Articles | Volume 14, issue 5
https://doi.org/10.5194/essd-14-2385-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-2385-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Compilation of Last Interglacial (Marine Isotope Stage 5e) sea-level indicators in the Bahamas, Turks and Caicos, and the east coast of Florida, USA
Department of Geoscience, University of Wisconsin–Madison, Madison,
53706, USA
Alexandra Villa
Department of Geoscience, University of Wisconsin–Madison, Madison,
53706, USA
Peter M. Chutcharavan
Department of Geoscience, University of Wisconsin–Madison, Madison,
53706, USA
Related authors
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
Erica L. Ashe, Nicole S. Khan, Lauren T. Toth, Andrea Dutton, and Robert E. Kopp
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 1–29, https://doi.org/10.5194/ascmo-8-1-2022, https://doi.org/10.5194/ascmo-8-1-2022, 2022
Short summary
Short summary
We develop a new technique to integrate realistic uncertainties in probabilistic models of past sea-level change. The new framework performs better than past methods (in precision, accuracy, bias, and model fit) because it enables the incorporation of previously unused data and exploits correlations in the data. This method has the potential to assess the validity of past estimates of extreme sea-level rise and highstands providing better context in which to place current sea-level change.
Peter M. Chutcharavan and Andrea Dutton
Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, https://doi.org/10.5194/essd-13-3155-2021, 2021
Short summary
Short summary
This paper summarizes a global database of fossil coral U-series ages for the Last Interglacial period and was compiled as a contribution to the World Atlas of Last Interglacial Shorelines. Each entry contains relevant age, elevation and sample metadata, and all ages and isotope activity ratios have been normalized and recalculated using the same decay constant values. We also provide two example geochemical screening criteria to help users assess sample age quality.
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
Erica L. Ashe, Nicole S. Khan, Lauren T. Toth, Andrea Dutton, and Robert E. Kopp
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 1–29, https://doi.org/10.5194/ascmo-8-1-2022, https://doi.org/10.5194/ascmo-8-1-2022, 2022
Short summary
Short summary
We develop a new technique to integrate realistic uncertainties in probabilistic models of past sea-level change. The new framework performs better than past methods (in precision, accuracy, bias, and model fit) because it enables the incorporation of previously unused data and exploits correlations in the data. This method has the potential to assess the validity of past estimates of extreme sea-level rise and highstands providing better context in which to place current sea-level change.
Peter M. Chutcharavan and Andrea Dutton
Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, https://doi.org/10.5194/essd-13-3155-2021, 2021
Short summary
Short summary
This paper summarizes a global database of fossil coral U-series ages for the Last Interglacial period and was compiled as a contribution to the World Atlas of Last Interglacial Shorelines. Each entry contains relevant age, elevation and sample metadata, and all ages and isotope activity ratios have been normalized and recalculated using the same decay constant values. We also provide two example geochemical screening criteria to help users assess sample age quality.
Cited articles
Aurell, M., McNeill, D. F., Guyomard, T., and Kindler, P.: Pleistocene shallowing-upward sequences in New Providence, Bahamas: Signature of high-frequency sea-level fluctuations in shallow carbonate platforms, J. Sediment. Res., B65, 170–182, 1995.
Braithwaite, C. J. R.: Coral-reef records of Quaternary changes in climate
and sea-level, Earth-Sci. Rev., 156, 137–154,
https://doi.org/10.1016/j.earscirev.2016.03.002, 2016.
Burdette, K. E., Rink, W. J., Means, G. H., and Portell, R. W.: Optical
Dating of the Anastasia Formation, Northeastern Florida,
Southeastern Geology, 46, 173–185, 2009.
Caputo, M. V.: Sedimentary architecture
of Pleistocene eolian calcarenites, San
Salvador Island, Bahamas, in: Terrestrial and
Shallow Marine Geology of the
Bahamas and Bermuda, edited by: Curran,
H. A. and White, B., Geological
Society of America Special Paper,
300, 63–76, 1995.
Carew, J. L. and Mylroie, J. E.:
Pleistocene and Holocene stratigraphy
of San Salvador Island, Bahamas, with
reference to marine and terrestrial
lithofacies at French Bay, in: Guidebook for Geological
Society of America, Orlando Annual
Meeting Field Trip #2, edited by: Curran, H.
A., Fort Lauderdale,
FL, CCFL Bahamian Field Station,
11–61, 1985.
Chen, J. H., Curran, H. A., White, B., and Wasserburg, G. J.: Precise
chronology of the last interglacial period: 234U–230Th data from
fossil coral reefs in the Bahamas, Geol. Soc. Am. Bull.,
103, 82–97, 1991.
Chutcharavan, P. M. and Dutton, A.: A global compilation of U-series-dated fossil coral sea-level indicators for the Last Interglacial period (Marine Isotope Stage 5e), Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, 2021.
Curran, H. A. and White, B.: Introduction: Bahamas geology, in: Terrestrial and shallow marine geology of the Bahamas and Bermuda, Geological Society of America, Boulder, CO, 1–3, https://doi.org/10.1130/0-8137-2300-0.1, 1995.
Dunham, R. J.: Keystone vugs in carbonate beach deposits, AAPG Bull.,
845, 1970.
Dutton, A. and Lambeck, K.: Ice Volume and Sea Level During the Last
Interglacial, Science, 337, 216–219, https://doi.org/10.1126/science.1205749, 2012.
Dutton, A., Villa, A., and Chutcharavan, P. M.: Database of Last
Interglacial sea level indicators from the Bahamas, Turks and Caicos, and
the east coast of Florida, USA, Zenodo [data set],
https://doi.org/10.5281/zenodo.5596898, 2021.
Dyer, B., Austermann, J., D'Andrea, W. J., Creel, R. C., Sandstrom, M. R.,
Cashman, M., Rovere, A., and Raymo, M. E.: Sea-level trends across The
Bahamas constrain peak last interglacial ice melt, P. Natl. Acad. Sci. USA,
118, e2026839118, https://doi.org/10.1073/pnas.2026839118, 2021.
Fruijtier, C., Elliott, T., and Schlager, W.: Mass-spectrometric 234U-230Th
ages from the Key Largo Formation, Florida Keys, United States: constraints
on diagenetic age disturbance, Geol. Soc. Am. Bull., 112, 267–277,
2000.
Garrett, P. and Gould, S. J.: Geology of New Providence Island, Bahamas, Geol. Soc. Am. Bull., 95, 209–220, 1984.
Godefroid, F., Kindler, P., Chiaradia, M., and Fischer, G.: The Misery Point
cliff, Mayaguana Island, SE Bahamas: a unique record of sea-level highstands
since the Early Pleistocene, Swiss J. Geosci., 112, 287–305,
https://doi.org/10.1007/s00015-018-0323-6, 2019.
Harmon, R., Mitterer, R., Kriausakul, N., Land, L., Schwarcz, H., Garrett,
P., Larson, G., Leonard Vacher, H., and Rowe, M.: U-series and amino-acid
racemization geochronology of Bermuda: Implications for eustatic sea-level
fluctuation over the past 250,000 years, Palaeogeogr. Palaeocl., 44, 41–70, 1983.
Hattin, D. E. and Warren, V. L.: Stratigraphic analysis of a fossil
Neogoniolithon-capped patch reef and associated facies, San Salvador, Bahamas, Coral
Reefs, 8, 19–30, 1989.
Hazard, C. S., Ritter, S. M., McBride, J. H., Tingey, D. G., and Keach, R. W.: Ground-penetrating-radar characterization and porosity evolution of an upper Pleistocene oolite-capped depositional cycle, Red Bays, northwest Andros Island, Great Bahama Bank, J. Sediment. Res., 87, 523–545, 2017.
Hearty, P.: The Geology of Eleuthera Island, Bahamas: jA Rosetta Stone of
Quaternary stratigraphy and sea-level history, Quaternary Sci. Rev.,
17, 333–355, 1998.
Hearty, P. and Kindler, P.: New Perspectives on Bahamian Geology: San
Salvador Isalnd, Bahamas, J. Coast. Res., 9, 577–594, 1993.
Hearty, P. and Kindler, P.: The Stratigraphy and Surficial Geology of New
Providence and Surrounding Islands, Bahamas, J. Coast. Res.,
13, 798–812, 1997.
Hearty, P. J. and Kaufman, D. S.: Whole-Rock Aminostratigraphy and
Quaternary Sea-Level History of the Bahamas, Quaternary Res., 54,
163–173, https://doi.org/10.1006/qres.2000.2164, 2000.
Hearty, P. J., Hollin, J. T., Neumann, A. C., O'Leary, M. J., and McCulloch,
M. T.: Global sea-level fluctuations during the Last Interglaciation (MIS
5e), Quaternary Sci. Rev., 26, 2090–2112, 2007.
Hibbert, F. D., Rohling, E. J., Dutton, A., Williams, F. H., Chutcharavan,
P. M., Zhao, C., and Tamisiea, M. E.: Coral indicators of past sea-level
change: A global repository of U-series dated benchmarks, Quaternary Sci.
Rev., 145, 1–56, https://doi.org/10.1016/j.quascirev.2016.04.019, 2016.
Jackson, K. L.: Sedimentary record of Holocene and Pleistocene sea-level
oscillations in the Exuma Cays and New Providence, Bahamas, PhD thesis, University of
Miami, Coral Gables, FL, 561 pp., 2017.
Kerans, C., Zahm, C., Bachtel, S. L., Hearty, P., and Cheng, H.: Anatomy of
a late Quaternary carbonate island: Constraints on timing and magnitude of
sea-level fluctuations, West Caicos, Turks and Caicos Islands, BWI,
Quaternary Sci. Rev., 205, 193–223, https://doi.org/10.1016/j.quascirev.2018.12.010,
2019.
Kindler, P. and Hearty, P. J.: Carbonate petrography as an indicator of
climate and sea-level changes: new data from Bahamian Quaternary units,
Sedimentology, 43, 381–399, 1996.
Kindler, P. and Hine, A. C.: The
paradoxical occurrence of oolitic
limestone on the eastern islands of Great
Bahama Bank: where do the ooids come
from?, IAS Special Publication, 40,
113–122, 2008.
Kindler, P., Mylroie, J., Curran, A., Carew, J., Gamble, D. W., Rothfus, T.
A., Savarese, M., and Sealey, N. E.: Geology of Central Eleuthera, Bahamas,
A field trip guide, 97 pp., 2010.
Kindler, P., Godefroid, F., Chiaradia, M., Ehlert, C., Eisenhauer, A., Frank, M., Hasler, C-.A., and Samankassou, E.: Discovery of Miocene to early Pleistocene deposits on Mayaguana, Bahamas: Evidence for recent active tectonism on the North American margin, Geology, 39, 523–526, 2011.
Lambeck, K., Purcell, A., and Dutton, A.: The anatomy of interglacial sea
levels: The relationship between sea levels and ice volumes during the Last
Interglacial, Earth Planet. Sci. Lett., 315–316, 4-11, 2012.
Mauz, B., Vacchi, M., Green, A., Hoffmann, G., and Cooper, A.: Beachrock: A
tool for reconstructing relative sea level in the far-field, Mar. Geol.,
362, 1–16, https://doi.org/10.1016/j.margeo.2015.01.009, 2015.
Muhs, D., Simmons, K., and Schumann, R.: Sea-level history of the past two
interglacial periods: new evidence from U-series dating of reef corals from
south Florida, Quaternary Sci. Rev., 30, 570–590, 2011.
Muhs, D. R., Budahn, J. R., Prospero, J. M., and Carey, S. N.: Geochemical
evidence for African dust inputs to soils of western Atlantic islands:
Barbados, the Bahamas, and Florida, J. Geophys. Res., 112,
F02009, https://doi.org/10.1029/2005JF000445, 2007.
Muhs, D. R., Simmons, K. R., Schumann, R. R., Schweig, E. S., and Rowe, M.
P.: Testing glacial isostatic adjustment models of last-interglacial sea
level history in the Bahamas and Bermuda, Quaternary Sci. Rev., 233, 106212, https://doi.org/10.1016/j.quascirev.2020.106212, 2020.
Multer, H. G., Gischler, E., Lundberg, J., Simmons, K., and Shinn, E. A.:
Key Largo limestone revisited: Pleistocene shelf-edge facies, Florida Keys,
USA, Facies, 46, 229–272, 2002.
Mylroie, J., Lace, M., Albury, N., and Mylroie, J.: Flank Margin Caves and
the Position of Mid- to Late Pleistocene Sea Level in the Bahamas, J.
Coast. Res., 36, 249–260, https://doi.org/10.2112/jcoastres-d-18-00174.1, 2020.
Neumann, A. and Moore, W.: Sea level events and Pleistocene coral ages in
the northern Bahamas, Quaternary Res., 5, 215–224, 1975.
Newell, N. D., Purdy, E. G., and Imbrie, J.: Bahamian oolitic sand, J. Geol., 68, 481–497, 1960.
Osmond, J., Carpenter, J., and Windom, H.: Th230/U234 age of the Peistocene
corals and oolites of Florida, J. Geophys. Res., 70,
1843–1847, 1965.
Purkis, S. J. and Harris, P.: Quantitative interrogation of a fossilized carbonate sand body – The Pleistocene Miami oolite of South Florida, Sedimentology, 64, 1439–1464, 2017.
Randazzo, A. F. and Jones, D. S.: The geology of Florida, University Press
of Florida, Gainesville, FL, 327 pp., 1997.
Reid, S. B.: The complex architecture of New Providence Island (Bahamas) built by multiple Pleistocene sea-level highstands, University of Miami, Coral Gables, 119 pp., 2010.
Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P.,
Gómez-Pujol, L., Harris, D. L., Casella, E., O'Leary, M. J., and Hearty,
P. J.: The analysis of Last Interglacial (MIS 5e) relative sea-level
indicators: Reconstructing sea-level in a warmer world, Earth-Sci. Rev., 159, 404–427, https://doi.org/10.1016/j.earscirev.2016.06.006, 2016.
Rovere, A., Casella, E., Harris, D. L., Lorscheid, T., Nandasena, N. A. K.,
Dyer, B., Sandstrom, M. R., Stocchi, P., D'Andrea, W. J., and Raymo, M. E.:
Giant boulders and Last Interglacial storm intensity in the North Atlantic,
P. Natl. Acad. Sci. USA, 114, 12144–12149, https://doi.org/10.1073/pnas.1712433114, 2017.
Rovere, A., Deirdre, R., Murray-Wallace, C., Simms, A. R., Vacchi, M.,
Dutton, A., Lorscheid, T., Chutcharavan, P. M., Brill, D., Bartz, M.,
Jankowske, N., Mueller, D., Cohen, K., and Gowan, E.: Descriptions of
database fields for the World Atlas of Last Interglacial Shorelines (WALIS),
Zenodo [data set], https://doi.org/10.5281/zenodo.3961543, 2020.
Shennan, I., Long, A., and Horton, B.: Handbook of Sea-Level Research, John
Wiley & Sons, West Sussex, 581 pp., 2015.
Simms, A. R.: Last interglacial sea levels within the Gulf of Mexico and northwestern Caribbean Sea, Earth Syst. Sci. Data, 13, 1419–1439, https://doi.org/10.5194/essd-13-1419-2021, 2021.
Simo, J., Guidry, S., Iannello, C., Rankey, E., Harris, C., Guarin, H., Ruf,
A., Hughes, T., Derewetzka, A., and Parker, R.: Holocene-pleistocene geology
of a transect of from isolated carbonate platform, NW Caicos platform,
British West Indies, SEPM Core Workshop, https://doi.org/10.2110/pec.08.22, 2008.
Skrivanek, A., Li, J., and Dutton, A.: Relative sea-level change during the
Last Interglacial as recorded in Bahamian fossil reefs, Quaternary Sci.
Rev., 200, 160–177, https://doi.org/10.1016/j.quascirev.2018.09.033, 2018.
Thompson, S. B. and Creveling, J. R.: A global database of marine isotope substage 5a and 5c marine terraces and paleoshoreline indicators, Earth Syst. Sci. Data, 13, 3467–3490, https://doi.org/10.5194/essd-13-3467-2021, 2021.
Thompson, W., Curran, H., and Wilson, M.: Sea-level oscillations during the
last interglacial highstand recorded by Bahamas corals, Nat. Geosci., 4, 684–687,
2011.
Usdun, H. C.: Evidence of sea-level oscillations within the Last
Interglacial from the Maimi Limestone and Bahamian oolitic shoals,
University of Miami, Coral Gables, FL, 171 pp., 2014.
van de Plassche, O.: Introduction, in: Sea-level Research: A Manual for the
Collection and Evaluation of Data, edited by: van de Plassche, O., Geobooks,
Norwich, https://doi.org/10.1007/978-94-009-4215-8_1, 1986.
Wanless, H. R. and Jeffrey, J. D. (Eds.): Carbonate environments and sequences of Caicos Platform: Field Trip Guidebook T 374, AGU, 1989.
White, B., Curran, A., and Wilson, M. A.: Bahamian coral reefs yield
evidence of a brief sea-level lowstand during the last interglacial,
Carbonate. Evaporite., 13, 10–22, 1998.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A.
J., Groth, P., Goble, C., Grethe, J. S., Heringa, J., t Hoen, P. A., Hooft,
R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A.,
Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S. A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship,
Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Short summary
This paper includes data that have been compiled to identify the position of sea level during a warm period about 125 000 years ago that is known as the Last Interglacial. Here, we have focused on compiling data for the region of the Bahamas, Turks and Caicos, and the east coast of Florida. These data were compiled and placed within a standardized format prescribed by a new database known as WALIS, which stands for World Atlas of Last Interglacial Shorelines Database.
This paper includes data that have been compiled to identify the position of sea level during a...
Special issue
Altmetrics
Final-revised paper
Preprint