Articles | Volume 13, issue 10
https://doi.org/10.5194/essd-13-4653-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-4653-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data
Peter Friedl
Institute of Geography, Friedrich Alexander University
Erlangen-Nuremberg, Erlangen, 91058, Germany
Institute of Geography, Friedrich Alexander University
Erlangen-Nuremberg, Erlangen, 91058, Germany
Matthias Braun
Institute of Geography, Friedrich Alexander University
Erlangen-Nuremberg, Erlangen, 91058, Germany
Related authors
No articles found.
Vijaya Kumar Thota, Thorsten Seehaus, Friedrich Knuth, Amaury Dehecq, Christian Salewski, and Matthias Braun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-490, https://doi.org/10.5194/essd-2025-490, 2025
Preprint under review for ESSD
Short summary
Short summary
We studied past glacier changes in a rapidly warming Antarctic region with little historical data. Using approximately 2000 aerial photographs from the year 1989 over the western Antarctic Peninsula and nearby islands, we created detailed elevation models and orthoimages that have high accuracy compared to recent satellite data. This open dataset aids tracking historical ice loss and its role in sea level rise.
Angelika Humbert, Veit Helm, Ole Zeising, Niklas Neckel, Matthias H. Braun, Shfaqat Abbas Khan, Martin Rückamp, Holger Steeb, Julia Sohn, Matthias Bohnen, and Ralf Müller
The Cryosphere, 19, 3009–3032, https://doi.org/10.5194/tc-19-3009-2025, https://doi.org/10.5194/tc-19-3009-2025, 2025
Short summary
Short summary
We study the evolution of a massive lake on the Greenland Ice Sheet using satellite and airborne data and some modelling. The lake is emptying rapidly. Water flows to the glacier's base through cracks and triangular-shaped moulins that remain visible over the years. Some of them become reactivated. We find features inside the glacier that stem from drainage events with a width of even 1 km. These features are persistent over the years, although they are changing in shape.
Katrina Lutz, Ilaria Tabone, Angelika Humbert, and Matthias Braun
The Cryosphere, 19, 2601–2614, https://doi.org/10.5194/tc-19-2601-2025, https://doi.org/10.5194/tc-19-2601-2025, 2025
Short summary
Short summary
Supraglacial lakes develop from meltwater collecting on the surface of glaciers. These lakes can drain rapidly, discharging meltwater to the glacier bed. In this study, we assess the spatial and temporal distribution of rapid drainages in Northeast Greenland using optical satellite images. After comparing rapid drainage occurrence with several environmental and geophysical parameters, little indication of the influencing conditions for a rapid drainage was found.
Theresa Dobler, Wilfried Hagg, Martin Rückamp, Thorsten Seehaus, and Christoph Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-2513, https://doi.org/10.5194/egusphere-2025-2513, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied how a glacier in the Austrian Alps moves more slowly over time due to climate change. By combining long-term field data with recent aerial images, we show how thinning reduce glacier flow. Standard satellite methods failed to detect this slow movement, so we used manual tracking to create a reliable map. Our findings help understand changes in glacier behavior in a warming climate.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Maria Kappelsberger, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
The Cryosphere, 19, 1789–1824, https://doi.org/10.5194/tc-19-1789-2025, https://doi.org/10.5194/tc-19-1789-2025, 2025
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean processes related to the mass balance of glaciers in northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79° N Glacier. We find that together, the different in situ and remote sensing observations and model simulations reveal a consistent picture of a coupled atmosphere–ice sheet–ocean system that has entered a phase of major change.
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
The Cryosphere, 19, 1577–1597, https://doi.org/10.5194/tc-19-1577-2025, https://doi.org/10.5194/tc-19-1577-2025, 2025
Short summary
Short summary
In the present work, we provide a new ice thickness reconstruction of the Antarctic Peninsula Ice Sheet north of 70º S using inversion modeling. This model consists of two steps: the first uses basic assumptions of the rheology of the glacier, and the second uses mass conservation to improve the reconstruction where the assumptions made previously are expected to fail. Validation with independent data showed that our reconstruction improved compared to other reconstructions that are available.
Akash M. Patil, Christoph Mayer, Thorsten Seehaus, and Alexander R. Groos
EGUsphere, https://doi.org/10.5194/egusphere-2025-615, https://doi.org/10.5194/egusphere-2025-615, 2025
Short summary
Short summary
We studied how snow and ice layers form and change in the Aletsch Glacier using radar and simple models. Our research mapped these layers' density and tracked their history over 12 years. This helps improve the glacier mass balance estimates. Using non-invasive radar techniques and models, we offer a new way to understand glaciers' evolution under regional climate conditions.
Marcel Dreier, Moritz Koch, Nora Gourmelon, Norbert Blindow, Daniel Steinhage, Fei Wu, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
EGUsphere, https://doi.org/10.5194/egusphere-2024-3597, https://doi.org/10.5194/egusphere-2024-3597, 2025
Short summary
Short summary
In this paper, we present a ready-to-use benchmark dataset to train machine-learning approaches for detecting ice thickness from radar data. It includes radargrams of glaciers and ice sheets alongside annotations for their air-ice and ice-bedrock boundary. Furthermore, we introduce a baseline model and evaluate the influence of several geographical and glaciological factors on the performance of our model.
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024, https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding how much water is lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when it is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Oskar Herrmann, Nora Gourmelon, Thorsten Seehaus, Andreas Maier, Johannes J. Fürst, Matthias H. Braun, and Vincent Christlein
The Cryosphere, 17, 4957–4977, https://doi.org/10.5194/tc-17-4957-2023, https://doi.org/10.5194/tc-17-4957-2023, 2023
Short summary
Short summary
Delineating calving fronts of marine-terminating glaciers in satellite images is a labour-intensive task. We propose a method based on deep learning that automates this task. We choose a deep learning framework that adapts to any given dataset without needing deep learning expertise. The method is evaluated on a benchmark dataset for calving-front detection and glacier zone segmentation. The framework can beat the benchmark baseline without major modifications.
Thorsten Seehaus, Christian Sommer, Thomas Dethinne, and Philipp Malz
The Cryosphere, 17, 4629–4644, https://doi.org/10.5194/tc-17-4629-2023, https://doi.org/10.5194/tc-17-4629-2023, 2023
Short summary
Short summary
Existing mass budget estimates for the northern Antarctic Peninsula (>70° S) are affected by considerable limitations. We carried out the first region-wide analysis of geodetic mass balances throughout this region (coverage of 96.4 %) for the period 2013–2017 based on repeat pass bi-static TanDEM-X acquisitions. A total mass budget of −24.1±2.8 Gt/a is revealed. Imbalanced high ice discharge, particularly at former ice shelf tributaries, is the main driver of overall ice loss.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023, https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary
Short summary
Calibration of surface mass balance (SMB) models on regional scales is challenging. We investigate different calibration strategies with the goal of achieving realistic simulations of the SMB in the Monte Sarmiento Massif, Tierra del Fuego. Our results show that the use of regional observations from satellite data can improve the model performance. Furthermore, we compare four melt models of different complexity to understand the benefit of increasing the processes considered in the model.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022, https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Short summary
Arctic glaciers have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small in the past. In this study we provide mass changes of most glaciers of the Russian High Arctic (Franz Josef Land, Severnaya Zemlya, Novaya Zemlya). We use TanDEM-X satellite measurements to derive glacier surface elevation changes. Our results show an increase in glacier mass loss and a sea level rise contribution of 0.06 mm/a (2010–2017).
Mirko Scheinert, Christoph Mayer, Martin Horwath, Matthias Braun, Anja Wendt, and Daniel Steinhage
Polarforschung, 89, 57–64, https://doi.org/10.5194/polf-89-57-2021, https://doi.org/10.5194/polf-89-57-2021, 2021
Short summary
Short summary
Ice sheets, glaciers and further ice-covered areas with their changes as well as interactions with the solid Earth and the ocean are subject of intensive research, especially against the backdrop of global climate change. The resulting questions are of concern to scientists from various disciplines such as geodesy, glaciology, physical geography and geophysics. Thus, the working group "Polar Geodesy and Glaciology", founded in 2013, offers a forum for discussion and stimulating exchange.
Catrin Stadelmann, Johannes Jakob Fürst, Thomas Mölg, and Matthias Braun
The Cryosphere, 14, 3399–3406, https://doi.org/10.5194/tc-14-3399-2020, https://doi.org/10.5194/tc-14-3399-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro are unique indicators for climatic changes in the tropical midtroposphere of Africa. A history of severe glacier area loss raises concerns about an imminent future disappearance. Yet the remaining ice volume is not well known. Here, we reconstruct ice thickness maps for the two largest remaining ice bodies to assess the current glacier state. We believe that our approach could provide a means for a glacier-specific calibration of reconstructions on different scales.
Cited articles
Abdel Jaber, W., Rott, H., Floricioiu, D., Wuite, J., and Miranda, N.: Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016, The Cryosphere, 13, 2511–2535, https://doi.org/10.5194/tc-13-2511-2019, 2019.
Allen, M. R., Dube, O. P., Solecki, W., Aragón-Durand, F., Cramer, W.,
Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez,
R., Wairiu, M., and Zickfeld, K.: Framing and Context, in: Global Warming of
1.5∘ C. An IPCC Special Report on the impacts of global warming of
1.5∘ C above pre-industrial levels and related global greenhouse
gas emission pathways, in the context of strengthening the global response
to the threat of climate change, sustainable development, and efforts to
eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner,
H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W.,
Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou,
X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T.,
in press, 49–91, 2018.
ASF DAAC: Copernicus Sentinel data 2015–2020. Retrieved from ASF DAAC, processed by ESA [data set], available at: https://search.asf.alaska.edu, last access 29 March 2021.
Bamber, J. L. and Rivera, A.: A review of remote sensing methods for glacier
mass balance determination, Global Planet. Change, 59, 138–148,
https://doi.org/10.1016/j.gloplacha.2006.11.031, 2007.
Bamber, J. L., Westaway, R. M., Marzeion, B., and Wouters, B.: The land ice
contribution to sea level during the satellite era, Environ. Res. Lett., 13,
63008, https://doi.org/10.1088/1748-9326/aac2f0, 2018.
Bhambri, R., Hewitt, K., Kawishwar, P., and Pratap, B.: Surge-type and
surge-modified glaciers in the Karakoram, Sci. Rep., 7, 15391,
https://doi.org/10.1038/s41598-017-15473-8, 2017.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The Concept of Essential Climate Variables in Support of Climate
Research, Applications, and Policy, Bull. Amer. Meteor. Soc., 95,
1431–1443, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014.
Braun, M. H., Malz, P., Sommer, C., Farías-Barahona, D., Sauter, T.,
Casassa, G., Soruco, A., Skvarca, P., and Seehaus, T. C.: Constraining
glacier elevation and mass changes in South America, Nat. Clim. Change,
9, 130–136, https://doi.org/10.1038/s41558-018-0375-7, 2019.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances,
2000–2016, Nat. Geosci., 10, 668–673,
https://doi.org/10.1038/ngeo2999, 2017.
Carr, J. R., Stokes, C. R., and Vieli, A.: Threefold increase in
marine-terminating outlet glacier retreat rates across the Atlantic Arctic:
1992–2010, Ann. Glaciol., 58, 72–91, https://doi.org/10.1017/aog.2017.3,
2017.
Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow,
P. W., Berthier, E., Vincent, C., Wagnon, P., and Trouvé, E.:
Twenty-first century glacier slowdown driven by mass loss in High Mountain
Asia, Nat. Geosci., 12, 22–27,
https://doi.org/10.1038/s41561-018-0271-9, 2019.
de Zan, F. and Monti Guarnieri, A.: TOPSAR: Terrain Observation by
Progressive Scans, IEEE T. Geosci. Remote, 44, 2352–2360,
https://doi.org/10.1109/TGRS.2006.873853, 2006.
DLR: TanDEM-X 3 arcsec global Digital Elevation Model [data set], available at: https://download.geoservice.dlr.de/TDM90/ (last access: 29 March 2021), 2018.
DLR: Radar image products of the German national TerraSAR-X mission acquired in StripMap mode 2015–2018 [data set], available at: https://eoweb.dlr.de/egp/, last access 29 March 2021.
Dowdeswell, J. A., Hamilton, G. S., and Hagen, J. O.: The duration of the
active phase on surge-type glaciers: contrasts between Svalbard and other
regions, J. Glaciol., 37, 388–400,
https://doi.org/10.3189/S0022143000005827, 1991.
Dunse, T., Schellenberger, T., Hagen, J. O., Kääb, A., Schuler, T. V., and Reijmer, C. H.: Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt, The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015, 2015.
ENVEO: Ice velocity time series for Pine Island Glacier, Antarctica,
2014–2019, acquired by Sentinel-1 for Antarctic Ice Sheet CCI, v1.1 [data set], available at: https://cryoportal.enveo.at/data/ (last access: 6 October 2021), 2019.
ENVEO: Ice Flow and Calving Front – Timeseries [data set], available at:
http://cryoportal.enveo.at/iv/ (last access: 6 October 2021), 2020.
Fahnestock, M. A., Scambos, T. A., Moon, T., Gardner, A. S., Haran, T. M.,
and Klinger, M.: Rapid large-area mapping of ice flow using Landsat 8,
Remote Sens. Environ., 185, 84–94,
https://doi.org/10.1016/j.rse.2015.11.023, 2016.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Flink, A. E., Noormets, R., Kirchner, N., Benn, D. I., Luckman, A., and
Lovell, H.: The evolution of a submarine landform record following recent
and multiple surges of Tunabreen glacier, Svalbard, Quaternary Sci.
Rev., 108, 37–50, https://doi.org/10.1016/j.quascirev.2014.11.006, 2015.
FOSSGIS e.V.: Land polygons derived from OpenStreetMap [data set], available at: https://osmdata.openstreetmap.de/data/land-polygons.html (last access: 29 March 2021), 2020a.
FOSSGIS e.V.: Water polygons derived from OpenStreetMap [data set], available at: https://osmdata.openstreetmap.de/data/water-polygons.html (last access: 29 March 2021), 2020b.
Friedl, P., Seehaus, T. C., Wendt, A., Braun, M. H., and Höppner, K.: Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula, The Cryosphere, 12, 1347–1365, https://doi.org/10.5194/tc-12-1347-2018, 2018.
Friedl, P., Seehaus, T., and Braun, M.: Sentinel-1 ice surface velocities of
Svalbard, V. 1.0, GFZ Data Services [data set],
https://doi.org/10.5880/fidgeo.2021.016, 2021.
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A.,
Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S.
R. M., Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, Michiel R.,
and Paul, F.: A reconciled estimate of glacier contributions to sea level
rise: 2003 to 2009, Science, 340, 852–857,
https://doi.org/10.1126/science.1234532, 2013.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities, Data archived at
National Snow and Ice Data Center [data set], https://doi.org/10.5067/6II6VW8LLWJ7,
2019.
Geudtner, D., Torres, R., Snoeij, P., Davidson, M., and Rommen, B.:
Sentinel-1 System capabilities and applications, in: IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 2014: Proceedings, 13–18 July 2014, Quebec City, QC, Canada, 1457–1460, 2014.
Haga, O. N., McNabb, R., Nuth, C., Altena, B., Schellenberger, T., and
Kääb, A.: From high friction zone to frontal collapse: dynamics of
an ongoing tidewater glacier surge, Negribreen, Svalbard, J.
Glaciol., 66, 742–754, https://doi.org/10.1017/jog.2020.43, 2020.
Hagen, J. O.: Glacier surge at Usherbreen, Svalbard, Polar Res., 5, 239–252,
https://doi.org/10.3402/polar.v5i2.6879, 1987.
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nat. Clim. Change, 8, 135–140,
https://doi.org/10.1038/s41558-017-0049-x, 2018.
Jawak, S. , Bidawe, T. and Luis, A.: A Review on Applications of Imaging Synthetic Aperture Radar with a Special Focus on Cryospheric Studies, Adv. Remote Sens., 4, 163–175, https://doi.org/10.4236/ars.2015.42014, 2015.
Jiskoot, H.: Dynamics of Glaciers, in: Encyclopedia of snow, ice and
glaciers, edited by: Singh, V. P., Singh, P., and Haritashya, U. K.,
Springer, Dordrecht, the Netherlands, 245–256, 2011.
Joughin, I., Smith, B., Howat, I., and Scambos, T.: MEaSUREs Multi-year
Greenland Ice Sheet Velocity Mosaic, Version 1: Boulder, Colorado USA. NASA
National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/QUA5Q9SVMSJG, 2016.
Joughin, I., Smith, B. E., and Howat, I. M.: A Complete Map of Greenland Ice
Velocity Derived from Satellite Data Collected over 20 Years, J.
Glaciol., 64, 1–11, https://doi.org/10.1017/jog.2017.73, 2018.
Kamb, B., Raymond, C. F., Harrison, W. D., Engelhardt, H., Echelmeyer, K.
A., Humphrey, N., Brugman, M. M., and Pfeffer, T.: Glacier surge mechanism:
1982-1983 surge of variegated glacier, alaska, Science, 227, 469–479,
https://doi.org/10.1126/science.227.4686.469, 1985.
Lüttig, C., Neckel, N., and Humbert, A.: A Combined Approach for
Filtering Ice Surface Velocity Fields Derived from Remote Sensing Methods,
Remote Sens., 9, 1062, https://doi.org/10.3390/rs9101062, 2017.
Meier, W. J.-H., Grießinger, J., Hochreuther, P., and Braun, M. H.: An
Updated Multi-Temporal Glacier Inventory for the Patagonian Andes With
Changes Between the Little Ice Age and 2016, Front. Earth Sci., 6, 62,
https://doi.org/10.3389/feart.2018.00062, 2018.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.:
Estimating the volume and age of water stored in global lakes using a
geo-statistical approach, Nat. Commun., 7, 13603,
https://doi.org/10.1038/ncomms13603, 2016 (data available at: https://www.hydrosheds.org/page/hydrolakes, last access: 29 March 2021).
Minowa, M., Schaefer, M., Sugiyama, S., Sakakibara, D., and Skvarca, P.:
Frontal ablation and mass loss of the Patagonian icefields, Earth Planet. Sc. Lett., 561, 116811,
https://doi.org/10.1016/j.epsl.2021.116811, 2021.
Miranda, N.: Definition of the TOPS SLC deramping function for products
generated by the S-1 IPF, available at:
https://sentinel.esa.int/documents/247904/1653442/Sentinel-1-TOPS-SLC_Deramping (last access: 27 May 2020), 2017.
Moon, T., Joughin, I. R., Smith, B. E., Broeke, M. R., Berg, W. J.,
Noël, B. P. Y., and Usher, M.: Distinct patterns of seasonal Greenland
glacier velocity, Geophys. Res. Lett., 41, 7209–7216,
https://doi.org/10.1002/2014GL061836, 2014.
Moore, R. D., Fleming, S. W., Menounos, B., Wheate, R., Fountain, A., Stahl,
K., Holm, K., and Jakob, M.: Glacier change in western North America:
influences on hydrology, geomorphic hazards and water quality, Hydrol.
Process., 23, 42–61, https://doi.org/10.1002/hyp.7162, 2009.
Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., and
Papathanassiou, K. P.: A tutorial on synthetic aperture radar, IEEE Geosci.
Remote Sens. Mag., 1, 6–43, https://doi.org/10.1109/MGRS.2013.2248301,
2013.
Mouginot, J., Scheuchl, B., and Rignot, E.: Mapping of Ice Motion in
Antarctica Using Synthetic-Aperture Radar Data, Remote Sens., 4,
2753–2767, https://doi.org/10.3390/rs4092753, 2012.
Mouginot, J., Scheuchl, B., and Rignot, E.: MEaSUREs Annual Antarctic Ice
Velocity Maps 2005–2017, Version 1: Boulder, Colorado USA. NASA National
Snow and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/9T4EPQXTJYW9, 2017a.
Mouginot, J., Rignot, E., Scheuchl, B., and Millan, R.: Comprehensive Annual
Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data,
Remote Sens., 9, 364, https://doi.org/10.3390/rs9040364, 2017b.
Murray, T., Dowdeswell, J. A., Drewry, D. J., and Frearson, I.: Geometric
evolution and ice dynamics during a surge of Bakaninbreen, Svalbard, J. Glaciol., 44, 263–272, https://doi.org/10.3189/S0022143000002604,
1998.
Murray, T., Luckman, A., Strozzi, T., and Nuttall, A.-M.: The initiation of
glacier surging at Fridtjovbreen, Svalbard, Ann. Glaciol., 36, 110–116,
https://doi.org/10.3189/172756403781816275, 2003a.
Murray, T., Strozzi, T., Luckman, A., Jiskoot, H., and Christakos, P.: Is
there a single surge mechanism? Contrasts in dynamics between glacier surges
in Svalbard and other regions, J. Geophys. Res., 108, 2237,
https://doi.org/10.1029/2002JB001906, 2003b.
Nagler, T., Rott, H., Hetzenecker, M., Wuite, J., and Potin, P.: The
Sentinel-1 Mission: New Opportunities for Ice Sheet Observations, Remote
Sens., 7, 9371–9389, https://doi.org/10.3390/rs70709371, 2015.
NASA JPL: NASA Shuttle Radar Topography Mission Global 3 arc second
sub-sampled, NASA EOSDIS Land Processes DAAC [data set],
https://doi.org/10.5067/MEASURES/SRTM/SRTMGL3S.003, 2013.
Nuth, C., Kohler, J., König, M., von Deschwanden, A., Hagen, J. O., Kääb, A., Moholdt, G., and Pettersson, R.: Decadal changes from a multi-temporal glacier inventory of Svalbard, The Cryosphere, 7, 1603–1621, https://doi.org/10.5194/tc-7-1603-2013, 2013.
Paul, F., Bolch, T., Briggs, K., Kääb, A., McMillan, M., McNabb, R.,
Nagler, T., Nuth, C., Rastner, P., Strozzi, T., and Wuite, J.: Error sources
and guidelines for quality assessment of glacier area, elevation change, and
velocity products derived from satellite data in the Glaciers_cci project, Remote Sens. Environ., 203, 256–275,
https://doi.org/10.1016/j.rse.2017.08.038, 2017.
Quincey, D. J., Braun, M., Glasser, N. F., Bishop, M. P., Hewitt, K., and
Luckman, A.: Karakoram glacier surge dynamics, Geophys. Res. Lett., 38, L18504, https://doi.org/10.1029/2011GL049004, 2011.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA, Digital Media [data set], https://doi.org/10.7265/N5-RGI-60, 2017.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic ice
sheet, Science, 333, 1427–1430,
https://doi.org/10.1126/science.1208336, 2011.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica
Ice Velocity Map, Version 2: Boulder, Colorado USA. NASA National Snow and
Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/D7GK8F5J8M8R, 2017.
Sakakibara, D. and Sugiyama, S.: Ice-front variations and speed changes of
calving glaciers in the Southern Patagonia Icefield from 1984 to 2011, J.
Geophys. Res.-Earth Surf., 119, 2541–2554,
https://doi.org/10.1002/2014JF003148, 2014.
Sakakibara, D. and Sugiyama, S.: Ice front and flow speed variations of
marine-terminating outlet glaciers along the coast of Prudhoe Land,
northwestern Greenland, J. Glaciol., 64, 300–310,
https://doi.org/10.1017/jog.2018.20, 2018.
Sánchez-Gámez, P. and Navarro, F. J.: Glacier Surface Velocity
Retrieval Using D-InSAR and Offset Tracking Techniques Applied to Ascending
and Descending Passes of Sentinel-1 Data for Southern Ellesmere Ice Caps,
Canadian Arctic, Remote Sens., 9, 442, https://doi.org/10.3390/rs9050442,
2017.
Scambos, T., Fahnestock, M., Moon, T., Gardner, A., and Klinger,
M.: Global Land Ice Velocity Extraction from Landsat 8 (Go-LIVE), Version 1, NSIDC: National Snow and Ice Data Center, Boulder, Colorado USA [data set], https://doi.org/10.7265/N5ZP442B, 2016.
Scheiber, R. and Moreira, A.: Coregistration of interferometric SAR images
using spectral diversity, IEEE T. Geosci. Remote, 38,
2179–2191, https://doi.org/10.1109/36.868876, 2000.
Schellenberger, T., Dunse, T., Kääb, A., Kohler, J., and Reijmer, C. H.: Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking, The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, 2015.
Seehaus, T., Cook, A. J., Silva, A. B., and Braun, M.: Changes in glacier dynamics in the northern Antarctic Peninsula since 1985, The Cryosphere, 12, 577–594, https://doi.org/10.5194/tc-12-577-2018, 2018.
Solgaard, A. and Kusk, A.: Programme for monitoring of the Greenland ice
sheet (PROMICE): Greenland ice velocity [data set],
https://doi.org/10.22008/PROMICE/DATA/SENTINEL1ICEVELOCITY/GREENLANDICESHEET/V1.0.0,
2019.
Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M., and Braun, M. H.:
Rapid glacier retreat and downwasting throughout the European Alps in the
early 21st century, Nat. Commun., 11, 3209,
https://doi.org/10.1038/s41467-020-16818-0, 2020.
Strozzi, T., Luckman, A. J., Murray, T., Wegmuller, U., and Werner, C. L.:
Glacier motion estimation using SAR offset-tracking procedures, IEEE T.
Geosci. Remote, 40, 2384–2391,
https://doi.org/10.1109/TGRS.2002.805079, 2002.
Strozzi, T., Paul, F., Wiesmann, A., Schellenberger, T., and Kääb,
A.: Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from
Satellite SAR Data between the 1990s and 2017, Remote Sens., 9, 947,
https://doi.org/10.3390/rs9090947, 2017.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N., Deghaye, P.,
Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R.,
Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1 mission,
Remote Sens. Environ., 120, 9–24,
https://doi.org/10.1016/j.rse.2011.05.028, 2012.
Vijay, S., Khan, S. A., Kusk, A., Solgaard, A. M., Moon, T., and Bjørk,
A. A.: Resolving seasonal ice velocity of 45 Greenlandic Glaciers with very
high temporal details, Geophys. Res. Lett., 46, 1485–1495,
https://doi.org/10.1029/2018GL081503, 2019.
Wegmüller, U., Werner, C. L., Strozzi, T., Wiesmann, A., Frey, O., and
Santoro, M.: Sentinel-1 Support in the GAMMA Software, Procedia Comput.
Sci., 100, 1305–1312, https://doi.org/10.1016/j.procs.2016.09.246, 2016.
Wendleder, A., Friedl, P., and Mayer, C.: Impacts of Climate and
Supraglacial Lakes on the Surface Velocity of Baltoro Glacier from 1992 to
2017, Remote Sens., 10, 1681, https://doi.org/10.3390/rs10111681, 2018.
Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., and Roth,
A.: Accuracy assessment of the global TanDEM-X Digital Elevation Model with
GPS data, ISPRS J. Photogramm., 139, 171–182,
https://doi.org/10.1016/j.isprsjprs.2018.02.017, 2018.
Wouters, B., Gardner, A. S., and Moholdt, G.: Global Glacier Mass Loss
During the GRACE Satellite Mission (2002–2016), Front. Earth Sci., 7, 96,
https://doi.org/10.3389/feart.2019.00096, 2019.
Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence,
R., and Evangelista, P. H.: A survival guide to Landsat preprocessing,
Ecology, 98, 920–932, https://doi.org/10.1002/ecy.1730, 2017.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J.,
Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I.,
Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global
glacier mass changes and their contributions to sea-level rise from 1961 to
2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0,
2019.
Short summary
Consistent and continuous data on glacier surface velocity are important inputs to time series analyses, numerical ice dynamic modeling and glacier mass flux computations. We present a new data set of glacier surface velocities derived from Sentinel-1 radar satellite data that covers 12 major glaciated regions outside the polar ice sheets. The data comprise continuously updated scene-pair velocity fields, as well as monthly and annually averaged velocity mosaics at 200 m spatial resolution.
Consistent and continuous data on glacier surface velocity are important inputs to time series...
Altmetrics
Final-revised paper
Preprint