Articles | Volume 13, issue 5
https://doi.org/10.5194/essd-13-2211-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-2211-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Construction of homogenized daily surface air temperature for the city of Tianjin during 1887–2019
Peng Si
Tianjin Meteorological Information Center, Tianjin Meteorological
Bureau, Tianjin, China
School of Atmospheric Sciences, Sun Yat-sen University,
Zhuhai, China
Key
Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China
Southern Laboratory of Ocean Science and Engineering (Guangdong
Zhuhai), Zhuhai, China
Phil Jones
Climatic Research Unit, School of Environmental Sciences, University
of East Anglia, Norwich, UK
Related authors
No articles found.
Sihao Wei, Qingxiang Li, Qiya Xu, Zichen Li, Hanyu Zhang, and Jiaxue Lin
Earth Syst. Sci. Data, 17, 4985–5005, https://doi.org/10.5194/essd-17-4985-2025, https://doi.org/10.5194/essd-17-4985-2025, 2025
Short summary
Short summary
This study introduces the update to the C-LSAT 2.1 station data and its gridded dataset (5° × 5°) for 1850–2024, into which nearly 3000 additional stations were merged. Building on this, high‑resolution (0.5° × 0.5°) land surface air temperature (C‑LSAT HRv1) and diurnal temperature range (C‑LDTR HRv1) datasets for 1901–2023 were produced via thin-plate spline interpolation of the climatology fields and adjusted inverse distance weighted interpolation of the anomaly fields.
Zengyun Hu, Xi Chen, Deliang Chen, Zhuo Zhang, Qiming Zhou, and Qingxiang Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-82, https://doi.org/10.5194/gmd-2024-82, 2024
Preprint withdrawn
Short summary
Short summary
ERC firstly unified the evaluating, ranking, and clustering by a simple mathematic equation based on Euclidean Distance. It provides new system to solve the evaluating, ranking, and clustering tasks in SDGs. In fact, ERC system can be applied in any scientific domain.
Boyang Jiao, Yucheng Su, Qingxiang Li, Veronica Manara, and Martin Wild
Earth Syst. Sci. Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023, https://doi.org/10.5194/essd-15-4519-2023, 2023
Short summary
Short summary
This paper develops an observational integrated and homogenized global-terrestrial (except for Antarctica) SSRIH station. This is interpolated into a 5° × 5° SSRIH grid and reconstructed into a long-term (1955–2018) global land (except for Antarctica) 5° × 2.5° SSR anomaly dataset (SSRIH20CR) by an improved partial convolutional neural network deep-learning method. SSRIH20CR yields trends of −1.276 W m−2 per decade over the dimming period and 0.697 W m−2 per decade over the brightening period.
Gilles Delaygue, Stefan Brönnimann, and Philip D. Jones
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-33, https://doi.org/10.5194/wcd-2022-33, 2022
Revised manuscript not accepted
Short summary
Short summary
We test whether any association between solar activity and meteorological conditions in the north Atlantic – European sector could be detected. We find associations consistent with those found by previous studies, with a slightly better statistical significance, and with less methodological biases which have impaired previous studies. Our study should help strengthen the recognition of meteorological impacts of solar activity.
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022, https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
Short summary
The new China global Merged Surface Temperature CMST 2.0 is the updated version of CMST-Interim used in the IPCC's AR6. The updated dataset is described in this study, containing three versions: CMST2.0 – Nrec, CMST2.0 – Imax, and CMST2.0 – Imin. The reconstructed datasets significantly improve data coverage, especially in the high latitudes in the Northern Hemisphere, thus increasing the long-term trends at global, hemispheric, and regional scales since 1850.
Cited articles
Bai, K., Li, K., Wu, C., Chang, N.-B., and Guo, J.: A homogenized daily in situ PM2.5 concentration dataset from the national air quality monitoring network in China, Earth Syst. Sci. Data, 12, 3067–3080, https://doi.org/10.5194/essd-12-3067-2020, 2020.
Cao, L. J., Yan, Z. W., Zhao, P., Zhu, Y. N., Yu, Y., Tang, G. L., and Jones, P.: Climatic warming in China during 1901–2015 based on an extended dataset
of instrumental temperature records, Environ. Res. Lett., 12, 064005,
https://doi.org/10.1088/1748-9326/aa68e8, 2017.
Della-Marta, P. M. and Wanner, H.: A method of homogenizing the extremes
and mean of daily temperature measurements, J. Climate, 19, 4179–4197,
https://doi.org/10.1175/JCLI3855.1, 2006.
Dienst, M., Lindén, J., Engström, E., and Esper, J.: Removing the
relocation bias from the 155-year Haparanda temperature record in Northern
Europe, Int. J. Climatol., 37, 4015–4026, https://doi.org/10.1002/joc.4981, 2017.
Haimberger, L., Tavolato, C., and Sperka, S.: Homogenization of the global
radiosonde temperature dataset through combined comparison with reanalysis
background series and neighboring stations, J. Climate, 25, 8108–8131,
https://doi.org/10.1175/JCLI-D-11-00668.1, 2012.
Hansen, J., Ruedy, R., and Sato Makiko, K. L.: Global surface temperature
change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010.
Harris, I., Osborn, T., J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data., 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Hewaarachchi, A. P., Li, Y. G., Lund, R., and Rennie, J.: Homogenization of
Daily Temperature Data, J. Climate, 30, 985–999, https://doi.org/10.1175/JCLI-D-16-0139.1, 2017.
Huang, J. Y., Liu, X. N., and Li, Q. X.: The experimental study of
reconstruction for summer precipitation and temperature in China,
Journal of Applied Meteorological Science, 15, 200–206, 2004 (in Chinese).
IPCC: Climate Change 2013: The Physical Science Basis, in: Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, USA, 1535 pp., 2013.
Jones, P. D., Lister, D., Osborn, T. J., Harpham, C., Salmon, M., and Morice,
C.: Hemispheric and large-scale land-surface air temperature variations: an
extensive revision and an update to 2010, J. Geophys. Res.-Atmos., 117, D05127, https://doi.org/10.1029/2011JD017139, 2012.
Lawrimore, J. H., Menne, M. J., Gleason, B., Williams, C. N., Wuertz, D. B.,
Vose, R. S., and Rennie, J.: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3, J. Geophys. Res.-Atmos., 116, D19121, https://doi.org/10.1029/2011JD016187, 2011.
Leeper, R. D., Rennie, J., and Palecki, M. A.: Observation perspectives from
U.S. Climate Reference Network (USCRN) and Cooperative Observer Program
(COOP) Network: temperature and precipitation comparison,
J. Atmos. Ocean. Tech., 32, 703–721, https://doi.org/10.1175/JTECH-D-14-00172.1, 2015.
Lenssen, N. J. L., Schmidt, G. A., Hansen, J., Menne, M. J., Persin, A.,
Ruedy, R., and Zyss, D.: Improvements in the GISTEMP uncertainty model, J.
Geophys. Res.-Atmos., 124, 6307–6326, https://doi.org/10.1029/2018JD029522, 2019.
Li, Q. X., Zhang, H. Z., Liu, X. N., and Huang, J. Y.: Urban heat island
effect on annual mean temperature during the last 50 years in China,
Theor. Appl. Climatol., 79, 165–174, https://doi.org/10.1007/s00704-004-0065-4, 2004.
Li, Q. X., Dong, W. J., Li, W., Gao, X. R., Jones, P., Parker, D., and Kennedy, J.: Assessment of the uncertainties in temperature change in China during the last century, Chinese Sci. Bull., 55, 1974–1982,
https://doi.org/10.1007/s11434-010-3209-1, 2010.
Li, Q. X., Zhang, L., Xu, W. H., Zhou, T. J., Wang, J. F., Zhai, P. M., and
Jones, P.: Comparisons of time series of annual mean surface air temperature
for China since the 1900's Observation, Model simulation and extended
reanalysis, B. Am. Meteorol. Soc., 98, 699–711, https://doi.org/10.1175/BAMS-D-16-0092.1, 2017.
Li, Q. X., Sun, W. B., Huang, B. Y., Dong, W. J., Wang, X. L., Zhai, P. M.,
and Jones, P.: Consistency of global warming trends strengthened since
1880's, Sci. Bull., 65, 1709–1712, https://doi.org/10.1016/j.scib.2020.06.009, 2020a.
Li, Q. X., Dong, W. J., and Jones, P.: Continental Scale Surface Air
Temperature Variations: Experience Derived from the Chinese Region,
Earth-Sci. Rev., 200, 102998, https://doi.org/10.1016/j.earscirev.2019.102998, 2020b.
Li, Q. X., Sun, W. B., Huang, B. Y., Dong, W. J., Wang, X. L., Zhai, P. M.,
and Jones, P.: An updated evaluation on the global Mean Surface Temperature
trends since the start of 20th century, Clim. Dynam., 56, 635–650, https://doi.org/10.1007/s00382-020-05502-0, 2021.
Li, Y., Tinz, B., von Storch, H., Wang, Q., Zhou, Q., and Zhu, Y.: Construction of a surface air temperature series for Qingdao in China for the period 1899 to 2014, Earth Syst. Sci. Data, 10, 643–652, https://doi.org/10.5194/essd-10-643-2018, 2018.
Lv, Y. M., Guo, J. P., Yim, S. H., Yun, Y. X., Yin, J. F., Liu, L., Zhang,
Y., Yang, Y. J., Yan, Y., and Chen, D. D.: Towards understanding multi-model
precipitation predictions from CMIP5 based on China hourly merged
precipitation analysis data, Atmos. Res., 231, 104671,
https://doi.org/10.1016/j.atmosres.2019.104671, 2020.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B., and Houston, T. G.: An overview of the global historical climatology network-daily database,
J. Atmos. Ocean. Tech., 29, 897–910, https://doi.org/10.1175/JTECH-D-11-00103.1, 2012.
Menne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J., and Lawrimore,
J. H.: The global historical climatology network monthly temperature
dataset, Version 4, J. Climate, 31, 9835–9854,
https://doi.org/10.1175/JCLI-D-18-0094.1, 2018.
Png, I. P. L., Chen, Y., Chu, J. H., Feng, Y. K., Lin, E. K. H., and Tseng, W. L.: Temperature, precipitation and sunshine across China, 1912–1951: A new daily instrumental dataset, Geosci. Data J., 7, 90–101, https://doi.org/10.1002/gdj3.91, 2020.
Quayle, R. G., Easterling, D. R., Karl, T. R., and Hughes, P. Y.: Effects of recent thermometer changes in the
cooperative station network, B. Am. Meteorol. Soc., 72, 1718–1723,
https://doi.org/10.1175/1520-0477(1991)0722.0.CO;2, 1991.
Rahimzadeh, F. and Zavareh, M. N.: Effects of adjustment for non-climatic
discontinuities on determination of temperature trends and variability over
Iran, Int. J. Climatol., 34, 2079–2096, https://doi.org/10.1002/joc.3823, 2014.
Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/Ocean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, 2020.
Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., Wurtele J., Groom, D., and Wickham, C.: A new estimate of the average earth surface land temperature spanning 1753 to 2011, Geoinfor. Geostat.: An overview, 1, 1–7, https://doi.org/10.4172/2327-4581.1000101, 2013
Si, P. and Li, Q. X.: Tianjin homogenized daily surface air temperature
over century-long scale, PANGAEA, https://doi.org/10.1594/PANGAEA.924561, 2020.
Si, P., Zheng, Z. F., Ren, Y., Liang, D. P., Li, M. C., and Shu, W. J.:
Effects of urbanization on daily temperature extremes in North China,
J. Geogr. Sci., 24, 349–362, https://doi.org/10.1007/s11442-014-1092-4, 2014.
Si, P., Hao, L. S., Luo, C. J., Cao, X. C., and Liang, D. P.: The
interpolation and homogenization of long-term temperature time series at
Baoding observation station in Hebei Province, Climate Change Research,
13, 41–51, 2017 (in Chinese).
Si, P., Luo, C. J., and Liang, D. P.: Homogenization of Tianjin monthly
near-surface wind speed using RHtestsV4 for 1951–2014, Theor. Appl.
Climatol., 132, 1303–1320, https://doi.org/10.1007/s00704-017-2140-7, 2018.
Si, P., Luo, C. J., and Wang, M.: Homogenization of Surface Pressure Data in
Tianjin, China, J. Meteorol. Res.-PRC, 33, 1131–1142,
https://doi.org/10.1007/s13351-019-9043-8, 2019.
Si, P., Wang, J., Li, H. J., and Nian, F. X.: Homogenization and application
of meteorological observation data at provincial level, China
Meteorological Press, Beijing, China, 76–91, 2020 (in Chinese).
Sun, X. B., Ren, G. Y., Xu, W. H., Li, Q. X., and Ren, Y. Y.: Global
land-surface air temperature change based on the new CMA GLSAT data set,
Sci. Bull., 62, 236–238, https://doi.org/10.1016/j.scib.2017.01.017, 2017.
Trewin, B.: A daily homogenized temperature data set for Australia,
Int. J. Climatol., 33, 1510–1529, https://doi.org/10.1002/joc.3530, 2013.
Vincent, L. A., Zhang, X., Bonsal, B. R., and Hogg, W. D.: Homogenization of
daily temperature over Canada, J. Climate, 15, 1322–1334, https://doi.org/10.1175/1520-0442(2002)0152.0.CO;2, 2002.
Vincent, L. A., Wang, X. L., Milewska, E. J., Wan, H., Yang, F., and Swail,
V. R.: A second generation of homogenized Canadian monthly surface air
temperature for climate trend analysis, J. Geophys. Res.-Atmos., 117, D18110,
https://doi.org/10.1029/2012JD017859, 2012.
Wang, S. W., Ye, J. L., Gong, D. Y., Zhu, J. H., and Yao, T. D.:
Construction of mean annual temperature series for the LSAT one hundred
years in China, Quarterly Journal of Applied Meteorology, 9, 392–401,
1998 (in Chinese).
Wang, S. W., Gong, D. Y., Ye, J. L., and Chen, Z. H.: Seasonal precipitation
series of Eastern China since 1880 and the variability,
Acta Geographica Sinica, 35, 281–293, 2000 (in Chinese).
Wang, X. L., Wen, Q. H., and Wu, Y. H.: Penalized maximal t test for
detecting undocumented mean change in climate data series,
J. Appl. Meteorol. Clim., 46, 916–931, https://doi.org/10.1175/JAM2504.1, 2007.
Wang, X. L., Chen, H. F., Wu, Y. H., Feng, Y., and Pu, Q.: New techniques
for the detection and adjustment of shifts in daily precipitation data
series, J. Appl. Meteorol. Clim., 49, 2416–2436, https://doi.org/10.1175/2010jamc2376.1, 2010.
Wu, Z. X.: China Modern Meteorological Station, China Meteorological Press, Beijing, Chian, 180–182, 2007 (in Chinese).
Xu, C. D., Wang, J. F., and Li, Q. X.: A new method for temperature spatial
interpolation based on sparse historical stations, J. Climate, 31,
1757–1770, https://doi.org/10.1175/JCLI-D-17-0150.1, 2018.
Xu, W. H., Li, Q. X., Jones, P., Wang, X. L., Trewin, B., Yang, S., Zhu, C.,
Zhai, P. M., Wang, J. F., Vincent, L. A., Dai, A. G., Gao, Y., and Ding, Y.
H.: A new integrated and homogenized global monthly land surface air
temperature dataset for the period since 1900, Clim. Dynam., 50,
2513–2536, https://doi.org/10.1007/s00382-017-3755-1, 2018.
Xu, W. Q., Li, Q. X., Wang, X. L., Yang, S., Cao, L. J., and Feng, Y.:
Homogenization of Chinese daily surface air temperatures and analysis of
trends in the extreme temperature indices, J. Geophys. Res.-Atmos., 118, 9708–9720,
https://doi.org/10.1002/jgrd.50791, 2013.
Yan, Z. W., Chi, Y., and Jones, P.: Influence of inhomogeneity on the
estimation of mean and extreme temperature trends in Beijing and Shanghai,
Adv. Atmos. Sci., 18, 309–322, https://doi.org/10.1007/BF02919312, 2001.
Yu, J., Li, Q. X., Zhang, T. W., Xu, W. H., Zhang, L., and Cui, Y.: The
merging test using measurements, paleoclimate reconstruction and climate
model data based on Bayesian model, Acta Meteorol. Sin., 76, 304–314, 2018 (in Chinese).
Zhai, P. M., Chao, Q. C., and Zou, X. K.: Progress in China's climate
change study in the 20th century, J. Geogr. Sci., 14, 3–11,
https://doi.org/10.1007/BF02841101, 2004.
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P. D., Klein Tank, A.,
Peterson, T. C., Trewin, B., and Zwiers, F. W.: Indices for monitoring changes
in extremes based on daily temperature and precipitation data, WIRES. Clim. Change, 2, 851–870, https://doi.org/10.1002/wcc/147, 2011.
Zheng, J. Y., Liu, Y., Ge, Q. S., and Hao, Z. X.: Spring phenodate records
derived from historical documents and reconstruction on temperature change
in Central China during 1850–2008, Acta Geographica Sinica, 70, 696–704,
2015 (in Chinese).
Short summary
This paper documents the various procedures necessary to construct a homogenized daily maximum and minimum temperature series starting in 1887 for Tianjin. The newly constructed temperature series provides a set of new baseline data for the field of extreme climate change at the century-long scale and a reference for construction of other long-term reliable daily time series in the region.
This paper documents the various procedures necessary to construct a homogenized daily maximum...
Altmetrics
Final-revised paper
Preprint