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Abstract. The East Asia Regional Reanalysis (EARR) system is developed based on the advanced hybrid gain
data assimilation method (AdvHG) using the Weather Research and Forecasting (WRF) model and conventional
observations. Based on EARR, the high-resolution regional reanalysis and reforecast fields are produced with
12 km horizontal resolution over East Asia for 2010–2019. The newly proposed AdvHG is based on the hybrid
gain approach, weighting two different analyses for an optimal analysis. The AdvHG differs from the hybrid
gain in that (1) E3DVAR is used instead of EnKF, (2) 6 h forecast of ERA5 is used to be more consistent
with WRF, and (3) the preexisting, state-of-the-art reanalysis is used. Thus, the AdvHG can be regarded as an
efficient approach for generating regional reanalysis datasets thanks to cost savings as well as the use of the
state-of-the-art reanalysis. The upper-air variables of EARR are verified with those of ERA5 for January and
July 2017 and the 10-year period 2010–2019. For upper-air variables, ERA5 outperforms EARR over 2 years,
whereas EARR outperforms (shows comparable performance to) ERA-I and E3DVAR for January 2017 (July
2017). EARR represents precipitation better than ERA5 for January and July 2017. Therefore, although the
uncertainties of upper-air variables of EARR need to be considered when analyzing them, the precipitation of
EARR is more accurate than that of ERA5 for both seasons. The EARR data presented here can be downloaded
from https://doi.org/10.7910/DVN/7P8MZT (Yang and Kim, 2021b) for data on pressure levels and https://doi.
org/10.7910/DVN/Q07VRC (Yang and Kim, 2021c) for precipitation.

1 Introduction

Reanalysis datasets have been widely used in the socio-
economic field as well as in meteorological and climate re-
search around the world. Most reanalysis datasets consist of
global reanalysis whose spatial and temporal resolutions are
relatively coarse (e.g., Schubert et al., 1993; Kalnay et al.,
1996; Gibson et al., 1997; Kistler et al., 2001; Kanamitsu et
al., 2002; Uppala et al., 2005; Onogi et al., 2007; Bosilovich,
2008; Saha et al., 2010; Dee et al., 2011; Rienecker et al.,
2011; Bosilovich et al., 2015; Kobayashi et al., 2015; Hers-
bach et al., 2020). With the emerging importance of regional

reanalysis datasets, many operational centers and research in-
stitutes around the world have been producing these datasets
in their own areas (Mesinger et al., 2006; Borsche et al.,
2015; Bromwich et al., 2016; Jermey and Renshaw, 2016;
Zhang et al., 2017; Bromwich et al., 2018; Fukui et al., 2018;
He et al., 2019; Ashrit et al., 2020).

Long-term high-resolution datasets are essential to inves-
tigate past extreme weather events which might be associ-
ated with mesoscale features such as heavy rainfall events
with high spatial and temporal variability, which coarser-
resolution models cannot represent. Dynamical downscaling
approaches can be a solution for generating high-resolution
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datasets, but there are some issues with insufficient spin-up
(Kayaba et al., 2016). Moreover, Fukui et al. (2018) demon-
strated that regional reanalysis over Japan assimilating only
the conventional observations had the potential to reproduce
precipitation fields better than the dynamical downscaling
approaches. Ashrit et al. (2020) also found that the high-
resolution regional reanalysis over India showed substan-
tial improvements of regional hydroclimatic features during
summer monsoon for the period 1979–1993 compared to
the global reanalysis ERA-Interim (ERA-I; Dee et al., 2011)
from ECMWF. Furthermore, He et al. (2019) revealed that
the pilot regional reanalysis over the Tibetan Plateau was able
to represent more accurate precipitation features and atmo-
spheric humidity than the global reanalyses of ECMWF (i.e.,
ECMWF’s fifth-generation reanalysis (ERA5; Hersbach et
al., 2020) and ERA-I).

As part of this effort, regional reanalysis over East Asia
was produced based on the Unified Model (UM) for the 2-
year period 2013–2014 and it was confirmed that regional
reanalysis over East Asia is beneficial (Yang and Kim, 2017,
2019). However, because the UM was no longer available
for generating regional reanalysis over East Asia, another nu-
merical weather prediction (NWP) model and its data assim-
ilation (DA) method are required.

To find the most appropriate and cost-efficient DA method
for a regional reanalysis over East Asia, several DA methods
were compared. Yang and Kim (2021a) demonstrated that
the hybrid ensemble-variational data assimilation method
(E3DVAR) performed better than three-dimensional varia-
tional data assimilation (3DVAR) and ensemble Kalman fil-
ter (EnKF) over East Asia for January and July 2016. How-
ever, it is essential to confirm whether this hybrid method is
accurate enough to be used for a regional reanalysis over East
Asia. Thus, E3DVAR was compared with the latest and the
previous reanalysis data from ECMWF (ERA5 and ERA-I)
for (re)analysis and (re)forecast variables and it was found
that the performance for regional reanalysis needs to be fur-
ther improved.

For this reason, a new advanced hybrid gain (AdvHG)
DA method, which combines E3DVAR and ERA5 based
on the Weather Research and Forecasting (WRF) model,
is proposed and investigated in this study. A hybrid gain
DA method has been developed as a new kind of hybrid
method (Penny, 2014). Based on this method, an advanced
DA method is newly developed in this study. Finally, using
this newly proposed DA method (AdvHG), the East Asia Re-
gional Reanalysis (EARR) system is developed based on the
WRF model. EARR datasets were produced for 10-year pe-
riod 2010–2019 and are publicly available (https://dataverse.
harvard.edu/dataverse/EARR, last access: 17 March 2022).

To investigate the accuracy and uncertainty of the state-of-
the-art AdvHG DA algorithm developed in this study, analy-
sis and forecast atmospheric variables of E3DVAR, AdvHG,
WRF-based ERA-I, and WRF-based ERA5 are evaluated for
January and July 2017, respectively. In addition, reforecast

precipitation fields of ERA-I and ERA5 from ECMWF are
also verified and compared. In this study, the datasets are
evaluated for a 2-month period (January and July 2017) or
a 10-year period (2010–2019) depending on the availabil-
ity of datasets. The reanalysis and (re)forecast fields of the
EARR based on AdvHG and ERA5 are verified for a 10-year
period (2010–2019). In Sect. 2, the EARR system including
the model, DA method, and observations are explained. In
Sect. 3, the evaluation methods are presented. The verifica-
tion results of the (re)analysis and (re)forecast variables are
presented in Sect. 4. Section 4.1 introduces the evaluation
results for wind, temperature, and humidity variables, and
Sect. 4.2 presents those for precipitation (re)forecast. Data
availability is covered in Sect. 5. Lastly, the summary and
conclusions are presented in Sect. 6.

2 Reanalysis system

2.1 Model

In this study, the Advanced Research WRF model (v3.7.1)
is used with 12 km horizontal resolution (540× 432 grid
points) and 50 vertical levels (up to 5 hPa) for the East Asia
domain shown in Fig. 1. The model settings and physics
scheme are summarized in Table 1. Analysis fields are ob-
tained every 6 h (00:00, 06:00, 12:00, and 18:00 UTC) via
assimilation of conventional observations with a 6 h assimi-
lation window, and forecast fields are integrated up to 36 h.
The ERA5 reanalysis (Hersbach et al., 2020) is used as the
first initial condition before the cycling and as boundary con-
ditions every 6 h.

2.2 Data assimilation methods

2.2.1 E3DVAR

The E3DVAR method is one of the hybrid DA methods
that use a static climatological background error covariance
(BEC) and ensemble-based flow-dependent BEC, and cou-
ples the EnKF and 3DVAR (Zhang et al., 2013). E3DVAR is
based on a cost function of 3DVAR. In E3DVAR, EnKF pro-
vides flow-dependent BEC as well as updates on perturba-
tions for ensemble members. Following Zhang et al. (2013),

J b
= J b

s + J
b
e =

1
2
δxT

[
(1−β)B+βPf

◦C
]−1

δx, (1)

where J b
s is a traditional cost function based on a static cli-

matological BEC B and J b
e is an additional cost function

based on ensemble-based BEC Pf. C is a correlation matrix
for localization of the ensemble covariance Pf. The weight-
ing coefficient β between static and ensemble-based BEC
is set to 0.8 in this study. To account for model error for
E3DVAR, a multi-physics scheme is applied to 40-member
ensembles. Yang and Kim (2021a) found that E3DVAR is
the most appropriate DA method among 3DVAR, EnKF, and
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Figure 1. The East Asia Regional Reanalysis domain. The dashed black box denotes a verification area. Different types of NCEP PrepBUFR
observations are available for assimilation at 00:00 UTC on 1 January 2017.

Table 1. Model configuration.

Description

Hori. Resol. 12 km (540× 432 grid points)
Vert. Lev. 50 vertical levels (up to 5 hPa)
Model WRF Model (v3.7.1; Skamarock et al., 2008)
LBC ERA5 (Hersbach et al., 2020)
Data assimilation E3DVAR (Zhang et al., 2013), Advanced hybrid gain method
Microphysics Thompson scheme (Thompson et al., 2008)
Cumulus convection Grell–Freitas ensemble scheme (Grell and Freitas, 2014)
PBL Yonsei University scheme (Hong et al., 2006)
Radiation Rapid Radiative Transfer Model (RRTMG) scheme (Iacono et al., 2008)
Surface layer Revised MM5 Monin–Obukhov scheme (Jiménez et al., 2012)
Surface model Unified Noah Land Surface Model (Tewari et al., 2004)

E3DVAR methods over East Asia. More detailed information
on E3DVAR implemented in this study can be found in Yang
and Kim (2021a).

2.2.2 Hybrid gain data assimilation method

In the last decade, the traditional hybrid methods have been
widely used for many operational centers and research insti-
tutes. Recently, Penny (2014) proposed a new class of hy-
brid gain methods combining desirable aspects of both vari-
ational and EnKF families of algorithms by weighting anal-
yses from 3DVAR and LETKF for an optimal analysis in the
Lorenz 40-component model. Since then, this algorithm has
been implemented at ECMWF (Bonavita et al., 2015) and at

a hybrid global ocean DA system in the National Centers for
Environmental Prediction (NCEP) (Penny et al., 2015).

The hybrid gain algorithm can be described with the fol-
lowing equations:

xa
Hyb = αxa

Det+ (1−α)xa, (2)

where xa
Hyb, xa

Det, and xa denote the hybrid analysis, deter-
ministic analysis, and the ensemble mean analysis from the
ensemble-based assimilation method, and α is a tunable pa-
rameter (Penny, 2014; Houtekamer and Zhang, 2016).

The hybrid gain method is different from traditional hy-
brid methods, in that a hybrid gain approach linearly com-
bines analysis fields from EnKF and variational DA methods
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to produce a hybrid gain analysis rather than linearly com-
bining respective BECs (Penny, 2014). Basically, the hybrid
gain method is used to hybridize two different Kalman gain
matrices of ensemble-based (Eq. 4) and variational DA sys-
tems (Eq. 5) as in Eq. (3):

K̂= β1Kf
+β2KB

+β3KBHKf, (3)

where

Kf
= PfHT(HPfHT

+R)−1, (4)

KB
= BHT(HBHT

+R)−1. (5)

H is an observation operator mapping the model state vector
to observation space and R is the observation error covari-
ance matrix. The matrices Pf and B indicate the ensemble-
based and the static climatological BEC, respectively. By
choosing the specific coefficients (β1 = 1, β2 = α, β3 =

−α), it can be written as in Eq. (6) and it can give an al-
gebraically equivalent result with Eq. (2) (Penny, 2014):

K̂=Kf
+αKB(I−HKf). (6)

One of the advantages of the hybrid gain algorithm with re-
spect to its development is that preexisting operational sys-
tems can be used without significant modification for a hy-
brid analysis (Penny, 2014) and independent parallel de-
velopment of respective methods is allowed (Houtekamer
and Zhang, 2016). Furthermore, the hybrid gain approach
can be considered a practical and straightforward method
in the foreseeable future to combine advantageous features
of both ensemble- and variational-based DA algorithms
(Houtekamer and Zhang, 2016). More detailed information
on this algorithm can be found in Penny (2014).

2.2.3 Advanced hybrid gain data assimilation method

In this study, based on the hybrid gain approach, an advanced
hybrid gain DA method (AdvHG) is newly proposed as fol-
lows:

Xa
AdvHG = αX

f (6 h)
ERA5 + (1−α)X

a
E3DVAR, (7)

where Xf (6 h)
ERA5 denotes the 6 h forecast of ERA5 reanalysis

based on the WRF model and X
a
E3DVARdenotes the analysis

of E3DVAR (Fig. 2). In Eq. (7), α is a tunable parameter
and is assigned to be 0.5 in this study. This advanced hybrid
gain approach is different from the hybrid gain approach in
that (1) E3DVAR analysis is used instead of EnKF, (2) 6 h
forecast of ERA5 is used instead of deterministic analysis
from the variational DA method, and (3) the preexisting and
state-of-the-art reanalysis data (i.e., ERA5) are simply used
instead of producing deterministic analysis by assimilation.
The reasons for these different approaches proposed in this
study are as follows:

1. E3DVAR is used instead of EnKF because Yang and
Kim (2021a) confirmed that E3DVAR outperforms
EnKF for winter and summer seasons over East Asia.

2. Instead of deterministic analysis, the 6 h forecast of
ERA5 based on the WRF model is used to make the
hybrid analysis more balanced and consistent with the
WRF model, because ERA5 reanalysis fields are based
on its own modeling system with coarser resolution,
which is different from that used in this study.

3. European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis (ERA5) is used instead of pro-
ducing our own analysis fields from a variational DA
method. This is a very efficient approach because of the
cost savings as well as the use of the high-quality lat-
est reanalysis from ECMWF assimilating all currently
available observations with the state-of-the-art and ad-
vanced technology.

Therefore, the approach proposed in this study is called
“advanced hybrid gain method” (denoted as “AdvHG”).

2.3 Observations

The NCEP PrepBUFR (Prepared or QC’d data in BUFR
(Binary Universal Form for the Representation of mete-
orological data) format) conventional observations (global
upper-air and surface weather observations, NCEP/N-
WS/NOAA/U.S.DOC, 2008) are used every 6 h (00:00,
06:00, 12:00, and 18:00 UTC) for an assimilation by
E3DVAR and AdvHG methods (Fig. 1). The PrepBUFR is
the output of the final process for preparing the observations
to be assimilated in the different NCEP analyses. For obser-
vations, rudimentary multi-platform quality control (QC) and
more complex platform-specific QCs were conducted (e.g.,
surface pressure, rawinsonde heights and temperature, wind
profiler, aircraft wind and temperature) in NCEP (Keyser,
2013). Furthermore, if the innovations (i.e., observation mi-
nus background) of some observations are greater than 5
times the observational error, then that observation is rejected
during the assimilation procedure in this study.

The assimilated observations are as follows: the sur-
face observations (SYNOP, METAR, Ship, and Buoy), ra-
diosonde observation (SOUND), upper-wind report (PI-
LOT), wind profiler, aircraft, atmospheric motion vector
(AMV) wind from satellites, scatterometer oceanic surface
winds (Scatwind), and precipitable water vapor from the
Global Positioning System (GPSPW). The observation errors
depending on each observation platform, variable, and verti-
cal levels are assigned based on the default observation error
statistics provided in the WRFDA system (Table 2). All ob-
servations are spatially thinned by 20 km except for AMV
thinned by 200 km, as done by Warrick (2015), Cotton et
al. (2016), and Shin et al. (2016).
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Figure 2. Schematic diagram of the advanced hybrid gain data assimilation method in the East Asia Regional Reanalysis system.

To evaluate 6 h accumulated precipitation simulated by
E3DVAR, AdvHG, ERA-I, and ERA5 over East Asia, global
surface weather observations (NCEP PrepBUFR, NCEP/N-
WS/NOAA/U.S.DOC, 2008) are used every 6 h (00:00,
06:00, 12:00, and 18:00 UTC). For an evaluation of the
monthly precipitation fields, the World Monthly Surface Sta-
tion Climatology (NCDC/NESDIS/NOAA/U.S.DOC et al.,
1981) over 4700 different stations (2600 in more recent
years) is used.

2.4 Global reanalysis datasets

To compare EARR generated with other reanalysis datasets,
ERA5 (Hersbach et al., 2020) and ERA-I (Dee et al., 2011)
reanalyses are chosen. The horizontal resolutions of ERA-
I and ERA5 are approximately 79 (TL255) and 31 km
(TL639), respectively. Because ERA5 is based on the oper-
ational system in 2016, improvements in model physics, nu-
merics, data assimilation, and additional observations over
the last decade are the advantages of ERA5 (Hersbach et al.,
2018).

In this study, (re)forecast as well as reanalysis fields need
to be verified. Regarding reanalysis and (re)forecast fields
of ECMWF, reanalysis fields (i.e., ERA5 and ERA-I) down-
loaded from ECMWF are evaluated (Figs. 3 and 6). Two dif-
ferent (re)forecast fields (e.g., ERA5_fromECMWF, WRF-
based ERA5) are used in this study. WRF-based ERA5 and
ERA-I are forecast fields based on the WRF model with
12 km horizontal resolution where ERA5 and ERA-I are
used as initial conditions. By contrast, ERA5_fromECMWF
and ERA-I_fromECMWF are reforecast fields based on the
ECMWF model not the WRF model, and thus the refore-
cast fields of ERA5 and ERA-I are provided and downloaded
from ECMWF. These reforecast fields are only used for eval-
uation of precipitation (Figs. 8 and 9). The (re)analysis and
(re)forecast fields and corresponding experiments are ex-
plained in Table 3.

3 Evaluation method

3.1 Equitable threat score and frequency bias index

Based on the contingency table (Table 4), ETS is defined as

ETS=
A−Ar

A+B+C−Ar
, where Ar =

(A+B)(A+C)
A+B+C+D

. (8)

The ETS range is from−1/3 to 1 and the value 1 for ETS is a
perfect score. ETS is a more balanced score than probability
of detection (POD) and false alarm ratio (FAR) because it is
sensitive to both false alarms and misses (Wilson, 2017).

FBI is defined as

FBI= Bias=
A+B
A+C

. (9)

The FBI indicates whether the model tends to over-forecast
(too frequently, FBI>1) or under-forecast (not frequent
enough, FBI<1) events with respect to frequency of occur-
rence.

3.2 Probability of detection and false alarm ratio

Based on the contingency table (Table 4), POD is defined as

POD=
A

A+C
=

Hits
Hits+Misses

. (10)

The POD range is from 0 to 1. POD is required to be used
with FAR because POD can be artificially improved by sys-
tematically over-forecasting the events (Wilson, 2017).

FAR is defined as

FAR=
B

A+B
=

False alarms
Hits+False alarms

. (11)

The range of FAR is from 0 to 1 and its lower score implies
a higher accuracy.
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Table 2. Summary of observations used in this study. The default observation error statistics provided in the WRFDA system are used for
assimilation in this study. The variables u, v, T , RH, Ps, and TPW denote zonal wind, meridional wind, temperature, relative humidity,
surface pressure, and total precipitable water, respectively.

Observations Descriptions Variables Observation errors
(depending on vertical levels)

SOUND Upper-air observation from radiosonde u, v 1.1–3.3 m s−1

T 1 K
RH 10 %–15 %

PROFILER Upper-air wind profile from wind profiler u, v 2.2–3.2 m s−1

PILOT Upper-air wind profile from pilot balloon or radiosonde u, v 2.2–3.2 m s−1

AIREP Upper-air wind and temperature from aircraft u, v 3.6 m s−1

T 1 K

Scatwind Scatterometer oceanic surface winds u, v 2.5–3.8 m s−1

SHIPS Surface synoptic observation from ship u, v 1.1 m s−1

T 2 K
Ps 1.6 hPa
RH 10 %

SYNOP Surface synoptic observation from land station u, v 1.1 m s−1

T 2 K
Ps 1 hPa
RH 10 %

BUOY Surface synoptic observation from buoy u, v 1.4–1.6 m s−1

T 2 K
Ps 0.9–1 hPa
RH 10 %

GPSPW Precipitable water vapor from Global Positioning System (GPS) TPW 0.2 mm

METAR Aviation routine weather report from automatic weather station (AWS) u, v 1.1 m s−1

T 2 K
Ps 1 hPa
RH 10 %

AMV Conventional atmospheric motion vector data from satellites u, v 2.5–4.5 m s−1

Table 3. (Re)analyses and (re)forecasts with corresponding experiments used in this study.

Experiment (Re)analysis (initial condition) (Re)forecast (Re)forecast horizontal Initial time Boundary condition
resolution (km) in WRF

AdvHG (EARR) Reanalysis from AdvHG Generated using WRF 12

ERA5
E3DVAR Analysis from E3DVAR Generated using WRF 12
WRF-based ERA5 Reanalysis from ERA5 Generated using WRF 12 00:00/06:00/
WRF-based ERA-I Reanalysis from ERA-I Generated using WRF 12 12:00/18:00 UTC

ERA5_fromECMWF Reanalysis from ERA5 Downloaded from ECMWF 31
–

ERA-I_fromECMWF Reanalysis from ERA-I Downloaded from ECMWF 79

Earth Syst. Sci. Data, 14, 2109–2127, 2022 https://doi.org/10.5194/essd-14-2109-2022
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Table 4. The 2× 2 contingency table for dichotomous (yes–no) events.

Forecast Observed

Yes No

Yes Hits (A) False alarms (B) A+B
No Misses (C) Correct rejections (D) C+D

A+C B+D Total=A+B+C+D

Figure 3. RMSEs in analysis of (a, b) zonal wind, (c, d) merid-
ional wind, (e, f) temperature, and (g, h) Qvapor (water vapor mix-
ing ratio) from ERA-I (dashed black line), ERA5 (solid black line),
E3DVAR (dashed blue line), and AdvHG (solid blue line) depend-
ing on pressure levels for (a, c, e, g) January and (b, d, f, h) July
2017.

3.3 Brier skill score

Verification of the performance of high-resolution forecast
with the traditional verification metrics (e.g., ETS, FBI)
can be misleading due to a double penalty, particularly for
highly variable fields (e.g., precipitation). Therefore, as one
of the spatial verification approaches that do not require fore-
cast to match point observation spatially, the neighborhood
(fuzzy) verification method, which assumes that a slightly
displaced forecast can be acceptable and a local neighbor-
hood can define the degree of allowable displacement (Ebert,
2008; Kim et al., 2015; On et al., 2018), is used in this sec-
tion. According to Ebert (2008), depending on the matching
strategy, neighborhood verifications can be categorized into
two frameworks: “single observation–neighborhood forecast
(SO-NF)” where neighborhood forecasts surrounding ob-
servations are considered, and “neighborhood observation–
neighborhood forecast (NO-NF)” strategies where not only
neighborhood forecasts but also neighborhood observations
surrounding observations are considered. Due to the absence
of high-resolution gridded precipitation observation data in
East Asia, various verification scores widely used as an NO-
NF strategy are not available in this study. Thus, in this sec-
tion, the Brier skill score (BSS), as one of the SO-NF strate-
gies, is introduced.

The Brier score (BS) is similar to the mean squared error
(MSE) and is defined as (Wilks, 2006)

BS=
1
N

N∑
i=1

(pi − oi)2, (12)

where pi denotes the probability forecast, oi denotes the bi-
nary observation which is either 0 or 1, and N is the total
number of observations during the given period. Generally,
the BSS (or BS) is used to verify ensemble forecasts which
are able to calculate probabilistic forecasts (Kay et al., 2013;
Kim and Kim, 2017). However, the BSS can also be used
for deterministic forecasts using a pragmatic post-processing
procedure (Theis et al., 2005; Mittermaier, 2014), which de-
rives probabilistic forecasts from deterministic forecasts at
every model grid point by considering neighborhood forecast
as pseudo ensemble:

BSS= 1−
BS

BSref
, (13)
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where BSref is the BS of reference. The BSS is the skill score
with respect to the BS as in Eq. (13). For reference, a clima-
tology or other forecast can be used. In this study, the WRF-
based ERA-I is considered as a reference.

3.4 Pattern correlation coefficient

The pattern correlation coefficient (PCC) is defined as
Eq. (14) (Shiferaw et al., 2018; Yoo and Cho, 2018; Park
and Kim, 2020),

PCC=

N∑
i=1

(xi − x)(oi − o)[
N∑
i=1

(xi − x)2
N∑
i=1

(oi − o)2
]1/2 , (14)

where xi and oi are (re)forecast and observed precipitation
at ith observation location and the over-bar indicates the av-
eraged variables over N observed stations in the verification
area.

4 Results

4.1 Evaluation of wind, temperature, and humidity
variables

4.1.1 RMSE for January and July 2017

The analysis and forecast RMSEs of E3DVAR, AdvHG, the
WRF-based ERA-I, and WRF-based ERA5 are calculated
for zonal wind, meridional wind, temperature, and Qvapor
(water vapor mixing ratio in WRF) variables against sonde
observations at 00:00 and 12:00 UTC in verification domain
(dashed box in Fig. 1) for January and July 2017 and aver-
aged over each month (Figs. 3, 4, and 5).

For the analysis RMSE (Fig. 3), E3DVAR is smaller than
AdvHG for all pressure levels and variables, except for tem-
perature in July at 1000 hPa and Qvapor in January and July
at 1000 hPa. In general, the analysis RMSE of AdvHG for
all variables is comparable to or greater than that of ERA5.
The analysis RMSE of ERA5 is smaller than that of ERA-I
for all levels and variables; in particular, the analysis RMSE
difference between ERA5 and ERA-I is distinctive for wind.

Regarding wind variables of analysis (Fig. 3a, b, c, and
d), E3DVAR is the most closely fitted to observations except
for the wind in the upper troposphere in January, followed
by ERA5, AdvHG, and ERA-I. For the temperature RMSE
(Fig. 3e and f), E3DVAR is smaller than AdvHG. For Qva-
por, RMSE in July is much larger than that in January due
to a monsoonal flow carrying moist air to East Asia. In gen-
eral, the Qvapor RMSE of E3DVAR is the smallest, followed
by ERA5, AdvHG, and ERA-I. Therefore, for all variables,
E3DVAR analysis fields are generally the most closely fitted
to observations. Since the analysis RMSE implies how much
the analysis fields are fitted to observations rather than the

Figure 4. The same RMSEs as in Fig. 3, except for 24 h forecast.

accuracy of analysis itself, not only the analysis RMSE but
also the forecast RMSE should be considered.

For 24 h forecast fields in January (Fig. 4a, c, e, and g),
overall, the RMSEs of AdvHG and E3DVAR are greater than
those of ERA5 and smaller than those of ERA-I, and the Ad-
vHG RMSE is smaller than the E3DVAR RMSE for all levels
and variables. Meanwhile, for July (Fig. 4b, d, f, and h), Ad-
vHG and E3DVAR show comparable RMSE to ERA-I.

Furthermore, the general features of the 36 h forecast
RMSE (Fig. 5) are similar to the 24 h forecast RMSE (Fig. 4).
However, particularly in January, the 36 h forecast RMSE
differences between ERA5 and ERA-I are more distinc-
tive than those of the 24 h forecast. In January, the verti-
cally averaged 36 h forecast RMSE differences of ERA5 and
ERA-I are 0.52 m s−1 for wind, 0.16 K for temperature, and
0.08 g kg−1 for Qvapor, whereas those of the 24 h forecast are
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Figure 5. The same RMSEs as in Fig. 3, except for 36 h forecast.

0.4 m s−1 for wind, 0.11 K for temperature, and 0.06 g kg−1

for Qvapor. In addition, the 36 h forecast RMSE differences
between ERA5 and AdvHG for January are on average
0.1 m s−1 for wind, 0.05 K for temperature, and 0.02 g kg−1

for Qvapor, which are even smaller compared to those of
the 24 h forecast, implying that AdvHG is much more accu-
rate than ERA-I for January 2017. For July, the 36 h forecast
RMSE of ERA5 is the smallest and the RMSEs of AdvHG
and E3DVAR are similar to those of ERA-I.

4.1.2 RMSE and spread for the period 2010–2019

In this section, the EARR produced in this study is verified
for a longer period with WRF-based ERA5. The RMSE and
spread of reanalyses and reforecasts based on the AdvHG
method are calculated and averaged over the period 2010–

Figure 6. RMSEs of analysis of (a) zonal wind, (b) meridional
wind, (c) temperature, and (d) Qvapor (water vapor mixing ratio)
from ERA5 (solid black line) and AdvHG (solid blue line) and
spreads of analysis (dashed black line) and 6 h forecast (dashed gray
line) of AdvHG depending on pressure levels averaged over the 10-
year period 2010–2019.

2019. The reanalyses and (re)forecast fields are evaluated by
calculating RMSE valid at 00:00 and 12:00 UTC and spread
at 00:00, 06:00, 12:00, and 18:00 UTC.

The averaged RMSEs of reanalysis for ERA5 and EARR
(denoted as AdvHG in Fig. 6) and spread of analysis and
6 h forecast fields of EARR (AdvHG) are shown in Fig. 6.
With respect to spread, the ensemble spreads of analysis
fields are smaller than those of 6 h forecast fields, on av-
erage, by 0.15 m s−1 for wind, 0.04 K for temperature, and
0.02 g kg−1 for Qvapor, which is the well-known character-
istic of ensemble-based DA methods. Specifically, the wind
spread (Fig. 6a and b) is similar to or greater than the wind
RMSE except for the upper troposphere above 200 hPa, im-
plying the ensemble spread for wind is well represented be-
low 200 hPa. On the contrary, the ensembles for temperature
and Qvapor (Fig. 6c and d) are underdispersive compared to
their RMSEs.

Regarding the reanalysis RMSE, overall AdvHG RMSE is
greater than ERA5 RMSE for all variables (Fig. 6). The ver-
tically averaged RMSEs of AdvHG are greater by 0.16 m s−1

for wind, 0.09 K for temperature, and 0.01 g kg−1 for Qvapor
than those of ERA5. Nonetheless, the wind RMSEs of Ad-
vHG are similar to those of ERA5 for the middle of the tro-
posphere (400–850 hPa), and the Qvapor RMSEs of AdvHG
are similar to those of ERA5 except for 1000 hPa.
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Figure 7. The same RMSEs as in Fig. 6, except for RMSEs of 24 h
forecast.

In addition, regarding the 24 h forecast RMSE, AdvHG
shows a larger RMSE than ERA5 for all variables (Fig. 7).
The vertically averaged RMSE differences of wind, temper-
ature, and Qvapor variables between AdvHG and ERA5 are
approximately 0.2 m s−1, 0.07 K, and 0.03 g kg−1, respec-
tively. These differences are smaller, compared to the 24 h
forecast RMSE difference between ERA-I and ERA5 shown
in Fig. 4 (i.e., wind, temperature, and Qvapor RMSE differ-
ence: 0.4 m s−1, 0.11 K, and 0.06 g kg−1 for January 2017,
0.25 m s−1, 0.05 K, and 0.04 g kg−1 for July 2017).

4.2 Evaluation of precipitation for January and July in
2017

4.2.1 Evaluation metrics

Equitable threat score and frequency bias index

In this section, for the point-based equitable threat score
(ETS) and frequency bias index (FBI) based on Table 4, the
6 h accumulated precipitation fields based on the 6 h fore-
cast of E3DVAR, AdvHG, WRF-based ERA-I, WRF-based
ERA5, ERA-I_fromECMWF, and ERA5_fromECMWF are
evaluated every 6 h (00:00, 06:00, 12:00, and 18:00 UTC) for
January and July 2017 (Fig. 8). Here, all the WRF-based pre-
cipitation fields are based on 12 km horizontal resolution, and
ERA-I_fromECMWF and ERA5_fromECMWF have 79 and
31 km horizontal resolutions, respectively. Generally, ETS
decreases as a threshold increases for both months (Fig. 8a
and c). For January 2017 (Fig. 8a), AdvHG ETS is the great-
est among others. Compared to precipitation reforecasts from

Figure 8. (a, c) ETS and (b, d) FBI for (a, b) January and (c, d)
July 2017 depending on thresholds 0.5, 1, 4, 8, and 16 mm per 6 h.

ECMWF (i.e., ERA-I_fromECMWF, ERA5_fromECMWF),
AdvHG shows the higher ETS, indicating that AdvHG is
able to simulate more accurate precipitation fields than ERA-
I and ERA5 from ECMWF in January 2017. Surprisingly,
ETS of ERA5_fromECMWF for January 2017 is the lowest
among all the results and is even lower than that of ERA-
I_fromECMWF.

Since the precipitation reforecasts from ECMWF have not
only coarser resolutions but also a different forecast model
(i.e., the forecasting system of ECMWF), the precipitation
forecasts of ERA5 and ERA-I are additionally produced by
using the same forecast model with the same resolution as
AdvHG and E3DVAR in this study, as explained in Sect. 2.4.
For January 2017 (Fig. 8a), ETS of ERA5 (i.e., WRF-based
ERA5) is higher than that of ERA5_fromECMWF for all
thresholds, whereas ETS of ERA-I (i.e., WRF-based ERA-
I) is lower than that of ERA-I_fromECMWF except for high
thresholds (8 and 16 mm per 6 h). The ERA5 ETS is greater
than the ERA-I ETS, but is smaller than the AdvHG ETS.
The AdvHG shows the greatest ETS among others with the
same resolution and forecast model, and E3DVAR, ERA5,
and ERA-I follow.

Regarding FBI in winter (Fig. 8b), for 4, 8, and 16 mm per
6 h thresholds, all the results show that FBI is smaller than
1, implying an underestimation of the frequency of precip-
itation for high-threshold events. In general, AdvHG shows
the FBI closest to 1 among all the results, which is consis-
tent with the greatest ETS of AdvHG. The E3DVAR FBI is
similar to the AdvHG FBI, and ERA5 and ERA-I FBIs are
similar to each other.
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Overall, the ETS values for January, whose maximum is
around 0.4 (Fig. 8a), are much greater than those for July
2017, whose maximum is around 0.2 (Fig. 8c), implying that
the precipitation forecast in summer is more difficult than
that in winter. The ETS difference between the results in July
is smaller than that in January. Particularly, for the thresh-
olds 4 and 8 mm per 6 h, the ETSs in July are similar to
each other (Fig. 8c). Except for those two thresholds, the
ETS of ERA-I_fromECMWF is the smallest. At the thresh-
old of 16 mm per 6 h, ERA5 ETS is the highest, followed by
AdvHG, E3DVAR, ERA-I, ERA5_fromECMWF, and ERA-
I_fromECMWF. At the threshold of 0.5 and 1 mm per 6 h, the
E3DVAR ETS is the greatest, followed by ERA5, AdvHG,
ERA5_fromECMWF, ERA-I, and ERA-I_fromECMWF.

With respect to FBI in July 2017, the WRF-based re-
sults yield FBIs greater than 1, whereas reforecast from
ECMWF yields FBIs greater than 1 for 0.5, 1, and 4 mm
per 6 h thresholds and smaller than 1 for higher thresh-
olds (8 and 16 mm per 6 h) (Fig. 8d). For July 2017, in
general, ERA5_fromECMWF FBI is the closest to 1, fol-
lowed by E3DVAR, AdvHG, ERA5, ERA-I, and ERA-
I_fromECMWF FBI.

Probability of detection and false alarm ratio

The probability of detection (POD or hit rate) and false alarm
ratio (FAR) are calculated for precipitation simulated from
E3DVAR, AdvHG, WRF-based ERA-I, WRF-based ERA5,
ERA-I_fromECMWF, and ERA5_fromECMWF for January
and July 2017 (Fig. 9). For January 2017, AdvHG POD
is the greatest among the WRF-based results, followed by
E3DVAR, ERA5, and ERA-I (Fig. 9a). In addition to the
lowest ETS of ERA5_fromECMWF for January 2017 as dis-
cussed in the Sect. “Equitable threat score and frequency
bias index”, the FAR of ERA5_fromECMWF is extremely
high with a low POD in winter. Therefore, especially for
January 2017, the precipitation fields simulated from EARR
(AdvHG) over East Asia are much more accurate than those
from ERA5_fromECMWF.

For July 2017, generally, AdvHG shows the largest POD,
except for ERA5 (Fig. 9c). The FAR values in July are much
greater than those in January, which is consistent with the
ETS difference between these two seasons.

Brier skill score

The neighborhood sizes are chosen to be 31x, 51x, 91x,
and 111x, which are 36, 60, 108, and 132 km, respectively,
and the thresholds 0.5, 1, 4, 8, and 16 mm per 6 h are con-
sidered. The probabilistic precipitation forecasts are calcu-
lated at every model grid point depending on neighborhood
sizes and thresholds. Regarding each observation, the near-
est model grid point to observations is considered as the
center of the neighborhood. For verification, 6 h accumu-
lated precipitation fields are extracted from the first 0–6 h

Figure 9. (a, c) POD and (b, d) FAR for (a, b) January and (c, d)
July 2017 depending on thresholds 0.5, 1, 4, 8, and 16 mm per 6 h.

forecast fields of WRF-based ERA-I, WRF-based ERA5,
E3DVAR, and AdvHG every 6 h (00:00, 06:00, 12:00, and
18:00 UTC). The BSSs of ERA5_fromECMWF and ERA-
I_fromECMWF are not calculated, because they have a dif-
ferent resolution from WRF-based results.

Based on the neighborhood approach, the BSS is calcu-
lated depending on different neighborhood sizes for January
and July 2017, respectively (Fig. 10). Because the reference
of BS is chosen as the ERA-I, the positive BSS suggests a
better accuracy than ERA-I. In general, for both months, the
AdvHG BSS is greater than the ERA5 BSS. Although the
E3DVAR BSS is the greatest in July 2017, the AdvHG BSS
is the greatest in January 2017.

For January 2017, as a neighborhood size increases, the
AdvHG and E3DVAR BSSs tend to increase except for
ERA5. Overall, the AdvHG BSS is the greatest among other
BSSs for all thresholds for all neighborhood sizes. The ERA5
BSS is greater than the E3DVAR BSS except for 16 mm
per 6 h. The highest BSS of AdvHG and the lowest BSS of
ERA-I are consistent with the ETS result. Unlike the greater
E3DVAR ETS than ERA5 ETS, the ERA5 BSS is greater
than the E3DVAR BSS in January 2017.

For July 2017, while the ETS difference between the
WRF-based results is not distinct (Fig. 8c), the BSS differ-
ence is rather noticeable. Generally, the E3DVAR BSS is
the greatest among other BSSs for all thresholds except for
16 mm per 6 h for neighborhood sizes 9 and 11. Although
the E3DVAR BSS is the largest, AdvHG outperforms ERA5
and ERA-I. The worst performance of ERA-I precipitation is
consistent with the ETS result. At 0.5, 1, and 4 mm per 6 h
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Figure 10. Brier skill score of the probabilistic postprocessed forecast with reference to the WRF-based ERA-I for (a–d) January and (e–h)
July 2017 (solid blue line: AdvHG; dashed blue line: E3DVAR; solid red line: WRF-based ERA5).

thresholds, E3DVAR BSS is the greatest, which is similar to
ETS. At 8 and 16 mm per 6 h thresholds, ERA5 ETS is the
highest, followed by AdvHG and E3DVAR, whereas overall,
the E3DVAR BSS is the highest, followed by AdvHG and
ERA5.

4.2.2 Spatial distribution

Six h accumulated precipitation with the pattern
correlation coefficient

In this section, the spatial distributions of 6 h accumulated
precipitation from the WRF-based forecast and reforecast
from ECMWF are compared. In addition, pattern correlation
coefficients (PCC) are calculated and shown at the bottom
right of Figs. 11 and 12.

The PCC is computed according to the usual Pearson cor-
relation operating on the N observed point pairs of 6 h accu-
mulated precipitation fields simulated from (re)forecast and
observations at the specific time. For the calculation of PCC,
6 h accumulated precipitation fields from (re)forecast fields
are interpolated bilinearly to the N observed points.

First, on 29 and 30 January 2017 (Fig. 11), it is no-
ticeable that the precipitation fields of AdvHG match
observations well over East Asia, whereas, in particu-
lar, those of ERA5_fromECMWF do not. For example,
ERA5_fromECMWF overestimates precipitation over the in-
land area of China (Fig. 11zz), while AdvHG simulates
precipitation similar to observations regarding its position
and intensity (Fig. 11x). ERA5_fromECMWF also shows
a noticeably smaller PCC (Fig. 11g, n, and zz). Although
PCC does not represent the exact accuracy or predictabil-
ity of precipitation, the overall feature of PCC is consistent
with the results found so far. For January 2017, the aver-

aged PCC of AdvHG is the greatest (i.e., 0.61) and that of
ERA5_fromECMWF is the smallest (i.e., 0.46; not shown).

For 1 and 2 July 2017 (Fig. 12), in general, AdvHG,
E3DVAR, and ERA5 simulate well not only the overall fea-
tures of precipitation fields but also their intensity. During
July 2017, ERA5 and ERA-I simulate heavier precipitation
than AdvHG (not shown), which is consistent with the larger
FBI of ERA5 and ERA-I at higher thresholds. For the 1-
month period of July 2017, the averaged PCC of ERA5 is
the greatest (i.e., 0.37) and that of AdvHG is 0.34, but the
PCC difference between ERA5 and AdvHG is not distinc-
tive. Moreover, the overall range of averaged PCC of differ-
ent datasets in summer (i.e., 0.29–0.35) is smaller than that in
winter (i.e., 0.46–0.61), which is consistent with the seasonal
difference of ETS in this study.

Monthly accumulated precipitation

In this section, the monthly accumulated precipitation fields
of rain gauge-based observations, E3DVAR, AdvHG, ERA-I,
ERA5, ERA-I_fromECMWF, and ERA5_fromECMWF are
compared with each other for two 1-month periods in Jan-
uary and July 2017, respectively.

The monthly accumulated precipitation fields simulated
by E3DVAR and AdvHG (Fig. 13b and c) are similar to
each other, and E3DVAR and AdvHG produce the best
fit to observed fields. Especially for the northwestern part
of Japan (e.g., Chugoku and Kinki), E3DVAR and Ad-
vHG are able to represent precipitation correctly, whereas
ERA-I_fromECMWF and ERA5_fromECMWF fail to do so
(Fig. 13). Moreover, although all the results similarly rep-
resent overall features of precipitation in January (Fig. 13),
ERA5_fromECMWF (Fig. 13g) simulates the overestimated
precipitation over South China, which is consistent with the
results in the previous section as well as its larger FBI at
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Figure 11. The spatial distribution of 6 h accumulated precipitation of (1st column) observation, (2nd column) E3DVAR, (3rd column)
AdvHG, (4th column) ERA-I, (5th column) ERA5, (6th column) ERA-I_fromECMWF, and (7th column) ERA5_fromECMWF and the
pattern correlation coefficient (PCC) shown at the bottom right of each figure at the valid time (1st row, 3rd row) of 06:00 UTC and (2nd row,
4th row) 18:00 UTC on 29 and 30 January 2017.

lower thresholds (0.5 and 1 mm per 6 h) shown in Fig. 8b.
It is noticeable that all results fail to represent the observed
precipitation area over the Tibetan Plateau (25–40◦ N, 95–
105◦ E).

For the monthly accumulated precipitation in July 2017,
overall, the ERA5_fromECMWF (Fig. 14g) and the WRF-
based results (Fig. 14b, c, and e) except for ERA-I (Fig. 14d)
simulate precipitation well, similar to observations. The
WRF-based results including AdvHG overestimate pre-
cipitation over the western and southern parts of Japan,
while ERA-I_fromECMWF and ERA5_fromECMWF sim-
ulate similar precipitation fields to observed fields. The
WRF-based results tend to overestimate precipitation in
South China, Korea, and Japan, compared with ERA-
I_fromECMWF and ERA5_fromECMWF. This is consistent
with the result in Fig. 8d, in which FBIs from WRF-based re-
sults are generally greater than for higher thresholds (8 and
16 mm per 6 h), whereas those from ECMWF are smaller
than 1.

Even though the detailed precipitation features of WRF-
based results are different, the overall features of precipita-
tion from WRF-based results are similar to each other, which
implies that predictability of precipitation strongly depends
on the physics schemes as well as on the NWP model, espe-

cially for the summer season. According to Que et al. (2016),
depending on the combinations of physics options in the
WRF model, the spatial distribution of precipitation can be
significantly different over the Asian summer monsoon area,
and the YSU PBL scheme which is used in this study tends to
overestimate precipitation over the same area. Thus, different
physics options could simulate the different spatial distribu-
tion of precipitation.

In addition, compared to ERA5 based on the WRF model
(Fig. 14e), the ECMWF model for ERA5_fromECMWF
(Fig. 14g) seems to suppress precipitation. Thus, the WRF
model with the physics schemes used in this study might sim-
ulate more precipitation than the ECMWF model, although
the initial condition is the same. Therefore, it is important
to consider the consistency of the systems for DA and the
forecast model for a good performance of forecast weather
variables such as precipitation.

5 Data availability

The EARR data presented in this study are available ev-
ery 6 h (i.e., 00:00, 06:00, 12:00, and 18:00 UTC) for the
period 2010–2019 from the Harvard Dataverse Repository
(https://dataverse.harvard.edu/dataverse/EARR, last access:
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Figure 12. The same spatial distribution of 6 h accumulated precipitation as in Fig. 11, but for 1 and 2 July 2017.

17 March 2022). The EARR 6 hourly data on pressure lev-
els (https://doi.org/10.7910/DVN/7P8MZT, Yang and Kim,
2021b) and 6 hourly precipitation data (https://doi.org/10.
7910/DVN/Q07VRC, Yang and Kim, 2021c) are provided in
NetCDF file format.

The EARR 6 hourly data on pressure levels (Yang and
Kim, 2021b) include u-component of wind, v-component of
wind, temperature, geopotential height, and specific humid-
ity variables of reanalysis on pressure levels (i.e., 925, 850,
700, 500, 300, 200, 100, and 50 hPa). The EARR 6 hourly
precipitation data (Yang and Kim, 2021c) contain the 6 h ac-
cumulated total precipitation variable of the 6 h reforecast on
a single level. The 6 h accumulated total precipitation is ob-
tained from the 6 h reforecast field which is integrated for 6 h
from the reanalysis field every 6 h (i.e., 00:00, 06:00, 12:00,
and 18:00 UTC).

6 Summary and conclusions

In this study, to develop the regional reanalysis system over
East Asia, the advanced hybrid gain algorithm (AdvHG)
is newly proposed and evaluated with a traditional hybrid
DA method (E3DVAR) as well as existing reanalyses from
ECMWF (ERA5 and ERA-I) for January and July 2017. The
East Asia Regional Reanalysis (EARR) system is developed
based on the AdvHG as the data assimilation method using
the WRF model and conventional observations. The high-

resolution regional reanalysis and reforecast fields over East
Asia with 12 km horizontal resolution are produced and eval-
uated against observations with ERA5 for the 10-year period
2010–2019.

The AdvHG newly proposed in this study is based on the
hybrid gain approach, weighting analyses from variational-
based and ensemble-based DA algorithms to generate op-
timal hybrid analysis, which can play an important role as
a simple and practical method in the foreseeable future to
take advantage of the strength of each DA method. The ad-
vanced hybrid gain method is different from the hybrid gain
approach in that (1) E3DVAR is used instead of EnKF, (2)
6 h forecast of ERA5 is used instead of deterministic analy-
sis for a more balanced and consistent analysis with the WRF
model, and (3) the pre-existing and state-of-the-art reanaly-
sis data (i.e., ERA5) are simply used instead of producing
our own analysis fields from a variational DA method. Thus,
it can be regarded as an efficient approach for generating a
regional reanalysis dataset because of cost savings and the
use of the state-of-the-art reanalysis from ECMWF that as-
similates all available observations.

For verification, the latest ECMWF reanalysis and re-
forecast datasets (i.e., ERA5 and ERA-I) are used. With
respect to forecast variables, two different forecast fields
of ECWMF are used: (1) reforecast fields from ECMWF
(i.e., ERA5_fromECMWF and ERA-I_fromECMWF) and
(2) forecast fields (i.e., WRF-based ERA5 and WRF-based
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Figure 13. The spatial distribution of the monthly accumulated pre-
cipitation of (a) observations, (b) E3DVAR, (c) AdvHG, (d) ERA-I,
(e) ERA5, (f) ERA-I from ECMWF, and (g) ERA5 from ECMWF
for January 2017.

ERA-I) integrated in the WRF model with 12 km resolution
using ERA5 and ERA-I as initial conditions.

Analysis and forecast wind, temperature, and humidity
variables of AdvHG are evaluated with ERA5 for the 10-
year period and assessed with five different experiments
(i.e., E3DVAR, ERA5, ERA-I, ERA5_fromECMWF, ERA-
I_fromECMWF) for January and July 2017. Overall, the
analysis RMSE of E3DVAR is the smallest among others but
comparable to that of ERA5, especially for January 2017.
Regarding forecast variables, AdvHG outperforms E3DVAR

Figure 14. Same observations as in Fig. 13, but for July 2017.

for January and July 2017. Although ERA5 outperforms Ad-
vHG for upper-air variables for two seasons in 2017, AdvHG
outperforms ERA-I in January and shows comparable perfor-
mance to ERA-I in July. Additionally, the verification results
of AdvHG and ERA5 for the period 2010–2019 are consis-
tent with those for two 1-month periods in 2017.

The precipitation forecast variables are also verified re-
garding a neighborhood-based verification score (i.e., BSS)
as well as the point-based verification scores (i.e., ETS, FBI,
POD, and FAR). According to the point-based verification
scores, the precipitation forecast of AdvHG in January is the
most accurate, followed by E3DVAR, ERA5, and ERA-I. For
July, the overall ETS values of all results are relatively lower
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than those in January, implying a lower predictability in sum-
mer. In addition, the ETS differences between the results are
not distinctive in July. For higher thresholds (8 and 16 mm
per 6 h) in July, AdvHG ETS is greater than E3DVAR ETS
and smaller than ERA5 ETS, whereas E3DVAR ETS is the
greatest followed by ERA5 and AdvHG for lower thresholds
(0.5 and 1 mm per 6 h).

To prevent double penalty when verifying highly variable
data with high resolution (e.g., precipitation), the BSS based
on the neighborhood approach is calculated for 6 h accumu-
lated precipitation forecasts depending on different neigh-
borhood sizes for January and July 2017. In general, the
BSS of AdvHG is greater than that of ERA5 and ERA-I for
both months. Although the E3DVAR BSS is the greatest in
July 2017, the AdvHG BSS is the greatest in January 2017.

Lastly, the spatial distributions of 6 h and monthly accu-
mulated precipitation forecast for AdvHG, E3DVAR, ERA-
I, ERA5, ERA-I_fromECMWF, and ERA5_fromECMWF
are compared with rain gauge-based observations. For Jan-
uary 2017, it is noticeable that AdvHG precipitation is the
closest to observations with the highest PCC (i.e., 0.61), and
ERA5_fromECMWF overestimates precipitation over South
China with the lowest PCC (i.e., 0.46). For July 2017, the
WRF-based results tend to overestimate precipitation com-
pared to ERA-I_fromECMWF and ERA5_fromECMWF. In
addition, even though the averaged PCC of ERA5 (i.e., 0.37)
is slightly greater than that of AdvHG (i.e., 0.34), the PCC
difference between ERA5 and AdvHG is not distinctive and
overall the range of averaged PCC of all datasets in summer
(i.e., 0.29–0.37) is smaller than that in winter (i.e., 0.46–0.6).

In conclusion, for upper-air variables, overall, ERA5 out-
performs EARR based on AdvHG, but the RMSE differ-
ence between ERA5 and EARR (AdvHG) is smaller than
that between ERA5 and ERA-I. In addition, EARR out-
performs ERA-I for January 2017 and shows comparable
performance to ERA-I for July 2017. On the contrary, ac-
cording to the evaluation results of precipitation, in gen-
eral, EARR represents precipitation better than ERA5 as well
as ERA5_fromECMWF for January and July 2017. Even
if E3DVAR precipitation is better represented than EARR
precipitation for July, the difference is not considerable for
July and EARR simulates precipitation for January better
than E3DVAR does. Therefore, although the uncertainties of
upper-air variables of EARR should be considered when an-
alyzing them, the precipitation reforecast of EARR is more
accurate than that of ERA5 for both seasons.

Combining the global reanalysis data (i.e., ERA5) char-
acterized by the high quality of large-scale features with
detailed smaller-scale features in the higher resolution rep-
resented by the ensemble-based assimilation method (i.e.,
E3DVAR) as well as a community numerical weather predic-
tion model (i.e., WRF model) is a key factor for EARR to be
able to produce high-resolution initial conditions represented
with regional features, which could contribute to a reduc-
tion in forecast errors, especially for precipitation. Therefore,

EARR has its own advantage of representing regional fea-
tures of precipitation better than relatively coarse-resolution
global reanalysis.
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