Articles | Volume 12, issue 2
Earth Syst. Sci. Data, 12, 875–885, 2020
https://doi.org/10.5194/essd-12-875-2020
Earth Syst. Sci. Data, 12, 875–885, 2020
https://doi.org/10.5194/essd-12-875-2020

Data description paper 20 Apr 2020

Data description paper | 20 Apr 2020

Sval_Imp: a gridded forcing dataset for climate change impact research on Svalbard

Thomas Vikhamar Schuler and Torbjørn Ims Østby

Related authors

Surface temperatures and their influence on the permafrost thermal regime in high Arctic rock walls on Svalbard
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-340,https://doi.org/10.5194/tc-2020-340, 2020
Preprint under review for TC
Short summary
Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020,https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Sensitivity of subglacial drainage to water supply distribution at the Kongsfjord basin, Svalbard
Chloé Scholzen, Thomas V. Schuler, and Adrien Gilbert
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-319,https://doi.org/10.5194/tc-2020-319, 2020
Preprint under review for TC
Short summary
Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020,https://doi.org/10.5194/hess-24-4641-2020, 2020
Hydrology and runoff routing of glacierized drainage basins in the Kongsfjord area, northwest Svalbard
Ankit Pramanik, Jack Kohler, Katrin Lindbäck, Penelope How, Ward Van Pelt, Glen Liston, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-197,https://doi.org/10.5194/tc-2020-197, 2020
Preprint under review for TC
Short summary

Related subject area

Cryosphere – Glaciology
More dynamic than expected: an updated survey of surging glaciers in the Pamir
Franz Goerlich, Tobias Bolch, and Frank Paul
Earth Syst. Sci. Data, 12, 3161–3176, https://doi.org/10.5194/essd-12-3161-2020,https://doi.org/10.5194/essd-12-3161-2020, 2020
Short summary
Worldwide version-controlled database of glacier thickness observations
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020,https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Greenland liquid water discharge from 1958 through 2019
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020,https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images
Xin Wang, Xiaoyu Guo, Chengde Yang, Qionghuan Liu, Junfeng Wei, Yong Zhang, Shiyin Liu, Yanlin Zhang, Zongli Jiang, and Zhiguang Tang
Earth Syst. Sci. Data, 12, 2169–2182, https://doi.org/10.5194/essd-12-2169-2020,https://doi.org/10.5194/essd-12-2169-2020, 2020
Short summary
A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, and Clovis Galiez
Earth Syst. Sci. Data, 12, 1973–1983, https://doi.org/10.5194/essd-12-1973-2020,https://doi.org/10.5194/essd-12-1973-2020, 2020
Short summary

Cited articles

Aalstad, K., Westermann, S., Schuler, T. V., Boike, J., and Bertino, L.: Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites, The Cryosphere, 12, 247–270, https://doi.org/10.5194/tc-12-247-2018, 2018. a
Aas, K. S., Dunse, T., Collier, E., Schuler, T. V., Berntsen, T. K., Kohler, J., and Luks, B.: The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model, The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016, 2016. a, b
Barstad, I. and Smith, R. B.: Evaluation of an Orographic Precipitation Model, J. Hydrometeorol., 6, 85–99, https://doi.org/10.1175/JHM-404.1, 2005. a, b
Bogren, W. S., Burkhart, J. F., and Kylling, A.: Tilt error in cryospheric surface radiation measurements at high latitudes: a model study, The Cryosphere, 10, 613–622, https://doi.org/10.5194/tc-10-613-2016, 2016. a
Botnen, S. S.: Biodiversity in the dark: root-associated fungi in the Arctic, PhD-thesis, Department of Biosciences, University of Oslo, Norway, 2020. a
Download
Short summary
Atmospheric variables needed to force terrestrial process models (permafrost, glacier mass balance, seasonal snow, surface energy balance) have been downscaled from the ERA-40 and ERA-Interim reanalyses using methodology described in the accompanying paper. The gridded dataset has a horizontal resolution of 1 km and covers the entire Svalbard archipelago. The data have a temporal resolution of 6 h and cover the entire ERA-40 period (1957–2002) and the ERA-Interim period (1979–2017).