Articles | Volume 14, issue 3
https://doi.org/10.5194/essd-14-1043-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-1043-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An hourly ground temperature dataset for 16 high-elevation sites (3493–4377 m a.s.l.) in the Bale Mountains, Ethiopia (2017–2020)
Alexander R. Groos
CORRESPONDING AUTHOR
Institute of Geography, University of Bern, 3012 Bern, Switzerland
Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91508 Erlangen, Germany
Janik Niederhauser
Institute of Geography, University of Bern, 3012 Bern, Switzerland
Bruk Lemma
Institute of Agronomy and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
Forest and Rangeland Biodiversity Directorate, Ethiopian Biodiversity Institute, P.O. Box 30726, Addis Ababa, Ethiopia
Mekbib Fekadu
Department of Geography, Philipps University of Marburg, 35032 Marburg, Germany
Department of Plant Biology and Biodiversity Management, Addis Ababa University, P.O. Box 3434, Addis Ababa, Ethiopia
Wolfgang Zech
Soil Science Department, University of Bayreuth, 95440 Bayreuth, Germany
Falk Hänsel
Department of Geography, Philipps University of Marburg, 35032 Marburg, Germany
Luise Wraase
Department of Geography, Philipps University of Marburg, 35032 Marburg, Germany
Naki Akçar
Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland
Heinz Veit
Institute of Geography, University of Bern, 3012 Bern, Switzerland
Related authors
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Akash M. Patil, Christoph Mayer, Thorsten Seehaus, and Alexander R. Groos
EGUsphere, https://doi.org/10.5194/egusphere-2025-615, https://doi.org/10.5194/egusphere-2025-615, 2025
Short summary
Short summary
We studied how snow and ice layers form and change in the Aletsch Glacier using radar and simple models. Our research mapped these layers' density and tracked their history over 12 years. This helps improve the glacier mass balance estimates. Using non-invasive radar techniques and models, we offer a new way to understand glaciers' evolution under regional climate conditions.
Alexander Raphael Groos, Nicolas Brand, Murat Bronz, and Andreas Philipp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-174, https://doi.org/10.5194/amt-2024-174, 2024
Revised manuscript under review for AMT
Short summary
Short summary
We have developed a low-cost, lightweight, and open-source fixed-wing drone to study vertical changes in air temperature, humidity, pressure, wind speed, wind direction and turbulence in the atmospheric boundary layer over mountain glaciers. The results of a measurement campaign on a glacier in the Swiss Alps demonstrate the potential of the new measurement technique and reveal characteristic insights into glacier-atmosphere interactions and the mountain-valley wind circulation.
Jérôme Messmer and Alexander Raphael Groos
The Cryosphere, 18, 719–746, https://doi.org/10.5194/tc-18-719-2024, https://doi.org/10.5194/tc-18-719-2024, 2024
Short summary
Short summary
The lower part of mountain glaciers is often covered with debris. Knowing the thickness of the debris is important as it influences the melting and future evolution of the affected glaciers. We have developed an open-source approach to map variations in debris thickness on glaciers using a low-cost drone equipped with a thermal infrared camera. The resulting high-resolution maps of debris surface temperature and thickness enable more accurate monitoring and modelling of debris-covered glaciers.
Alexander R. Groos, Janik Niederhauser, Luise Wraase, Falk Hänsel, Thomas Nauss, Naki Akçar, and Heinz Veit
Earth Surf. Dynam., 9, 145–166, https://doi.org/10.5194/esurf-9-145-2021, https://doi.org/10.5194/esurf-9-145-2021, 2021
Short summary
Short summary
Large sorted stone stripes have been discovered on the 4000 m high central Sanetti Plateau of the tropical Bale Mountains in Ethiopia. The stripes are a mystery as similar landforms have so far only been reported in the temperate zone and polar regions. Our investigations suggest that the stripes formed in the vicinity of a former ice cap on the plateau during a much colder climatic period. The distinct pattern is the result of a process related to cyclic freezing and thawing of the ground.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Akash M. Patil, Christoph Mayer, Thorsten Seehaus, and Alexander R. Groos
EGUsphere, https://doi.org/10.5194/egusphere-2025-615, https://doi.org/10.5194/egusphere-2025-615, 2025
Short summary
Short summary
We studied how snow and ice layers form and change in the Aletsch Glacier using radar and simple models. Our research mapped these layers' density and tracked their history over 12 years. This helps improve the glacier mass balance estimates. Using non-invasive radar techniques and models, we offer a new way to understand glaciers' evolution under regional climate conditions.
Alexander Raphael Groos, Nicolas Brand, Murat Bronz, and Andreas Philipp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-174, https://doi.org/10.5194/amt-2024-174, 2024
Revised manuscript under review for AMT
Short summary
Short summary
We have developed a low-cost, lightweight, and open-source fixed-wing drone to study vertical changes in air temperature, humidity, pressure, wind speed, wind direction and turbulence in the atmospheric boundary layer over mountain glaciers. The results of a measurement campaign on a glacier in the Swiss Alps demonstrate the potential of the new measurement technique and reveal characteristic insights into glacier-atmosphere interactions and the mountain-valley wind circulation.
Jérôme Messmer and Alexander Raphael Groos
The Cryosphere, 18, 719–746, https://doi.org/10.5194/tc-18-719-2024, https://doi.org/10.5194/tc-18-719-2024, 2024
Short summary
Short summary
The lower part of mountain glaciers is often covered with debris. Knowing the thickness of the debris is important as it influences the melting and future evolution of the affected glaciers. We have developed an open-source approach to map variations in debris thickness on glaciers using a low-cost drone equipped with a thermal infrared camera. The resulting high-resolution maps of debris surface temperature and thickness enable more accurate monitoring and modelling of debris-covered glaciers.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022, https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Short summary
Small mountain glaciers advance and recede as a response to summer temperature changes. Dating of glacial landforms with cosmogenic nuclides allowed us to reconstruct the advance and retreat history of an Alpine glacier throughout the past ~ 11 000 years, the Holocene. The results contribute knowledge to the debate of Holocene climate evolution, indicating that during most of this warm period, summer temperatures were similar to or warmer than in modern times.
Alexander R. Groos, Janik Niederhauser, Luise Wraase, Falk Hänsel, Thomas Nauss, Naki Akçar, and Heinz Veit
Earth Surf. Dynam., 9, 145–166, https://doi.org/10.5194/esurf-9-145-2021, https://doi.org/10.5194/esurf-9-145-2021, 2021
Short summary
Short summary
Large sorted stone stripes have been discovered on the 4000 m high central Sanetti Plateau of the tropical Bale Mountains in Ethiopia. The stripes are a mystery as similar landforms have so far only been reported in the temperate zone and polar regions. Our investigations suggest that the stripes formed in the vicinity of a former ice cap on the plateau during a much colder climatic period. The distinct pattern is the result of a process related to cyclic freezing and thawing of the ground.
Cited articles
Appelhans, T., Mwangomo, E., Otte, I., Detsch, F., Nauss, T., and Hemp, A.:
Eco-Meteorological Characteristics of the Southern Slopes of Kilimanjaro,
Tanzania, Int. J. Climatol., 36, 3245–3258, https://doi.org/10.1002/joc.4552,
2016. a, b
Beniston, M., Diaz, H. F., and Bradley, R. S.: Climatic Change at High
Elevation Sites: An Overview, Climatic Change, 36, 233–251,
https://doi.org/10.1007/978-94-015-8905-5_1, 1997. a
Bittner, L., Gil-Romera, G., Grady, D., Lamb, H. F., Lorenz, E., Weiner, M.,
Meyer, H., Bromm, T., Glaser, B., and Zech, M.: The Holocene
Lake-Evaporation History of the Afro-Alpine Lake Garba Guracha in the
Bale Mountains, Ethiopia, Based on δ18O Records of Sugar Biomarker and Diatoms, Quaternary Res., 1–14,
https://doi.org/10.1017/qua.2021.26, online first, 2021. a
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The Concept of Essential Climate Variables in Support
of Climate Research, Applications, and Policy, B. Am.
Meteorol. Soc., 95, 1431–1443, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014. a
Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G.,
Deckers, J., and Hofstede, R.: Human Impact on the Hydrology of the
Andean Páramos, Earth-Sci. Rev., 79, 53–72,
https://doi.org/10.1016/j.earscirev.2006.06.002, 2006. a
Buytaert, W., Cuesta-Camacho, F., and Tobón, C.: Potential Impacts of
Climate Change on the Environmental Services of Humid Tropical Alpine
Regions: Climate Change and Environmental Services, Glob. Ecol.
Biogeogr., 20, 19–33, https://doi.org/10.1111/j.1466-8238.2010.00585.x, 2011. a, b, c
Chignell, S. M., Laituri, M. J., Young, N. E., and Evangelista, P. H.:
Afroalpine Wetlands of the Bale Mountains, Ethiopia:
Distribution, Dynamics, and Conceptual Flow Model, Ann. Am.
Assoc. Geogr., 109, 791–811, https://doi.org/10.1080/24694452.2018.1500439, 2019. a
Collier, E., Sauter, T., Mölg, T., and Hardy, D.: The Influence of
Tropical Cyclones on Circulation, Moisture Transport, and Snow
Accumulation at Kilimanjaro During the 2006–2007 Season,
J. Geophys. Res.-Atmos., 124, 2019JD030682, https://doi.org/10.1029/2019JD030682, 2019. a
Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C., and Longino, J. T.:
Global Warming, Elevational Range Shifts, and Lowland Biotic
Attrition in the Wet Tropics, Science, 322, 258–261,
https://doi.org/10.1126/science.1162547, 2008. a
Costa, K., Russell, J., Konecky, B., and Lamb, H.: Isotopic Reconstruction of
the African Humid Period and Congo Air Boundary Migration at Lake
Tana, Ethiopia, Quaternary Sci. Rev., 83, 58–67,
https://doi.org/10.1016/j.quascirev.2013.10.031, 2014. a
Diaz, H. F. and Bradley, R. S.: Temperature Variations During the Last
Century at High Elevation Sites, Clim. Chang., 36, 253–279,
https://doi.org/10.1007/978-94-015-8905-5_2, 1997. a, b
Frauenfelder, R., Isaksen, K., Lato, M. J., and Noetzli, J.: Ground thermal and geomechanical conditions in a permafrost-affected high-latitude rock avalanche site (Polvartinden, northern Norway), The Cryosphere, 12, 1531–1550, https://doi.org/10.5194/tc-12-1531-2018, 2018. a
Gebrechorkos, S. H., Hülsmann, S., and Bernhofer, C.: Long-Term Trends in
Rainfall and Temperature Using High-Resolution Climate Datasets in East
Africa, Sci. Rep., 9, 1–9, https://doi.org/10.1038/s41598-019-47933-8, 2019. a
Geotest: UTL-3 Temperature Datalogger,
https://www.geotest.ch/en/innovation/utl-temperature-datalogger, last
access: 22 February 2021. a
Gil-Romera, G., Adolf, C., Benito, B. M., Bittner, L., Johansson, M. U.,
Grady, D. A., Lamb, H. F., Lemma, B., Fekadu, M., Glaser, B., Mekonnen, B.,
Sevilla-Callejo, M., Zech, M., Zech, W., and Miehe, G.: Long-Term Fire
Resilience of the Ericaceous Belt, Bale Mountains, Ethiopia,
Biol. Lett., 15, 20190357, https://doi.org/10.1098/rsbl.2019.0357, 2019. a
Gottelli, D. and Sillero-Zubiri, C.: The Simien Jackal: Ecology and
Conservation. The Bale Mountains Research Project, Wildlife
Conservation International, New York, 1990. a
Gottelli, D., Sillero-Zubiri, C., Applebaum, G. D., Roy, M. S., Girman,
D. J., Garcia-Moreno, J., Ostrander, E. A., and Wayne, R. K.: Molecular
Genetics of the Most Endangered Canid: The Ethiopian Wolf Canis
Simensis, Mol. Ecol., 3, 301–312, https://doi.org/10.1111/j.1365-294X.1994.tb00070.x,
1994. a
Grab, S. W., Gatebe, C. K., and Kinyua, A. M.: Ground Thermal Profiles from
Mount Kenya, East Africa, Geogr. Ann. Ser. A, 86, 131–141,
https://doi.org/10.1111/j.0435-3676.2004.00219.x, 2004. a, b, c, d
Groos, A. R., Niederhauser, J., Lemma, B., Fekadu, M., Zech, W., Hänsel,
F., Wraase, L., Akçar, N., and Veit, H.: An hourly ground temperature
dataset for 16 high elevation sites (3493–4377 m a.s.l.) in the Bale
Mountains, Ethiopia (2017–2020) (v1.1.2), Zenodo [data set],
https://doi.org/10.5281/zenodo.6047457, 2022. a, b, c, d
Hendrickx, H., Jacob, M., Frankl, A., Guyassa, E., and Nyssen, J.: Quaternary
Glacial and Periglacial Processes in the Ethiopian Highlands in Relation
to the Current Afro-Alpine Vegetation, Z. Geomorphol., 59, 37–57,
https://doi.org/10.1127/0372-8854/2014/0128, 2014. a
Hillman, J. C.: Bale Mountains National Park : management plan, Ethiopian Wildlife Conservation Organisation, Ministry of Agriculture, Addis Ababa, Ethiopia, 250 pp., 1986. a
Hoelzle, M., Wegmann, M., and Krummenacher, B.: Miniature Temperature
Dataloggers for Mapping and Monitoring of Permafrost in High Mountain Areas:
First Experience from the Swiss Alps, Permafrost Periglac., 10,
113–124,
https://doi.org/10.1002/(SICI)1099-1530(199904/06)10:2<113::AID-PPP317>3.0.CO;2-A,
1999. a
Imhof, M., Pierrehumbert, G., Haeberli, W., and Kienholz, H.: Permafrost
Investigation in the Schilthorn Massif, Bernese Alps,
Switzerland, Permafrost Periglac., 11, 189–206,
https://doi.org/10.1002/1099-1530(200007/09)11:3<189::AID-PPP348>3.0.CO;2-N, 2000. a
Kaser, G.: A Review of the Modern Fluctuations of Tropical Glaciers, Global
Planet. Change, 22, 93–103, https://doi.org/10.1016/S0921-8181(99)00028-4, 1999. a
Kaser, G., Großhauser, M., and Marzeion, B.: Contribution Potential of
Glaciers to Water Availability in Different Climate Regimes, P. Natl.
Acad. Sci. USA, 107, 20223–20227, https://doi.org/10.1073/pnas.1008162107, 2010. a
Kraaijenbrink, P. D. A., Shea, J. M., Litt, M., Steiner, J. F., Treichler, D.,
Koch, I., and Immerzeel, W. W.: Mapping Surface Temperatures on a
Debris-Covered Glacier With an Unmanned Aerial Vehicle, Front.
Earth Sci., 6, 1–19, https://doi.org/10.3389/feart.2018.00064, 2018. a, b
Lemma, B., Mekonnen, B., Glaser, B., Zech, W., Nemomissa, S., Bekele, T., Bittner, L., and Zech, M.: Chemotaxonomic patterns of vegetation and soils along altitudinal transects of the Bale Mountains, Ethiopia, and implications for paleovegetation reconstructions – Part II: lignin-derived phenols and leaf-wax-derived n-alkanes, E&G Quaternary Sci. J., 68, 189–200, https://doi.org/10.5194/egqsj-68-189-2019, 2019. a, b
Lemma, B., Kebede Gurmessa, S., Nemomissa, S., Otte, I., Glaser, B., and Zech,
M.: Spatial and Temporal 2H and 18O Isotope Variation
of Contemporary Precipitation in the Bale Mountains, Ethiopia, Isot.
Environ. Health Stud., 56, 1–14, https://doi.org/10.1080/10256016.2020.1717487, 2020. a, b
Lepot, M., Aubin, J.-B., and Clemens, F.: Interpolation in Time Series:
An Introductive Overview of Existing Methods, Their Performance
Criteria and Uncertainty Assessment, Water, 9, 796,
https://doi.org/10.3390/w9100796, 2017. a
Levin, N. E., Zipser, E. J., and Cerling, T. E.: Isotopic Composition of Waters
from Ethiopia and Kenya: Insights into Moisture Sources for
Eastern Africa, J. Geophys. Res., 114, 1–13, https://doi.org/10.1029/2009JD012166,
2009. a
Marino, J., Sillero-Zubiri, C., and Macdonald, D.: Trends, Dynamics and
Resilience of an Ethiopian Wolf Population, Anim. Conserv., 9, 49–58,
https://doi.org/10.1111/j.1469-1795.2005.00011.x, 2006. a
Mekonnen, B., Zech, W., Glaser, B., Lemma, B., Bromm, T., Nemomissa, S., Bekele, T., and Zech, M.: Chemotaxonomic patterns of vegetation and soils along altitudinal transects of the Bale Mountains, Ethiopia, and implications for paleovegetation reconstructions – Part 1: stable isotopes and sugar biomarkers, E&G Quaternary Sci. J., 68, 177–188, https://doi.org/10.5194/egqsj-68-177-2019, 2019. a
Mohr, P.: Ethiopian Flood Basalt Province, Nature, 303, 577–584,
https://doi.org/10.1038/303577a0, 1983. a
Mölg, T., Hardy, D. R., Collier, E., Kropač, E., Schmid, C., Cullen, N. J., Kaser, G., Prinz, R., and Winkler, M.: Mesoscale atmospheric circulation controls of local meteorological elevation gradients on Kersten Glacier near Kilimanjaro summit, Earth Syst. Dynam., 11, 653–672, https://doi.org/10.5194/esd-11-653-2020, 2020. a
Mosquera, G. M., Lazo, P. X., Célleri, R., Wilcox, B. P., and Crespo, P.:
Runoff from Tropical Alpine Grasslands Increases with Areal Extent of
Wetlands, Catena, 125, 120–128, https://doi.org/10.1016/j.catena.2014.10.010, 2015. a
Nicholson, L. I., Prinz, R., Mölg, T., and Kaser, G.: Micrometeorological conditions and surface mass and energy fluxes on Lewis Glacier, Mt Kenya, in relation to other tropical glaciers, The Cryosphere, 7, 1205–1225, https://doi.org/10.5194/tc-7-1205-2013, 2013. a
Osmaston, H. A., Mitchell, W. A., and Osmaston, J. A. N.: Quaternary Glaciation
of the Bale Mountains, Ethiopia, J. Quaternary Sci., 20, 593–606,
https://doi.org/10.1002/jqs.931, 2005. a, b, c
Ossendorf, G., Groos, A. R., Bromm, T., Tekelemariam, M. G., Glaser, B., Lesur,
J., Schmidt, J., Akçar, N., Bekele, T., Beldados, A., Demissew, S.,
Kahsay, T. H., Nash, B. P., Nauss, T., Negash, A., Nemomissa, S., Veit, H.,
Vogelsang, R., Woldu, Z., Zech, W., Opgenoorth, L., and Miehe, G.: Middle
Stone Age Foragers Resided in High Elevations of the Glaciated Bale
Mountains, Ethiopia, Science, 365, 583–587,
https://doi.org/10.1126/science.aaw8942, 2019. a
Pepin, N. C. and Lundquist, J. D.: Temperature Trends at High Elevations:
Patterns across the Globe, Geophys. Res. Lett., 35, L14701,
https://doi.org/10.1029/2008GL034026, 2008. a
Pepin, N. C. and Seidel, D. J.: A Global Comparison of Surface and Free-Air
Temperatures at High Elevations, J. Geophys. Res., 110, D03104,
https://doi.org/10.1029/2004JD005047, 2005. a, b
Pepin, N. C., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B.,
Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller,
J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W.,
Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N., and Yang,
D. Q.: Elevation-Dependent Warming in Mountain Regions of the World, Nat.
Clim. Change, 5, 424–430, https://doi.org/10.1038/nclimate2563, 2015. a, b, c
Pepin, N. C., Maeda, E. E., and Williams, R.: Use of Remotely Sensed Land
Surface Temperature as a Proxy for Air Temperatures at High Elevations:
Findings from a 5000 m Elevational Transect across Kilimanjaro:
MODIS LST versus Tair at high
elevations, J. Geophys. Res.-Atmos., 121, 9998–10015,
https://doi.org/10.1002/2016JD025497, 2016. a, b
Peters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A.,
Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F.,
Gerschlauer, F., Gütlein, A., Helbig-Bonitz, M., Hemp, C., Kindeketa,
W. J., Kühnel, A., Mayr, A. V., Mwangomo, E., Ngereza, C., Njovu, H. K.,
Otte, I., Pabst, H., Renner, M., Röder, J., Rutten, G.,
Schellenberger Costa, D., Sierra-Cornejo, N., Vollstädt, M. G. R.,
Dulle, H. I., Eardley, C. D., Howell, K. M., Keller, A., Peters, R. S.,
Ssymank, A., Kakengi, V., Zhang, J., Bogner, C., Böhning-Gaese, K.,
Brandl, R., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Kuzyakov, Y., Nauss,
T., Schleuning, M., Tschapka, M., Fischer, M., and Steffan-Dewenter, I.:
Climate–Land-Use Interactions Shape Tropical Mountain Biodiversity
and Ecosystem Functions, Nature, 568, 88–92,
https://doi.org/10.1038/s41586-019-1048-z, 2019. a, b, c
Qin, J., Yang, K., Liang, S., and Guo, X.: The Altitudinal Dependence of Recent
Rapid Warming over the Tibetan Plateau, Climatic Change, 97, 321–327,
https://doi.org/10.1007/s10584-009-9733-9, 2009.
a
Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G.,
Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., and Fjeldså,
J.: Humboldt's Enigma: What Causes Global Patterns of Mountain
Biodiversity?, Science, 365, 1108–1113, https://doi.org/10.1126/science.aax0149, 2019. a, b
Rangwala, I. and Miller, J. R.: Climate Change in Mountains: A Review of
Elevation-Dependent Warming and Its Possible Causes, Climatic Change, 114,
527–547, https://doi.org/10.1007/s10584-012-0419-3, 2012. a, b
Rist, A., Roth, L., and Veit, H.: Elevational Ground/Air Thermal Gradients in
the Swiss Inner Alpine Valais, Arct. Antarct. Alp. Res., 52,
341–360, https://doi.org/10.1080/15230430.2020.1742022, 2020. a
Schrott, L., Otto, J.-C., and Keller, F.: Modelling Alpine Permafrost
Distribution in the Hohe Tauern Region, Austria, Austrian J. Earth
Sci., 105, 169–183, 2012. a
Seleshi, Y. and Zanke, U.: Recent Changes in Rainfall and Rainy Days in
Ethiopia, Int. J. Climatol., 24, 973–983, https://doi.org/10.1002/joc.1052, 2004. a
Tempmate: Temperature and humidity miniature data logger,
https://www.tempmate.com/temperature-logger/tempmate-b-series/, last
access: 22 February 2021. a
Tierney, J. E., Russell, J. M., Sinninghe Damsté, J. S., Huang, Y., and
Verschuren, D.: Late Quaternary Behavior of the East African Monsoon
and the Importance of the Congo Air Boundary, Quaternary Sci. Rev., 30,
798–807, https://doi.org/10.1016/j.quascirev.2011.01.017, 2011. a
Veettil, B. K. and Kamp, U.: Global Disappearance of Tropical Mountain
Glaciers: Observations, Causes, and Challenges, Geosciences, 9,
1–25, https://doi.org/10.3390/geosciences9050196, 2019. a
Vieira, G., Mora, C., and Faleh, A.: New observations indicate the possible presence of permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco), The Cryosphere, 11, 1691–1705, https://doi.org/10.5194/tc-11-1691-2017, 2017. a, b, c
Vlasatá, T., Šklíba, J., Lövy, M., Meheretu, Y.,
Sillero-Zubiri, C., and Šumbera, R.: Daily Activity Patterns in the
Giant Root Rat (Tachyoryctes Macrocephalus), a Fossorial Rodent from the
Afro-Alpine Zone of the Bale Mountains, Ethiopia, J. Zool., 302,
157–163, https://doi.org/10.1111/jzo.12441, 2017. a
Wöllauer, S., Zeuss, D., Hänsel, F., and Nauss, T.: TubeDB: An
on-Demand Processing Database System for Climate Station Data, Comput.
Geosci., 146, 104641, https://doi.org/10.1016/j.cageo.2020.104641, 2020. a, b
Short summary
Continuous observations and measurements from high elevations are necessary to monitor recent climate and environmental changes in the tropical mountains of eastern Africa, but meteorological and ground temperature data from above 3000 m are very rare. Here we present a comprehensive ground temperature monitoring network that has been established between 3493 and 4377 m in the Bale Mountains (Ethiopian Highlands) to monitor and study the afro-alpine climate and ecosystem in this region.
Continuous observations and measurements from high elevations are necessary to monitor recent...
Altmetrics
Final-revised paper
Preprint