products and models, as well as to increase data reuse.
This paper presents details of the glaciological and meteorological dataset (2009–2020) from the...
Altmetrics
Final-revised paper
Preprint