Articles | Volume 14, issue 4
https://doi.org/10.5194/essd-14-2109-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2109-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of East Asia Regional Reanalysis based on advanced hybrid gain data assimilation method and evaluation with E3DVAR, ERA-5, and ERA-Interim reanalysis
Eun-Gyeong Yang
Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea
Hyun Mee Kim
CORRESPONDING AUTHOR
Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea
Dae-Hui Kim
Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea
Related authors
No articles found.
Min-Gyung Seo and Hyun Mee Kim
EGUsphere, https://doi.org/10.5194/egusphere-2025-2367, https://doi.org/10.5194/egusphere-2025-2367, 2025
Short summary
Short summary
This study explores how surface carbon dioxide (CO2) measurements help improve estimates and predictions of atmospheric CO2 concentrations. Using the observation impacts over East Asia, the research shows that even a limited number of observations can significantly reduce uncertainty in CO2 concentration forecasts. The results help guide better monitoring and estimation of atmospheric CO2 concentrations, the design of CO2 monitoring networks, and support for efforts to track CO2 more accurately.
Cited articles
Ashrit, R., Indira Rani, S., Kumar, S., Karunasagar, S., Arulalan, T.,
Francis, T., Routray, A., Laskar, S. I., Mahmood, S., Jermey, P., Maycock,
A., Renshaw, R., George, J. P., and Rajagopal, E. N.: IMDAA Regional
Reanalysis: Performance Evaluation During Indian Summer Monsoon Season, J.
Geophys. Res.-Atmos., 125, e2019JD030973,
https://doi.org/10.1029/2019JD030973, 2020.
Bonavita, M., Hamrud, M., and Isaksen, L.: EnKF and hybrid gain ensemble
data assimilation. Part II: EnKF and hybrid gain results, Mon. Weather Rev.,
143, 4865–4882, https://doi.org/10.1175/MWR-D-15-0071.1, 2015.
Borsche, M., Kaiser-Weiss, A. K., Undén, P., and Kaspar, F.: Methodologies to characterize uncertainties in regional reanalyses, Adv. Sci. Res., 12, 207–218, https://doi.org/10.5194/asr-12-207-2015, 2015.
Bosilovich, M.: NASA's modern era retrospective-analysis for research and
applications: Integrating Earth observations, Earthzine, http://www.earthzine.org/2008/09/26/nasas-modern-era-retrospective-analysis (last access: 17 March 2022), 2008.
Bosilovich, M., Lucchesi, R., and Suarez, M.: MERRA-2: File specification, NASA GMAO Office Note No. 9 (Version 1.1), NASA GMAO, GMAO NASA Goddard Space Flight Center, US, 73 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf (last access: 17 March 2022), 2015.
Bromwich, D. H., Wilson, A. B., Bai, L. S., Moore, G. W., and Bauer, P.: A
comparison of the regional Arctic System Reanalysis and the global
ERA-Interim Reanalysis for the Arctic, Q. J. Roy. Meteor. Soc., 142,
644–658, https://doi.org/10.1002/qj.2527, 2016.
Bromwich, D. H., Wilson, A. B., Bai, L., Liu, Z., Barlage, M., Shih, C. F.,
Maldonado, S., Hines, K. M., Wang, S.-H., Woollen, J., Kuo, B., Lin, H.-C.,
Wee, T.-K., Serreze, M. C., and Walsh, J. E.: The Arctic system reanalysis,
version 2, B. Am. Meteorol. Soc., 99, 805–828,
https://doi.org/10.1175/BAMS-D-16-0215.1, 2018.
Cotton, J., Forsythe, M., Warrick, F., Salonen, K., Bormann, N., and Lean, K.: AMVs in the Tropics: use in NWP, data quality and impact, Joint ECMWF/ESA Workshop on “Tropical modeling, 30 observations and data assimilation”, ECMWF, Reading, UK, 7–10 November 2016, https://www.ecmwf.int/node/16865 (last access: 17 March 2022), 2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Ebert, E. E.: Fuzzy verification of high-resolution gridded forecasts: a
review and proposed framework, Meteorol. Appl., 15, 51–64,
https://doi.org/10.1002/met.25, 2008.
Fukui, S., Iwasaki, T., Saito, K., Seko, H., and Kunii, M.: A feasibility
study on the high-resolution regional reanalysis over Japan assimilating
only conventional observations as an alternative to the dynamical
downscaling, J. Meteorol. Soc. Jpn., 96, 565–585,
https://doi.org/10.2151/jmsj.2018-056, 2018.
Gibson, J. K., Kållberg, P., Uppala, S., Nomura, A., Hernandez, A., and Serrano, E.: ERA Description, ECMWF Re-Analysis Project, Technical Report Series, 1, ECMWF, ECMWF, Reading, UK, 72 pp., https://www.ecmwf.int/en/elibrary/9584-era-description (last access: 17 March 2022), 1997.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
He, J., Zhang, F., Chen, X., Bao, X., Chen, D., Kim, H. M., Lai, H.-W.,
Leung, L. R., Ma, X., Meng, Z., Ou, T., Xiao, Z., Yang, E.-G., and Yang, K.:
Development and evaluation of an ensemble-based data assimilation system for
regional reanalysis over the Tibetan Plateau and surrounging regions, J.
Adv. Model. Earth Syst., 11, 2503–2522,
https://doi.org/10.1029/2019MS001665, 2019.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford,
P., Bidlot, J., de Boisséson, E., Bonavita, M., Browne, P., Buizza, R.,
Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes,
R., Geer, A., Haiden, T., Hólm, E., Haimberger, L., Hogan, R.,
Horányi, A., Janisková, M., Laloyaux, P., Lopez, P.,
Muñoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut,
J.-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.: Operational
global reanalysis: progress, future directions and synergies with NWP, ECMWF
ERA report series, 27, https://www.ecmwf.int/en/elibrary/18765-operational-global-reanalysis-progress-future-directions-and-synergies-nwp (last access: 17 March 2022),
2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D.. Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Houtekamer, P. L. and Zhang, F.: Review of the ensemble Kalman filter for
atmospheric data assimilation, Mon. Weather Rev., 144, 4489–4532,
https://doi.org/10.1175/MWR-D-15-0440.1, 2016.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Jermey, P. M. and Renshaw, R. J.: Precipitation representation over a
two-year period in regional reanalysis, Q. J. Roy. Meteor. Soc., 142,
1300–1310, https://doi.org/10.1002/qj.2733, 2016.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J.,
Montávez, J. P., and García-Bustamante, E.: A revised scheme for
the WRF surface layer formulation, Mon. Weather Rev., 140, 898–918,
https://doi.org/10.1175/MWR-D-11-00056.1, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woolen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2,
1996.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J.,
Fiorino, M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B.
Am. Meteorol. Soc., 83, 1631–1643,
https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kay, J. K., Kim, H. M., Park, Y.-Y., and Son, J.: Effect of doubling
ensemble size on the performance of ensemble prediction in warm season using
MOGREPS implemented in KMA, Adv. Atmos. Sci., 30,
1287–1302, https://doi.org/10.1007/s00376-012-2083-y, 2013.
Kayaba, N., Yamada, T., Hayashi, S., Onogi, K., Kobayashi, S., Yoshimoto,
K., Kamiguchi, K., and Yamashita, K.: Dynamical regional downscaling using
the JRA-55 reanalysis (DSJRA-55), Sola, 12, 1–5,
https://doi.org/10.2151/sola.2016-001, 2016.
Keyser, D.: An Overview of Observational Data Processing at NCEP (with
information on BUFR Format including “PrepBUFR” files), 6 August 2013, GSI
tutorial, https://dtcenter.ucar.edu/com-GSI/users/docs/presentations/2013_tutorial/Tue_L1_Keyser_ObsProcessing.pdf (last access: 17 March 2022), 2013.
Kim, S. and Kim, H. M.: Effect of considering sub-grid scale uncertainties
on the forecasts of a high-resolution limited area ensemble prediction
system, Pure Appl. Geophys., 174, 2021–2037,
https://doi.org/10.1007/s00024-017-1513-2, 2017.
Kim, S., Kim, H. M., Kay, J. K., and Lee, S.-W.: Development and Evaluation
of High Resolution Limited Area Ensemble Prediction System in Korea
Meteorological Administration, Atmosphere, 25, 67–83,
https://doi.org/10.14191/Atmos.2015.25.1.067, 2015 (in Korean with
English abstract).
Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E.,
Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., Dool, H. V. D.,
Jenne, R., and Fiorino, M.: The NCEP–NCAR 50-Year Reanalysis: Monthly
Means CD-ROM and Documentation, B. Am. Meteorol. Soc., 82, 247–267,
https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2, 2001.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 reanalysis: General specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C.,
Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek,
M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G.,
Parrish, D., and Shi, W.: North American Regional Reanalysis, B. Am.
Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006.
Mittermaier, M. P.: A strategy for verifying near-convection-resolving model
forecasts at observing sites, Weather Forecast., 29, 185–204,
https://doi.org/10.1175/WAF-D-12-00075.1, 2014.
National Centers for Environmental Prediction/National Weather
Service/NOAA/U.S. Department of Commerce: NCEP ADP Global Upper Air and
Surface Weather Observations (PREPBUFR format), Research Data Archive at the
National Center for Atmospheric Research, Computational and Information
Systems Laboratory, Boulder, CO [data set], https://doi.org/10.5065/Z83F-N512, 2008.
National Climatic Data Center/NESDIS/NOAA/U.S. Department of Commerce,
Meteorology Department/Florida State University, Climate Analysis
Section/Climate and Global Dynamics Division/National Center for Atmospheric
Research/University Corporation for Atmospheric Research, and Harvard
College Observatory/Harvard University: World Monthly Surface Station
Climatology. Research Data Archive at the National Center for Atmospheric
Research, Computational and Information Systems Laboratory, Boulder, CO [data set],
http://rda.ucar.edu/datasets/ds570.0/ (last access: 7 November 2019), 1981.
On, N., Kim, H. M., and Kim, S.: Effects of resolution, cumulus
parameterization scheme, and probability forecasting on precipitation
forecasts in a high-resolution limited-area ensemble prediction
system, Asia-Pac. J. Atmos. Sci., 54, 623–637,
https://doi.org/10.1007/s13143-018-0081-4, 2018.
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika,
H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S.,
Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N., and Taira, R.: The
JRA-25 reanalysis, J. Meteorol. Soc. Jpn., 85, 369–432,
https://doi.org/10.2151/jmsj.85.369, 2007.
Park, J. and Kim, H. M.: Design and evaluation of CO2 observation network to optimize surface CO2 fluxes in Asia using observation system simulation experiments, Atmos. Chem. Phys., 20, 5175–5195, https://doi.org/10.5194/acp-20-5175-2020, 2020.
Penny, S. G.: The hybrid local ensemble transform Kalman filter, Mon.
Weather Rev., 142, 2139–2149, https://doi.org/10.1175/MWR-D-13-00131.1,
2014.
Penny, S. G., Behringer, D. W., Carton, J. A., and Kalnay, E.: A hybrid
global ocean data assimilation system at NCEP, Mon. Weather Rev., 143,
4660–4677, https://doi.org/10.1175/MWR-D-14-00376.1, 2015.
Que, L. J., Que, W. L., and Feng, J. M.: Intercomparison of different
physics schemes in the WRF model over the Asian summer monsoon region,
Atmos. Ocean. Sci. Lett., 9, 169–177,
https://doi.org/10.1080/16742834.2016.1158618, 2016.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom,
S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for
Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Delst, P. V., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Dool, H. V. D., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou,
C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge,
G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B.
Am. Meteorol. Soc., 91, 1015–1057,
https://doi.org/10.1175/2010BAMS3001.1, 2010.
Schubert, S., Pfaendtner, J., and Rood, R.: An assimilated dataset for earth
science applications, B. Am. Meteorol. Soc., 74, 2331–2342,
https://doi.org/10.1175/1520-0477(1993)074<2331:AADFES>2.0.CO;2,
1993.
Shiferaw, A., Tadesse, T., Rowe, C., and Oglesby, R.: Precipitation extremes
in dynamically downscaled climate scenarios over the greater horn of Africa,
Atmosphere, 9, 112, https://doi.org/10.3390/atmos9030112, 2018.
Shin, I.-C, Kim, J.-G., Chung, C.-Y., Baek, S.-K., and Lee, J.-R.: The
impact of the COMS data on the KMA NWP System, in: 14th JCSDA Technical Review
Meeting & Science Workshop on Satellite Data Assimilation, Moss Landing,
CA, U.S., 31 May–2 June 2016, https://dokumen.tips/documents/the-impact-of-the-coms-data-on-the-kma-nwp-the-impact-of-the-coms-data-on-the.html (last access: 17 March 2022), 2016.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,
Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the
advanced research WRF version 3, NCAR Tech. Note, NCAR/TN-475+STR,
https://opensky.ucar.edu/islandora/object/technotes:500/datastream/PDF/view (last access: 17 March 2022),
2008.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek,
M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and
verification of the unified NOAH land surface model in the WRF model, in: 20th
conference on weather analysis and forecasting/16th conference on numerical
weather prediction, American Meteorological Society, Seattle, WA, U.S., 14
January 2004, 14.2A,
https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm (last access: 17 March 2022), 2004.
Theis, S. E., Hense, A., and Damrath, U.: Probabilistic precipitation
forecasts from a deterministic model: A pragmatic approach, Meteorol. Appl.,
12, 257–268, https://doi.org/10.1017/S1350482705001763, 2005.
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit
forecasts of winter precipitation using an improved bulk microphysics
scheme. Part II: Implementation of a new snow parameterization, Mon. Weather
Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008.
Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V.
D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A.,
Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E.,
Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J.,
Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher,
M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L.,
Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette,
J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K.
E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40
re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012,
https://doi.org/10.1256/qj.04.176, 2005.
Warrick, F.: Options for filling the LEO-GEO AMV Coverage Gap, NWP SAF Tech.
Doc., NWP SAF-MO-TR-030, 21 pp.,
https://nwpsaf.eu/monitoring/amv/investigations/gapfill_amvs/nwpsaf_mo_tr_030.pdf (last access: 17 March 2022), 2015
Wilks, D. S.: Statistical methods in the atmospheric sciences, 2nd edn.,
Academic Press, 627 pp.,
https://sunandclimate.files.wordpress.com/2009/05/statistical-methods-in-the-atmospheric-sciences-0127519661.pdf (last access: 17 March 2022),
2006.
Wilson, L.: Verification of Categorical Forecasts – The Contingency Table, 7th International Verification Methods Workshop, Berlin, Germany, 3–11 May 2017, https://www.7thverificationworkshop.de/Presentation/tutorial_verification_of_categorial_forecasts.pdf (last access: 24 April 2022), 2017.
Yang, E.-G. and Kim, H. M.: Evaluation of a regional reanalysis and
ERA-Interim over East Asia using in situ observations during 2013–14, J.
Appl. Meteorol. Climatol., 56, 2821–2844,
https://doi.org/10.1175/JAMC-D-16-0227.1, 2017.
Yang, E.-G. and Kim, H. M.: Evaluation of Short-Range Precipitation
Reforecasts from East Asia Regional Reanalysis, J. Hydrometeorol., 20,
319–337, https://doi.org/10.1175/JHM-D-18-0068.1, 2019.
Yang, E.-G. and Kim, H. M.: A comparison of variational, ensemble-based,
and hybrid data assimilation methods over East Asia for two one-month
periods, Atmos. Res., 249, 105257,
https://doi.org/10.1016/j.atmosres.2020.105257, 2021a.
Yang, E.-G. and Kim, H. M.: East Asia Regional Reanalysis 6 hourly data on
pressure levels from 2010 to 2019, V1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/7P8MZT,
2021b.
Yang, E.-G. and Kim, H. M.: East Asia Regional Reanalysis 6 hourly
precipitation data from 2010 to 2019, V1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/Q07VRC, 2021c.
Yoo, C. and Cho, E.: Comparison of GCM precipitation predictions with their
RMSEs and pattern correlation coefficients, Water, 10, 28,
https://doi.org/10.3390/w10010028, 2018.
Zhang, F., Zhang, M., and Poterjoy, J.: E3DVar: Coupling an ensemble Kalman
filter with three-dimensional variational data assimilation in a
limited-area weather prediction model and comparison to E4DVar, Mon. Weather
Rev., 141, 900–917, https://doi.org/10.1175/MWR-D-12-00075.1, 2013.
Zhang, Q., Pan, Y., Wang, S., Xu, J., and Tang, J.: High-resolution regional
reanalysis in China: Evaluation of 1 year period experiments, J. Geophys.
Res.-Atmos., 122, 10801–10819, https://doi.org/10.1002/2017JD027476, 2017.
Short summary
The East Asia Regional Reanalysis (EARR) system is developed based on the advanced hybrid gain data assimilation method (AdvHG) using the Weather Research and Forecasting (WRF) model and conventional observations. Based on EARR, high-resolution regional reanalysis and reforecast fields are produced with 12 km horizontal resolution over East Asia for the period 2010–2019. Compared to ERA5, EARR represents precipitation better for January and July 2017 over East Asia.
The East Asia Regional Reanalysis (EARR) system is developed based on the advanced hybrid gain...
Altmetrics
Final-revised paper
Preprint