Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2579-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2579-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SISALv2: a comprehensive speleothem isotope database with multiple age–depth models
School of Archaeology, Geography, and Environmental Science, University of
Reading, Reading, UK
Kira Rehfeld
Institute of Environmental Physics and Interdisciplinary Center for
Scientific Computing, Heidelberg University, Heidelberg, Germany
Carla Roesch
Institute of Environmental Physics and Interdisciplinary Center for
Scientific Computing, Heidelberg University, Heidelberg, Germany
Sahar Amirnezhad-Mozhdehi
School of Geography, University College Dublin, Belfield, Dublin 4,
Ireland
Sandy P. Harrison
School of Archaeology, Geography, and Environmental Science, University of
Reading, Reading, UK
Kamolphat Atsawawaranunt
School of Archaeology, Geography, and Environmental Science, University of
Reading, Reading, UK
Syed Masood Ahmad
Department of Geography, Faculty of Natural Sciences, Jamia Millia
Islamia, New Delhi, India
Yassine Ait Brahim
Institute of Global Environmental Change, Xi'an Jiaotong University,
Xi'an, Shaanxi, China
now at: Department of Environmental Sciences, University of Basel, Basel, Switzerland
Andy Baker
Connected Waters Initiative Research Centre, UNSW Sydney, Sydney, New
South Wales 2052, Australia
Matthew Bosomworth
School of Archaeology, Geography, and Environmental Science, University of
Reading, Reading, UK
Sebastian F. M. Breitenbach
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, UK
Yuval Burstyn
The Fredy and Nadine Herrmann Institute Earth Sciences, The Hebrew
University of Jerusalem, The Edmond J. Safra Campus, Jerusalem 9190401,
Israel
Andrea Columbu
Department of Biological, Geological and Environmental Sciences (BiGeA),
University of Bologna, Via Zamboni 67, 40126, Bologna, Italy
Michael Deininger
Institute for Geosciences, Johannes Gutenberg University Mainz,
J.-J.-Becher-Weg 21, 55128 Mainz, Germany
Attila Demény
Institute for Geological and Geochemical Research, Research Centre for
Astronomy and Earth Sciences, 1112, Budaörsi út 45, Budapest,
Hungary
Bronwyn Dixon
School of Archaeology, Geography, and Environmental Science, University of
Reading, Reading, UK
School of Geography, University of Melbourne, Parkville 3010 VIC, Australia
Jens Fohlmeister
Potsdam Institute for Climate Impact Research PIK, Potsdam, Germany
István Gábor Hatvani
Institute for Geological and Geochemical Research, Research Centre for
Astronomy and Earth Sciences, 1112, Budaörsi út 45, Budapest,
Hungary
Jun Hu
Department of Earth, Environmental and Planetary Sciences, Rice
University, Houston, TX 77005, US
Nikita Kaushal
Asian School of the Environment, Nanyang Technological University,
Singapore
Zoltán Kern
Institute for Geological and Geochemical Research, Research Centre for
Astronomy and Earth Sciences, 1112, Budaörsi út 45, Budapest,
Hungary
Inga Labuhn
Institute of Geography, University of Bremen, Celsiusstraße 2, 28359
Bremen, Germany
Franziska A. Lechleitner
Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
Andrew Lorrey
National Institute of Water and Atmospheric Research, Auckland, 1010, New
Zealand
Belen Martrat
Department of Environmental Chemistry, Spanish Council for Scientific
Research (CSIC), Institute of Environmental Assessment and Water Research
(IDAEA), Barcelona, Spain
Valdir Felipe Novello
Institute of Geoscience, University of São Paulo, São Paulo, Brazil
Jessica Oster
Department of Earth and Environmental Sciences, Vanderbilt University,
Nashville, TN 37240, USA
Carlos Pérez-Mejías
Institute of Global Environmental Change, Xi'an Jiaotong University,
Xi'an, Shaanxi, China
Denis Scholz
Institute for Geosciences, Johannes Gutenberg University Mainz,
J.-J.-Becher-Weg 21, 55128 Mainz, Germany
Nick Scroxton
School of Earth Sciences, University College Dublin, Belfield, Dublin 4,
Ireland
Nitesh Sinha
Center for Climate Physics, Institute for Basic Science, Busan, 46241, Republic
of Korea
Pusan National University, Busan, 46241, Republic of Korea
Brittany Marie Ward
Environmental Research Institute, University of Waikato, Hamilton, New
Zealand
Sophie Warken
Institute of Earth Sciences and Institute of Environmental Physics,
Heidelberg University, Heidelberg, Germany
Haiwei Zhang
Institute of Global Environmental Change, Xi'an Jiaotong University,
Xi'an, Shaanxi, China
A full list of authors appears at the end of the paper.
Related authors
Sarah E. Parker, Sandy P. Harrison, Laia Comas-Bru, Nikita Kaushal, Allegra N. LeGrande, and Martin Werner
Clim. Past, 17, 1119–1138, https://doi.org/10.5194/cp-17-1119-2021, https://doi.org/10.5194/cp-17-1119-2021, 2021
Short summary
Short summary
Regional trends in the oxygen isotope (δ18O) composition of stalagmites reflect several climate processes. We compare stalagmite δ18O records from monsoon regions and model simulations to identify the causes of δ18O variability over the last 12 000 years, and between glacial and interglacial states. Precipitation changes explain the glacial–interglacial δ18O changes in all monsoon regions; Holocene trends are due to a combination of precipitation, atmospheric circulation and temperature changes.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Christian Lewis, Rachel Corran, Sara E. Mikaloff-Fletcher, Erik Behrens, Rowena Moss, Gordon Brailsford, Andrew Lorrey, Margaret Norris, and Jocelyn Turnbull
Biogeosciences, 22, 4187–4201, https://doi.org/10.5194/bg-22-4187-2025, https://doi.org/10.5194/bg-22-4187-2025, 2025
Short summary
Short summary
The Southern Ocean carbon sink is a balance between two opposing forces: CO2 absorption at mid-latitudes and CO2 outgassing at high latitudes. Radiocarbon analysis can be used to constrain the latter, as upwelling waters outgas old CO2, diluting atmospheric radiocarbon content. We present tree-ring radiocarbon measurements from Aotearoa / New Zealand and Chile. We show that low radiocarbon in Aotearoa / New Zealand’s Motu Ihupuku / Campbell Island is linked to outgassing in the critical Antarctic Southern Zone.
Laura Endres, Carlos Pérez-Mejías, Ruza Ivanovic, Lauren Gregoire, Anna L. C. Hughes, Hai Cheng, and Heather Stoll
EGUsphere, https://doi.org/10.5194/egusphere-2025-3911, https://doi.org/10.5194/egusphere-2025-3911, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Stable isotope data of a precisely dated stalagmite from northwestern Iberia indicate gradual North Atlantic meltwater input during the last glacial maximum, followed by abrupt surges early in the last deglaciation. The first abrupt surge was followed by cooling about 850 years later – unlike later events – which reveals that the Atlantic circulation’s sensitivity to meltwater is variable and related to the evolving background climate boundary conditions.
Juan Luis Bernal-Wormull, Ana Moreno, Yuri Dublyansky, Christoph Spötl, Reyes Giménez, Carlos Pérez-Mejías, Miguel Bartolomé, Martin Arriolabengoa, Eneko Iriarte, Isabel Cacho, Richard Lawrence Edwards, and Hai Cheng
Clim. Past, 21, 1235–1261, https://doi.org/10.5194/cp-21-1235-2025, https://doi.org/10.5194/cp-21-1235-2025, 2025
Short summary
Short summary
In this paper we present a record of temperature changes during the last deglaciation and the Holocene using isotopes of fluid inclusions in stalagmites from the northeastern region of the Iberian Peninsula. This innovative climate proxy for this study region provides a quantitative understanding of the abrupt temperature changes in southern Europe in the last 16 500 years before present.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025, https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Short summary
Geochronological, cryolithological, paleoecological, and modeling data reconstruct the Last Interglacial (LIG) climate around the New Siberian Islands and reveal significantly warmer conditions compared to today. The critical challenges in predicting future ecosystem responses lie in the fact that the land–ocean distribution during the LIG was markedly different from today, affecting the degree of continentality, which played a major role in modulating climate and ecosystem dynamics.
Jade Margerum, Julia Homann, Stuart Umbo, Gernot Nehrke, Thorsten Hoffmann, Anton Vaks, Aleksandr Kononov, Alexander Osintsev, Alena Giesche, Andrew Mason, Franziska A. Lechleitner, Gideon M. Henderson, Ola Kwiecien, and Sebastian F. M. Breitenbach
Clim. Past, 21, 661–677, https://doi.org/10.5194/cp-21-661-2025, https://doi.org/10.5194/cp-21-661-2025, 2025
Short summary
Short summary
We analyse a southern Siberian stalagmite to reconstruct soil respiration, wildfire, and vegetation trends during the Last Interglacial (LIG) (124.1–118.8 ka) and the Holocene (10–0 ka). Wildfires were more prevalent during the LIG than the Holocene and were supported by fire-prone species, low soil respiration, and a greater difference between summer and winter temperature. We show that vegetation type and summer/winter temperature contrast are strong drivers of Siberian wildfires.
Christina Song, Micheline Campbell, and Andy Baker
EGUsphere, https://doi.org/10.5194/egusphere-2025-84, https://doi.org/10.5194/egusphere-2025-84, 2025
Short summary
Short summary
Groundwater can be replenished by rainfall that percolates from the surface to the water table. The amount of rainfall that is needed to generate this groundwater recharge is hard to measure. We determined this rainfall amount by identifying recharge events as water percolates from the surface, through a cave. During our monitoring, an intense fire occurred above the cave, and we were able to quantify any change in the amount of rainfall necessary to generate recharge before and after the fire.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
Clim. Past, 21, 627–659, https://doi.org/10.5194/cp-21-627-2025, https://doi.org/10.5194/cp-21-627-2025, 2025
Short summary
Short summary
During the Last Deglaciation, global surface temperature rose by about 4–7 °C over several millennia. We show that changes in year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in 15 climate model simulations. The analysis demonstrates how ice sheets, meltwater, and volcanism influence simulated variability to inform future simulation protocols.
Pieter Vermeesch, Noah McLean, Anton Vaks, Tzahi Golan, Sebastian F. M. Breitenbach, and Randall Parris
EGUsphere, https://doi.org/10.5194/egusphere-2025-432, https://doi.org/10.5194/egusphere-2025-432, 2025
Short summary
Short summary
U-Pb dating of cave sediments has provided important new time constraints on the evolution of cave-dwelling organisms (including early humans), and of Earth's climate during the past 5 million years. This paper shows that the most common type of U-Pb dating, which uses 238U and 206Pb, can be inaccurate beyond 2 million years ago. It proposes an alternative type of U-Pb dating, using 235U and 207Pb, as a more accurate alternative.
Jean-Philippe Baudouin, Nils Weitzel, Maximilian May, Lukas Jonkers, Andrew M. Dolman, and Kira Rehfeld
Clim. Past, 21, 381–403, https://doi.org/10.5194/cp-21-381-2025, https://doi.org/10.5194/cp-21-381-2025, 2025
Short summary
Short summary
Earth's past temperature reconstructions are critical for understanding climate change. We test the ability of these reconstructions using climate simulations. Uncertainties, mainly from past temperature measurement methods and age determination, impact reconstructions over time. While more data enhance accuracy for long-term trends, high-quality data are more important for short-term precision. Our study lays the groundwork for better reconstructions and suggests avenues for improvement.
Sina Panitz, Michael Rogerson, Jack Longman, Nick Scroxton, Tim J. Lawson, Tim C. Atkinson, Vasile Ersek, James Baldini, Lisa Baldini, Stuart Umbo, Mahjoor A. Lone, Gideon M. Henderson, and Sebastian F. M. Breitenbach
Clim. Past, 21, 261–278, https://doi.org/10.5194/cp-21-261-2025, https://doi.org/10.5194/cp-21-261-2025, 2025
Short summary
Short summary
Reconstructions of past glaciations tell us about how ice sheets grow and retreat. In this study, we use speleothems (cave deposits, e.g. stalagmites) in the British Isles to help constrain the extent of past glaciations in both time and space. Speleothems require liquid water to grow, and therefore their presence indicates the absence of ice above the cave. By dating these speleothems, we can improve existing reconstructions of past ice sheets.
Kieran M. R. Hunt and Sandy P. Harrison
Clim. Past, 21, 1–26, https://doi.org/10.5194/cp-21-1-2025, https://doi.org/10.5194/cp-21-1-2025, 2025
Short summary
Short summary
In this study, we train machine learning models on tree rings, speleothems, and instrumental rainfall to estimate seasonal monsoon rainfall over India over the last 500 years. Our models highlight multidecadal droughts in the mid-17th and 19th centuries, and we link these to historical famines. Using techniques from explainable AI (artificial intelligence), we show that our models use known relationships between local hydroclimate and the monsoon circulation.
Inga Kristina Kerber, Fabian Kontor, Aaron Mielke, Sophie Warken, and Norbert Frank
Geochronology, 7, 1–13, https://doi.org/10.5194/gchron-7-1-2025, https://doi.org/10.5194/gchron-7-1-2025, 2025
Short summary
Short summary
A stand-alone data analysis application for Th/U dating on multi-collector inductively coupled plasma mass spectrometers features a Python-based algorithm with a graphical user interface. It handles data treatment, corrections, age calculus, and error estimation and supports various detector layouts including Faraday and electron multiplier detectors. Key features include reproducibility, user-friendly reanalysis, and automated data storage. A case study demonstrates the software’s performance.
Jierong Zhao, Boya Zhou, Sandy P. Harrison, and I. Colin Prentice
EGUsphere, https://doi.org/10.5194/egusphere-2024-3897, https://doi.org/10.5194/egusphere-2024-3897, 2025
Short summary
Short summary
We used eco-evolutionary optimality modelling to examine how climate and CO2 impacted vegetation at the Last Glacial Maximum (LGM, 21,000 years ago) and the mid-Holocene (MH, 6,000 years ago). Low CO2 at the LGM was as important as climate in reducing tree cover and productivity, and increasing C4 plant abundance. Climate had positive effects on MH vegetation, but the low CO2 was a constraint on plant growth. These results show it is important to consider changing CO2 to model ecosystem changes.
Hubert B. Vonhof, Sophie Verheyden, Dominique Bonjean, Stéphane Pirson, Michael Weber, Denis Scholz, John Hellstrom, Hai Cheng, Xue Jia, Kévin Di Modica, Gregory Abrams, Marjan A. P. van Nunen, Joost Ruiter, Michèlle van der Does, Daniel Böhl, and Jeroen H. J. L. van der Lubbe
Clim. Past, 20, 2741–2758, https://doi.org/10.5194/cp-20-2741-2024, https://doi.org/10.5194/cp-20-2741-2024, 2024
Short summary
Short summary
The sedimentary sequence in Scladina Cave (Belgium) is well-known for its rich archeological assemblages and its numerous faunal remains. Of particular interest is the presence of a nearly complete jaw bone of a Neanderthal child. In this study, we present new uranium series ages of stalagmites from the archeological sequence that allow more precise dating of the archeological finds. One key result is that the Neanderthal child may be slightly older than previously thought.
Sarah Ann Rowan, Marc Luetscher, Thomas Laemmel, Anna Harrison, Sönke Szidat, and Franziska A. Lechleitner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3775, https://doi.org/10.5194/egusphere-2024-3775, 2024
Short summary
Short summary
We explored CO2 from soil to subsurface at Milandre cave, finding very high concentrations at all depths. While forest soils produced modern CO2 year-round, cave and meadow soil CO2 influences varies with temperature controlled cave ventilation, with older CO2 input in winter from old organic matter stored underground. These findings show that CO2 fluxes in karst systems are highly dynamic, and a better understanding of them is important for accurate carbon cycle modelling.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Mathurin A. Choblet, Janica C. Bühler, Valdir F. Novello, Nathan J. Steiger, and Kira Rehfeld
Clim. Past, 20, 2117–2141, https://doi.org/10.5194/cp-20-2117-2024, https://doi.org/10.5194/cp-20-2117-2024, 2024
Short summary
Short summary
Past climate reconstructions are essential for understanding climate mechanisms and drivers. Our focus is on the South American continent over the past 2000 years. We offer a new reconstruction that particularly utilizes data from speleothems, previously absent from continent-wide reconstructions. We use paleoclimate data assimilation, a reconstruction method that combines information from climate archives and climate simulations.
Pengzhen Duan, Hanying Li, Zhibang Ma, Jingyao Zhao, Xiyu Dong, Ashish Sinha, Peng Hu, Haiwei Zhang, Youfeng Ning, Guangyou Zhu, and Hai Cheng
Clim. Past, 20, 1401–1414, https://doi.org/10.5194/cp-20-1401-2024, https://doi.org/10.5194/cp-20-1401-2024, 2024
Short summary
Short summary
We use multi-proxy speleothem records to reveal a two droughts–one pluvial pattern during 8.5–8.0 ka. The different rebounded rainfall quantity after two droughts causes different behavior of δ13C, suggesting the dominant role of rainfall threshold on the ecosystem. A comparison of different records suggests the prolonged 8.2 ka event is a globally common phenomenon rather than a regional signal. The variability of the AMOC strength is mainly responsible for these climate changes.
Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, and Sebastian Breitenbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1691, https://doi.org/10.5194/egusphere-2024-1691, 2024
Short summary
Short summary
We use cave rocks to reconstruct northern Siberian climate 8.68 ± 0.09 million years ago. We show that when global average temperature was about 4.5 °C warmer than today (similar to what’s expected in the coming decades should carbon emissions continue unabated), Arctic temperature increased by more than 18 °C. Similar levels of Arctic warming in the future would see huge areas of permafrost (permanently frozen ground) thaw and release greenhouse gases to the atmosphere.
Luke Fionn Sweeney, Sandy P. Harrison, and Marc Vander Linden
EGUsphere, https://doi.org/10.5194/egusphere-2024-1523, https://doi.org/10.5194/egusphere-2024-1523, 2024
Short summary
Short summary
Changes in tree cover across Europe during the Holocene are reconstructed from fossil pollen data using a model developed with modern observations of tree cover and modern pollen assemblages. There is a rapid increase in tree cover after the last glacial with maximum cover during the mid-Holocene and a decline thereafter; the timing of the maximum and the speed of the increase and subsequent decrease vary regionally likely reflecting differences in climate trajectories and human influence.
Nikita Kaushal, Carlos Perez-Mejias, and Heather M. Stoll
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-37, https://doi.org/10.5194/cp-2024-37, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Terminations are large magnitude rapid events triggered in the North Atlantic region that manifest across the global climate system. They provide key examples of climatic teleconnections and dynamics. In this study, we use the SISAL global speleothem database and find that there are sufficient climatic records from key locations to make speleothems a valuable archive for studying Terminations and provide instances for more targeted work on speleothem research.
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024, https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Short summary
Much of the world relies on groundwater as a water resource, yet it is hard to know when and where rainfall replenishes our groundwater aquifers. Caves, mines, and tunnels that are situated above the groundwater table are unique observatories of water transiting from the land surface to the aquifer. This paper will show how networks of loggers deployed in these underground spaces across Australia have helped understand when, where, and how much rainfall is needed to replenish the groundwater.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Mengmeng Liu, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-12, https://doi.org/10.5194/cp-2024-12, 2024
Preprint under review for CP
Short summary
Short summary
Dansgaard-Oeschger events were large and rapid warming events that occurred multiple times during the last ice age. We show that changes in the northern extratropics and the southern extratropics were anti-phased, with warming over most of the north and cooling in the south. The reconstructions do not provide evidence for a change in seasonality in temperature. However, they do indicate that warming was generally accompanied by wetter conditions and cooling by drier conditions.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-516, https://doi.org/10.5194/egusphere-2024-516, 2024
Preprint archived
Short summary
Short summary
This study assesses atmospheric composition using air quality models during aircraft campaigns in Europe and Asia, focusing on carbonaceous aerosols and trace gases. While carbon monoxide is well modeled, other pollutants have moderate to weak agreement with observations. Wind speed modeling is reliable for identifying pollution plumes, where models tend to overestimate concentrations. This highlights challenges in accurately modeling aerosol and trace gas composition, particularly in cities.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-521, https://doi.org/10.5194/egusphere-2024-521, 2024
Preprint archived
Short summary
Short summary
This study explores the proportional relationships between carbonaceous aerosols (black and organic carbon) and trace gases using airborne measurements from two campaigns in Europe and East Asia. Differences between regions were found, but air quality models struggled to reproduce them accurately. We show that these proportional relationships can help to constrain models and can be used to infer aerosol concentrations from satellite observations of trace gases, especially in urban areas.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Heather M. Stoll, Chris Day, Franziska Lechleitner, Oliver Kost, Laura Endres, Jakub Sliwinski, Carlos Pérez-Mejías, Hai Cheng, and Denis Scholz
Clim. Past, 19, 2423–2444, https://doi.org/10.5194/cp-19-2423-2023, https://doi.org/10.5194/cp-19-2423-2023, 2023
Short summary
Short summary
Stalagmites formed in caves provide valuable information about past changes in climate and vegetation conditions. In this contribution, we present a new method to better estimate past changes in soil and vegetation productivity using carbon isotopes and trace elements measured in stalagmites. Applying this method to other stalagmites should provide a better indication of past vegetation feedbacks to climate change.
Huiying Xu, Han Wang, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 4511–4525, https://doi.org/10.5194/bg-20-4511-2023, https://doi.org/10.5194/bg-20-4511-2023, 2023
Short summary
Short summary
Leaf carbon (C) and nitrogen (N) are crucial elements in leaf construction and physiological processes. This study reconciled the roles of phylogeny, species identity, and climate in stoichiometric traits at individual and community levels. The variations in community-level leaf N and C : N ratio were captured by optimality-based models using climate data. Our results provide an approach to improve the representation of leaf stoichiometry in vegetation models to better couple N with C cycling.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Giulia Mengoli, Sandy P. Harrison, and I. Colin Prentice
EGUsphere, https://doi.org/10.5194/egusphere-2023-1261, https://doi.org/10.5194/egusphere-2023-1261, 2023
Preprint archived
Short summary
Short summary
Soil water availability affects plant carbon uptake by reducing leaf area and/or by closing stomata, which reduces its efficiency. We present a new formulation of how climatic dryness reduces both maximum carbon uptake and the soil-moisture threshold below which it declines further. This formulation illustrates how plants adapt their water conservation strategy to thrive in dry climates, and is step towards a better representation of soil-moisture effects in climate models.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Christian Wirths, Elisa Ziegler, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2023-86, https://doi.org/10.5194/egusphere-2023-86, 2023
Preprint archived
Short summary
Short summary
We compare Holocene temperature trends from reconstructions and global climate models of different complexities. We find that models of all complexities disagree with mid-Holocene trends in reconstructions, and we show that this disagreement is largely independent of the type of reconstruction. From our results we conclude that a seasonal bias in the reconstructions is unlikely as a full explanation for the disagreement.
Jinzhao Liu, Chong Jiang, Huawu Wu, Li Guo, Haiwei Zhang, and Ying Zhao
Hydrol. Earth Syst. Sci., 27, 599–612, https://doi.org/10.5194/hess-27-599-2023, https://doi.org/10.5194/hess-27-599-2023, 2023
Short summary
Short summary
What controls leaf water isotopes? We answered the question from two perspectives: respective and dual isotopes. On the one hand, the δ18O and δ2H values of leaf water responded to isotopes of potential source water (i.e., twig water, soil water, and precipitation) and meteorological parameters (i.e., temperature, RH, and precipitation) differently. On the other hand, dual δ18O and δ2H values of leaf water yielded a significant linear relationship associated with altitude and seasonality.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Inga Labuhn, Franziska Tell, Ulrich von Grafenstein, Dan Hammarlund, Henning Kuhnert, and Bénédicte Minster
Biogeosciences, 19, 2759–2777, https://doi.org/10.5194/bg-19-2759-2022, https://doi.org/10.5194/bg-19-2759-2022, 2022
Short summary
Short summary
This study presents the isotopic composition of recent biogenic carbonates from several lacustrine species which calcify during different times of the year. The authors demonstrate that when biological offsets are corrected, the dominant cause of differences between species is the seasonal variation in temperature-dependent fractionation of oxygen isotopes. Consequently, such carbonates from lake sediments can provide proxy records of seasonal water temperature changes in the past.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Sophie F. Warken, Therese Weißbach, Tobias Kluge, Hubert Vonhof, Denis Scholz, Rolf Vieten, Martina Schmidt, Amos Winter, and Norbert Frank
Clim. Past, 18, 167–181, https://doi.org/10.5194/cp-18-167-2022, https://doi.org/10.5194/cp-18-167-2022, 2022
Short summary
Short summary
The analysis of fluid inclusions from a Puerto Rican speleothem provides quantitative information about past rainfall conditions and temperatures during the Last Glacial Period, when the climate was extremely variable. Our data show that the region experienced a climate that was generally colder and drier. However, we also reconstruct intervals when temperatures reached nearly modern values, and convective activity was comparable to or only slightly weaker than the present day.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Andrew J. Mason, Anton Vaks, Sebastian F. M. Breitenbach, John N. Hooker, and Gideon M. Henderson
Geochronology, 4, 33–54, https://doi.org/10.5194/gchron-4-33-2022, https://doi.org/10.5194/gchron-4-33-2022, 2022
Short summary
Short summary
A novel technique for the uranium–lead dating of geologically young carbonates is described and tested. The technique expands our ability to date geological events such as fault movements and past climate records.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Raphaël Hébert, Kira Rehfeld, and Thomas Laepple
Nonlin. Processes Geophys., 28, 311–328, https://doi.org/10.5194/npg-28-311-2021, https://doi.org/10.5194/npg-28-311-2021, 2021
Short summary
Short summary
Paleoclimate proxy data are essential for broadening our understanding of climate variability. There remain, however, challenges for traditional methods of variability analysis to be applied to such data, which are usually irregular. We perform a comparative analysis of different methods of scaling analysis, which provide variability estimates as a function of timescales, applied to irregular paleoclimate proxy data.
Aleix Cortina-Guerra, Juan José Gomez-Navarro, Belen Martrat, Juan Pedro Montávez, Alessandro Incarbona, Joan O. Grimalt, Marie-Alexandrine Sicre, and P. Graham Mortyn
Clim. Past, 17, 1523–1532, https://doi.org/10.5194/cp-17-1523-2021, https://doi.org/10.5194/cp-17-1523-2021, 2021
Short summary
Short summary
During late 20th century a singular Mediterranean circulation episode called the Eastern Mediterranean Transient (EMT) event occurred. It involved changes on the seawater physical and biogeochemical properties, which can impact areas broadly. Here, using paleosimulations for the last 1000 years we found that the East Atlantic/Western Russian atmospheric mode was the main driver of the EMT-type events in the past, and enhancement of this mode was coetaneous with low solar insolation.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Jinzhao Liu, Huawu Wu, Haiwei Zhang, Guoqiang Peng, Chong Jiang, Ying Zhao, and Jing Hu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-289, https://doi.org/10.5194/hess-2021-289, 2021
Revised manuscript not accepted
Short summary
Short summary
Why do leaf water isotopes can generate to be an isotopic line in a dual-isotope plot? This isotopic water line is as important as the local meteoric water line (LMWL) in the isotope ecohydrology field. We analyzed the variations of oxygen and hydrogen isotopes in soil water, stem water, and leaf water along an elevation transect across seasons. We found that both seasonality and altitude affecting source water are likely to result in the generation of an isotopic water line in leaf water.
Ashley N. Martin, Karina Meredith, Andy Baker, Marc D. Norman, and Eliza Bryan
Hydrol. Earth Syst. Sci., 25, 3837–3853, https://doi.org/10.5194/hess-25-3837-2021, https://doi.org/10.5194/hess-25-3837-2021, 2021
Short summary
Short summary
We measured the silicon isotopic composition of groundwater from Rottnest Island, Western Australia, to investigate water–rock interactions in a coastal aquifer. Silicon isotopic ratios varied spatially across the island and were related to secondary mineral formation and vertical mixing within the aquifer. We find that silicate dissolution occurs in the freshwater–seawater transition zone, supporting the recent recognition of submarine groundwater discharge in the oceanic silicon isotope cycle.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Sarah E. Parker, Sandy P. Harrison, Laia Comas-Bru, Nikita Kaushal, Allegra N. LeGrande, and Martin Werner
Clim. Past, 17, 1119–1138, https://doi.org/10.5194/cp-17-1119-2021, https://doi.org/10.5194/cp-17-1119-2021, 2021
Short summary
Short summary
Regional trends in the oxygen isotope (δ18O) composition of stalagmites reflect several climate processes. We compare stalagmite δ18O records from monsoon regions and model simulations to identify the causes of δ18O variability over the last 12 000 years, and between glacial and interglacial states. Precipitation changes explain the glacial–interglacial δ18O changes in all monsoon regions; Holocene trends are due to a combination of precipitation, atmospheric circulation and temperature changes.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Elisa Ziegler and Kira Rehfeld
Geosci. Model Dev., 14, 2843–2866, https://doi.org/10.5194/gmd-14-2843-2021, https://doi.org/10.5194/gmd-14-2843-2021, 2021
Short summary
Short summary
Past climate changes are the only record of how the climate responds to changes in conditions on Earth, but simulations with complex climate models are challenging. We extended a simple climate model such that it simulates the development of temperatures over time. In the model, changes in carbon dioxide and ice distribution affect the simulated temperatures the most. The model is very efficient and can therefore be used to examine past climate changes happening over long periods of time.
Janica C. Bühler, Carla Roesch, Moritz Kirschner, Louise Sime, Max D. Holloway, and Kira Rehfeld
Clim. Past, 17, 985–1004, https://doi.org/10.5194/cp-17-985-2021, https://doi.org/10.5194/cp-17-985-2021, 2021
Short summary
Short summary
We present three new isotope-enabled simulations for the last millennium (850–1850 CE) and compare them to records from a global speleothem database. Offsets between the simulated and measured oxygen isotope ratios are fairly small. While modeled oxygen isotope ratios are more variable on decadal timescales, proxy records are more variable on (multi-)centennial timescales. This could be due to a lack of long-term variability in complex model simulations, but proxy biases cannot be excluded.
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Nick Scroxton, Stephen J. Burns, David McGee, Laurie R. Godfrey, Lovasoa Ranivoharimanana, and Peterson Faina
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-138, https://doi.org/10.5194/cp-2020-138, 2020
Revised manuscript not accepted
Short summary
Short summary
The end of the Harappan civilization in the Indus Valley around 4,200 years ago has been attributed to monsoon failure associated with a global megadrought. Using a suite of high resolution paleoclimate records from around the Indian Ocean basin we find that two consecutive droughts contributed to the end of the Harappa. A winter drought starting 4,200 years ago was followed by monsoon failure at 3,900 years ago. The double hit caused civilization decline first, and abandonment later.
Nick Scroxton, Stephen J. Burns, David McGee, Laurie R. Godfrey, Lovasoa Ranivoharimanana, and Peterson Faina
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-137, https://doi.org/10.5194/cp-2020-137, 2020
Revised manuscript not accepted
Short summary
Short summary
The 4.2 kyr climatic event caused drought in the Mediterranean and Middle East and the collapse of the Akkadian Civilization. Outside of this region the global footprint of this event, be it drought or flood conditions, is poorly understood. This study uses a stalagmite from Madagascar to determine how the 4.2 kyr event influenced the South-East African Monsoon. We find drought in Madagascar and around Lake Malawi but wet conditions elsewhere, a pattern that resembles modern climate variability.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Zoltán Kern, Dániel Erdélyi, Polona Vreča, Ines Krajcar Bronić, István Fórizs, Tjaša Kanduč, Marko Štrok, László Palcsu, Miklós Süveges, György Czuppon, Balázs Kohán, and István Gábor Hatvani
Earth Syst. Sci. Data, 12, 2061–2073, https://doi.org/10.5194/essd-12-2061-2020, https://doi.org/10.5194/essd-12-2061-2020, 2020
Short summary
Short summary
Here we present the spatially continuous gridded database for amount-weighted annual mean tritium activity in precipitation for the period 1976 to 2017 for the Adriatic–Pannonian region, with a special focus on the years after 2010, which are not represented by existing global models. This AP3H database is capable of providing reliable spatiotemporal input for hydrogeological applications at any place within Slovenia, Hungary, and their surroundings.
Cited articles
Ait Brahim, Y., Wassenburg, J. A., Cruz, F. W., Sifeddine, A., Scholz, D.,
Bouchaou, L., Dassie, E. P., Jochum, K. P., Edwards, R. L., and Cheng, H.:
Multi-decadal to centennial hydro-climate variability and linkage to solar
forcing in the Western Mediterranean during the last 1000 years, Sci.
Rep., 8, 174466, https://doi.org/10.1038/s41598-018-35498-x, 2018.
Ait Brahim, Y., Wassenburg, J. A., Sha, L., Cruz, F. W., Deininger, M.,
Sifeddine, A., Bouchaou, L., Spötl, C., Edwards, R. L., and Cheng, H.:
North Atlantic Ice-Rafting, Ocean and Atmospheric Circulation During the
Holocene: Insights From Western Mediterranean Speleothems, Geophys.
Res. Lett., 46, GL082405, https://doi.org/10.1029/2019GL082405, 2019.
Amin Al-Manmi, D. A. M., Ismaeel, S. B., and Altaweel, M.: Reconstruction of
palaeoclimate in Shalaii Cave, SE of Sangaw, Kurdistan Province of Iraq,
Palaeogeogr. Palaeocl., 524, 262–272,
https://doi.org/10.1016/J.PALAEO.2019.03.044, 2019.
Amirnezhad-Mozhdehi, S. and Comas-Bru, L.: MATLAB scripts to produce OxCal
chronologies for SISAL database (scripts V1) (Version 1.0), Zenodo,
https://doi.org/10.5281/zenodo.3586280, 2019.
Apaestegui, J., Cruz, F. W., Vuille, M., Fohlmeister, J., Espinoza, J. C.,
Sifeddine, A., Strikis, N., Guyot, J. L., Ventura, R., Cheng, H., and
Edwards, R. L.: Precipitation changes over the eastern Bolivian Andes
inferred from speleothem (delta O-18) records for the last 1400 years, Earth
Planet. Sc. Lett., 494, 124–134,
https://doi.org/10.1016/j.epsl.2018.04.048, 2018.
Asmerom, Y., Polyak, V., Burns, S., and Rassmussen, J.: Solar forcing of
Holocene climate: New insights from a speleothem record, southwestern United
States, Geology, 35, 1–4, https://doi.org/10.1130/G22865A.1, 2007.
Asmerom, Y., Polyak, V. J., Rasmussen, J. B. T., Burns, S. J., and Lachniet, M.: Multidecadal to multicentury scale collapses of Northern Hemisphere
monsoons over the past millennium, P. Natl. Acad. Sci. USA, 110, 9651–9656, https://doi.org/10.1073/pnas.1214870110, 2013.
Atsawawaranunt, K., Comas-Bru, L., Amirnezhad Mozhdehi, S., Deininger, M., Harrison, S. P., Baker, A., Boyd, M., Kaushal, N., Ahmad, S. M., Ait Brahim, Y., Arienzo, M., Bajo, P., Braun, K., Burstyn, Y., Chawchai, S., Duan, W., Hatvani, I. G., Hu, J., Kern, Z., Labuhn, I., Lachniet, M., Lechleitner, F. A., Lorrey, A., Pérez-Mejías, C., Pickering, R., Scroxton, N., and SISAL Working Group Members: The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems, Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, 2018a.
Atsawawaranunt, K., Harrison, S., and Comas-Bru, L.: SISAL (Speleothem
Isotopes Synthesis and AnaLysis Working Group) database Version 1.0,
University of Reading, Dataset, https://doi.org/10.17864/1947.147, 2018b.
Atsawawaranunt, K., Harrison, S., and Comas-Bru, L.: SISAL (Speleothem
Isotopes Synthesis and AnaLysis Working Group) database Version 1b,
University of Reading, Dataset, https://doi.org/10.17864/1947.189, 2019.
Badertscher, S., Fleitmann, D., Cheng, H., Edwards, R. L., Göktürk, O. M., Zumbühl, A., Leuenberger, M., and Tüysüz, O.: Pleistocene
water intrusions from the Mediterranean and Caspian seas into the Black Sea,
Nat. Geosci., 4, 236–239, https://doi.org/10.1038/ngeo1106, 2011.
Baldini, L. M., McDermott, F., Baldini, J. U. L., Arias, P., Cueto, M.,
Fairchild, I. J., Hoffmann, D. L., Mattey, D. P., Muller, W., Nita, D. C.,
Ontanon, R., Garcia-Monco, C., and Richards, D. A.: Regional temperature,
atmospheric circulation, and sea-ice variability within the Younger Dryas
Event constrained using a speleothem from northern Iberia, Earth Planet. Sc. Lett., 419, 101–110,
https://doi.org/10.1016/j.epsl.2015.03.015, 2015.
Baldini, L. M., Baldini, J. U. L., McDermott, F., Arias, P., Cueto, M.,
Fairchild, I. J., Hoffmann, D. L., Mattey, D. P., Müller, W., Nita, D. C., Ontañón, R., Garciá-Moncó, C., and Richards, D. A.:
North Iberian temperature and rainfall seasonality over the Younger Dryas
and Holocene, Quaternary Sci. Rev., 226, 105998,
https://doi.org/10.1016/j.quascirev.2019.105998, 2019.
Band, S., Yadava, M. G., Lone, M. A., Shen, C. C., Sree, K., and Ramesh, R.:
High-resolution mid-Holocene Indian Summer Monsoon recorded in a stalagmite
from the Kotumsar Cave, Central India, Quatern. Int., 479, 19–24,
https://doi.org/10.1016/j.quaint.2018.01.026, 2018.
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C. J.: Sea–land oxygen isotopic relationships from planktonic foraminifera and
speleothems in the Eastern Mediterranean region and their implication for
paleorainfall during interglacial intervals, Geochim. Cosmochim.
Ac., 67, 3181–3199, https://doi.org/10.1016/S0016-7037(02)01031-1, 2003.
Blaauw, M.: Methods and code for “classical” age-modelling of radiocarbon
sequences, Quat. Geochronol., 5, 512–518,
https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian Anal., 6, 457–474,
https://doi.org/10.1214/11-ba618, 2011.
Blaauw, M., Christen, J. A., Vazquez, J. E., Belding, T., Theiler, J., Gough, B., and Karney, C.: rbacon: Age-depth modelling using Bayesian statistics: R package, version 2.3.9.1, last access: https://cran.r-project.org/web/packages/rbacon/, last access: 20 October 2019.
Braun, K., Nehme, C., Pickering, R., Rogerson, M., and Scroxton, N.: A
Window into Africa's Past Hydroclimates: The SISAL_v1
Database Contribution, Quaternary, 2, 4, https://doi.org/10.3390/quat2010004,
2019a.
Braun, K., Bar-Matthews, M., Matthews, A., Ayalon, A., Cowling, R. M.,
Karkanas, P., Fisher, E. C., Dyez, K., Zilberman, T., and Marean, C. W.:
Late Pleistocene records of speleothem stable isotopic compositions from
Pinnacle Point on the South African south coast, Quaternary Res., 91,
265–288, https://doi.org/10.1017/qua.2018.61, 2019b.
Breitenbach, S. F. M., Rehfeld, K., Goswami, B., Baldini, J. U. L., Ridley, H. E., Kennett, D. J., Prufer, K. M., Aquino, V. V., Asmerom, Y., Polyak, V. J., Cheng, H., Kurths, J., and Marwan, N.: COnstructing Proxy Records from Age models (COPRA), Clim. Past, 8, 1765–1779, https://doi.org/10.5194/cp-8-1765-2012, 2012.
Breitenbach, S. F. M., Plessen, B., Waltgenbach, S., Tjallingii, R.,
Leonhardt, J., Jochum, K. P., Meyer, H., Goswami, B., Marwan, N., and
Scholz, D.: Holocene interaction of maritime and continental climate in
Central Europe: New speleothem evidence from Central Germany, Global
Planet. Change, 176, 144–161,
https://doi.org/10.1016/J.GLOPLACHA.2019.03.007, 2019.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary
Sci. Rev., 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51,
337–360,: https://doi.org/10.1017/S0033822200033865, 2009.
Bronk Ramsey, C. and Lee, S.: Recent and planned developments of the
program OxCal, Radiocarbon, 55, 720–730, https://doi.org/10.2458/azu_js_rc.55.16215, 2013.
Budsky, A., Scholz, D., Wassenburg, J. A., Mertz-Kraus, R., Spötl, C.,
Riechelmann, D. F. C., Gibert, L., Jochum, K. P., and Andreae, M. O.:
Speleothem δ13C record suggests enhanced spring/summer drought in
south-eastern Spain between 9.7 and 7.8 ka – A circum-Western Mediterranean
anomaly?, Holocene, 29, 1113–1133,
https://doi.org/10.1177/0959683619838021, 2019.
Burns, S. J., Fleitmann, D., Matter, A., Kramers, J., and Al-Subbary, A. A.:
Indian Ocean Climate and an Absolute Chronology over Dansgaard/Oeschger
Events 9 to 13, Science, 301, 1365–1367,
https://doi.org/10.1126/science.1086227, 2003.
Burns, S. J., Fleitmann, D., Matter, A., Kramers, J., and Al-Subbary, A. A.:
Corrections and Clarifications, Science, 305, 1567a–1567a,
https://doi.org/10.1126/science.305.5690.1567a, 2004.
Burns, S. J., Welsh, L. K., Scroxton, N., Cheng, H., and Edwards, R. L.:
Millennial and orbital scale variability of the South American Monsoon
during the penultimate glacial period, Sci. Rep., 9, 1234,
https://doi.org/10.1038/s41598-018-37854-3, 2019.
Burstyn, Y., Martrat, B., Lopez, F. J., Iriarte, E., Jacobson, J. M., Lone, A. M., and Deininger, M.: Speleothems from the Middle East: An Example of
Water Limited Environments in the SISAL Database, Quaternary, 2, 16,
https://doi.org/10.3390/quat2020016, 2019.
Cai, Y. J., Chiang, J. C. H., Breitenbach, S. F. M., Tan, L. C., Cheng, H.,
Edwards, R. L., and An, Z. S.: Holocene moisture changes in western China,
Central Asia, inferred from stalagmites, Quaternary Sci. Rev., 158,
15–28, https://doi.org/10.1016/j.quascirev.2016.12.014, 2017.
Carolin, S. A., Cobb, K. M., Lynch-Stieglitz, J., Moerman, J. W., Partin, J. W., Lejau, S., Malang, J., Clark, B., Tuen, A. A., and Adkins, J. F.:
Northern Borneo stalagmite records reveal West Pacific hydroclimate across
MIS 5 and 6, Earth Planet. Sc. Lett., 439, 182–193,
https://doi.org/10.1016/j.epsl.2016.01.028, 2016.
Carolin, S. A., Walker, R. T., Day, C. C., Ersek, V., Sloan, R. A., Dee, M. W., Talebian, M., and Henderson, G. M.: Precise timing of abrupt increase in
dust activity in the Middle East coincident with 4.2 ka social change,
P. Natl. Acad. Sci. USA, 116, 67–72,
https://doi.org/10.1073/PNAS.1808103115, 2019.
Cheng, H., Edwards, R. L., Wan, Y. J., Ko, X. G., Ming, Y. F., Kelly, M. J.,
Wang, X. F., Gallup, C. D., and Liu, W. G.: A penultimate glacial monsoon
record from Hulu Cave and two-phase glacial terminations, Geology, 34,
217–220, https://doi.org/10.1130/g22289.1, 2006.
Cheng, H., Fleitmann, D., Edwards, R. L., Wang, X., Cruz, F. W., Auler, A. S., Mangini, A., Wang, Y., Kong, X., Burns, S. J., and Matter, A.: Timing
and structure of the 8.2 kyr B.P. event inferred from δ18O records
of stalagmites from China, Oman, and Brazil, Geology, 37, 1007–1010,
https://doi.org/10.1130/G30126A.1, 2009.
Cheng, H., Sinha, A., Cruz, F. W., Wang, X., Edwards, R. L., d'Horta, F. M.,
Ribas, C. C., Vuille, M., Stott, L. D., and Auler, A. S.: Climate change
patterns in Amazonia and biodiversity, Nat. Commun., 4, 1411,
https://doi.org/10.1038/ncomms2415, 2013.
Cheng, H., Springer, G. S., Sinha, A., Hardt, B. F., Yi, L., Li, H., Tian, Y., Li, X., Rowe, H. D., Kathayat, G., Ning, Y., and Edwards, R. L.: Eastern
North American climate in phase with fall insolation throughout the last
three glacial-interglacial cycles, Earth Planet. Sc. Lett., 522,
125–134, https://doi.org/10.1016/j.epsl.2019.06.029, 2019.
Columbu, A., Spötl, C., De Waele, J., Yu, T.-L., Shen, C.-C., and
Gázquez, F.: A long record of MIS 7 and MIS 5 climate and environment
from a western Mediterranean speleothem (SW Sardinia, Italy), Quaternary
Sci. Rev., 220, 230–243,
https://doi.org/10.1016/J.QUASCIREV.2019.07.023, 2019.
Comas-Bru, L. and Harrison, S. P.: SISAL: Bringing added value to
speleothem research, Quaternary, 2, 7, https://doi.org/10.3390/quat2010007,
2019.
Comas-Bru, L., Harrison, S. P., Werner, M., Rehfeld, K., Scroxton, N., Veiga-Pires, C., and SISAL working group members: Evaluating model outputs using integrated global speleothem records of climate change since the last glacial, Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, 2019.
Comas-Bru, L., Atsawawaranunt, K., Harrison, S. P. and SISAL Working Group
members: SISAL (Speleothem Isotopes Synthesis and AnaLysis Working Group)
database version 2.0, University of Reading, Dataset, https://doi.org/10.17864/1947.256, 2020a.
Comas-Bru, L., Deininger, M., Fohlmeister, J., Baker, A., McDermott, F., and
Scholz, D.: Quality control of the dating information table in the SISAL
database, Zenodo, https://doi.org/10.5281/zenodo.3631443, 2020b.
Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., and Vuille, M.:
Reconstruction of regional atmospheric circulation features during the late
Pleistocene in subtropical Brazil from oxygen isotope composition of
speleothems, Earth Planet. Sc. Lett., 248, 495–507,
https://doi.org/10.1016/J.EPSL.2006.06.019, 2006.
Czuppon, G., Demeny, A., Leel-Ossy, S., Ovari, M., Molnar, M., Stieber, J.,
Kiss, K., Karman, K., Suranyi, G., and Haszpra, L.: Cave monitoring in the
Beke and Baradla caves (Northeastern Hungary): implications for the
conditions for the formation cave carbonates, Int. J. Speleol., 47, 13–28, https://doi.org/10.5038/1827-806x.47.1.2110, 2018.
Deininger, M., Ward, M. B., Novello, F. V., and Cruz, W. F.: Late Quaternary
Variations in the South American Monsoon System as Inferred by
Speleothems – New Perspectives Using the SISAL Database, Quaternary, 2, 6,
https://doi.org/10.3390/quat2010006, 2019.
Demény, A., Kern, Z., Németh, A., Frisia, S., Hatvani, I. G.,
Czuppon, G., Leél-Őssy, S., Molnár, M., Óvári, M.,
Surányi, G., Gilli, A., Wu, C.-C., and Shen, C.-C.: North Atlantic
influences on climate conditions in East-Central Europe in the late Holocene
reflected by flowstone compositions, Quatern. Int., 512, 99–112,
https://doi.org/10.1016/J.QUAINT.2019.02.014, 2019.
Denniston, R. F., Asmerom, Y., Lachniet, M., Polyak, V. J., Hope, P., An, N., Rodzinyak, K., and Humphreys, W. F.: A Last Glacial Maximum through
middle Holocene stalagmite record of coastal Western Australia climate,
Quaternary Sci. Rev., 77, 101–112,
https://doi.org/10.1016/j.quascirev.2013.07.002, 2013a.
Denniston, R. F., Wyrwoll, K.-H., Polyak, V. J., Brown, J. R., Asmerom, Y.,
Wanamaker, A. D., LaPointe, Z., Ellerbroek, R., Barthelmes, M., Cleary, D.,
Cugley, J., Woods, D., and Humphreys, W. F.: A Stalagmite record of Holocene
Indonesian–Australian summer monsoon variability from the Australian
tropics, Quaternary Sci. Rev., 78, 155–168,
https://doi.org/10.1016/J.QUASCIREV.2013.08.004, 2013b.
Denniston, R. F., Asmerom, Y., Polyak, V. J., Wanamaker, A. D., Ummenhofer, C. C., Humphreys, W. F., Cugley, J., Woods, D., and Lucker, S.: Decoupling
of monsoon activity across the northern and southern Indo-Pacific during the
Late Glacial, Quaternary Sci. Rev., 176, 101–105,
https://doi.org/10.1016/J.QUASCIREV.2017.09.014, 2017.
Denniston, R. F., Houts, A. N., Asmerom, Y., Wanamaker Jr., A. D., Haws, J. A., Polyak, V. J., Thatcher, D. L., Altan-Ochir, S., Borowske, A. C.,
Breitenbach, S. F. M., Ummenhofer, C. C., Regala, F. T., Benedetti, M. M., and
Bicho, N. F.: A stalagmite test of North Atlantic SST and Iberian hydroclimate
linkages over the last two glacial cycles, Clim. Past, 14, 1893–1913,
https://doi.org/10.5194/cp-14-1893-2018, 2018.
Dong, J., Shen, C.-C., Kong, X., Wu, C.-C., Hu, H.-M., Ren, H., and Wang, Y.: Rapid retreat of the East Asian summer monsoon in the middle Holocene
and a millennial weak monsoon interval at 9 ka in northern China, J.
Asian Earth Sci., 151, 31–39,
https://doi.org/10.1016/J.JSEAES.2017.10.016, 2018.
Dumitru, O. A., Onac, B. P., Polyak, V. J., Wynn, J. G., Asmerom, Y., and
Fornos, J. J.: Climate variability in the western Mediterranean between 121
and 67 ka derived from a Mallorcan speleothem record, Palaeogeogr. Palaeocl., 506, 128–138,
https://doi.org/10.1016/j.palaeo.2018.06.028, 2018.
El-Shenawy, M. I., Kim, S. T., Schwarcz, H. P., Asmerom, Y., and Polyak, V. J.: Speleothem evidence for the greening of the Sahara and its implications
for the early human dispersal out of sub-Saharan Africa, Quaternary Sci.
Rev., 188, 67–76, https://doi.org/10.1016/j.quascirev.2018.03.016, 2018.
Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R. L., Mudelsee, M.,
Göktürk, O. M., Fankhauser, A., Pickering, R., Raible, C. C.,
Matter, A., Kramers, J., and Tüysüz, O.: Timing and climatic impact
of Greenland interstadials recorded in stalagmites from northern Turkey,
Geophys. Res. Lett., 36, L19707–L19707,
https://doi.org/10.1029/2009GL040050, 2009.
Flohr, P., Fleitmann, D., Zorita, E., Sadekov, A., Cheng, H., Bosomworth, M., Edwards, L., Matthews, W., and Matthews, R.: Late Holocene droughts in
the Fertile Crescent recorded in a speleothem from northern Iraq,
Geophys. Res. Lett., 44, 1528–1536,
https://doi.org/10.1002/2016GL071786, 2017.
Frappier, A., Sahagian, D., González, L. A., and Carpenter, S. J.: El
Nino Events Recorded by Stalagmite Carbon Isotopes, Science, 298, 565–565,
https://doi.org/10.1126/science.1076446, 2002.
Frappier, A. B., Sahagian, D., Carpenter, S. J., Gonzalez, L. A., and
Frappier, B. R.: Stalagmite stable isotope record of recent tropical cyclone
events, Geology, 35, 111–114, https://doi.org/10.1130/g23145a.1, 2007.
Gautam, P. K., Narayana, A. C., Band, S. T., Yadava, M. G., Ramesh, R., Wu, C.-C., and Shen, C.-C.: High-resolution reconstruction of Indian summer
monsoon during the Bølling-Allerød from a central Indian stalagmite,
Palaeogeogr. Palaeocl., 514, 567–576,
https://doi.org/10.1016/J.PALAEO.2018.11.006, 2019.
Göktürk, O. M., Fleitmann, D., Badertscher, S., Cheng, H., Edwards, R. L., Leuenberger, M., Fankhauser, A., Tüysüz, O., and Kramers, J.:
Climate on the southern Black Sea coast during the Holocene: implications
from the Sofular Cave record, Quaternary Sci. Rev., 30, 2433–2445,
https://doi.org/10.1016/J.QUASCIREV.2011.05.007, 2011.
Goldscheider, N., Chen, Z., Auler, A. S., Bakalowicz, M., Broda, S., Drew, D., Hartmann, J., Jiang, G., Moosdorf, N., Stevanovic, Z., and Veni, G.:
Global distribution of carbonate rocks and karst water resources,
Hydrogeol. J., 28, 1661–1677,
https://doi.org/10.1007/s10040-020-02139-5, 2020.
Haslett, J. and Parnell, A.: A simple monotone process with application to
radiocarbon-dated depth chronologies, J. R. Stat.
Soc. C-Appl., 57, 399–418, https://doi.org/10.1111/j.1467-9876.2008.00623.x, 2008.
Hu, J, Emile-Geay J., and Partin J.: Correlation-based interpretations of
paleoclimate data–where statistics meet past climates, Earth Planet.
Sc. Lett., 459, 362–371, https://doi.org/10.1016/j.epsl.2016.11.048, 2017.
Huguet, C., Routh, J., Fietz, S., Lone, M. A., Kalpana, M. S., Ghosh, P.,
Mangini, A., Kumar, V., and Rangarajan, R.: Temperature and Monsoon Tango in
a Tropical Stalagmite: Last Glacial-Interglacial Climate Dynamics,
Sci. Rep., 8, 5386, https://doi.org/10.1038/s41598-018-23606-w,
2018.
Isola, I., Zanchetta, G., Drysdale, R. N., Regattieri, E., Bini, M., Bajo, P., Hellstrom, J. C., Baneschi, I., Lionello, P., Woodhead, J., and Greig, A.: The 4.2 ka event in the central Mediterranean: new data from a Corchia speleothem (Apuan Alps, central Italy), Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, 2019.
Jamieson, R. A., Baldini, J. U. L., Frappier, A. B., and Müller, W.:
Volcanic ash fall events identified using principal component analysis of a
high-resolution speleothem trace element dataset, Earth Planet.
Sc. Lett., 426, 36–45, https://doi.org/10.1016/J.EPSL.2015.06.014,
2015.
Jex, C. N., Baker, A., Fairchild, I. J., Eastwood, W. J., Leng, M. J.,
Sloane, H. J., Thomas, L., and Bekaroglu, E.: Calibration of speleothem
delta O-18 with instrumental climate records from Turkey, Global
Planet. Change, 71, 207–217,
https://doi.org/10.1016/j.gloplacha.2009.08.004, 2010.
Jex, C. N., Baker, A., Eden, J. M., Eastwood, W. J., Fairchild, I. J., Leng, M. J., Thomas, L., and Sloane, H. J.: A 500 yr speleothem-derived
reconstruction of late autumn-winter precipitation, northeast Turkey,
Quaternary Res., 75, 399–405,
https://doi.org/10.1016/j.yqres.2011.01.005, 2011.
Jex, C. N., Phipps, S. J., Baker, A., and Bradley, C.: Reducing uncertainty
in the climatic interpretations of speleothem delta O-18, Geophys.
Res. Lett., 40, 2259–2264, https://doi.org/10.1002/grl.50467, 2013.
Jiang, X., He, Y., Shen, C., Kong, X., Li, Z., and Chang, Y.:
Stalagmite-inferred Holocene precipitation in northern Guizhou Province,
China, and asynchronous termination of the Climatic Optimum in the Asian
monsoon territory, Chinese Sci. Bull., 57, 795–801,
https://doi.org/10.1007/s11434-011-4848-6, 2012.
Jiang, X., He, Y., Shen, C.-C., Li, Z., and Lin, K.: Replicated
stalagmite-inferred centennial-to decadal-scale monsoon precipitation
variability in southwest China since the mid Holocene, Holocene, 23,
841–849, https://doi.org/10.1177/0959683612471986, 2013.
Jo, K.-n., Yi, S., Lee, J.-Y., Woo, K. S., Cheng, H., Edwards, L. R., and
Kim, S.-T.: 1000-Year Quasi-Periodicity of Weak Monsoon Events in Temperate
Northeast Asia since the Mid-Holocene, Sci. Rep., 7, 15196,
https://doi.org/10.1038/s41598-017-15566-4, 2017.
Johnson, K. R., Ingram, B. L., Sharp, W. D., and Zhang, P. Z.: East Asian
summer monsoon variability during Marine Isotope Stage 5 based on speleothem
δ18O records from Wanxiang Cave, central China, Palaeogeogr.
Palaeocl., 236, 5–19,
https://doi.org/10.1016/j.palaeo.2005.11.041, 2006.
Kanner, L. C., Burns, S. J., Cheng, H., and Edwards, R. L.: High-Latitude
Forcing of the South American Summer Monsoon During the Last Glacial,
Science, 335, 570–573, https://doi.org/10.1126/science.1213397, 2012.
Kanner, L. C., Burns, S. J., Cheng, H., Edwards, R. L., and Vuille, M.:
High-resolution variability of the South American summer monsoon over the
last seven millennia: insights from a speleothem record from the central
Peruvian Andes, Quaternary Sci. Rev., 75, 1–10,
https://doi.org/10.1016/j.quascirev.2013.05.008, 2013.
Kathayat, G., Cheng, H., Sinha, A., Yi, L., Li, X. L., Zhang, H. W., Li, H. Y., Ning, Y. F., and Edwards, R. L.: The Indian monsoon variability and
civilization changes in the Indian subcontinent, Science Advances, 3,
e1701296, https://doi.org/10.1126/sciadv.1701296, 2017.
Kathayat, G., Cheng, H., Sinha, A., Berkelhammer, M., Zhang, H., Duan, P., Li, H., Li, X., Ning, Y., and Edwards, R. L.: Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India, Clim. Past, 14, 1869–1879, https://doi.org/10.5194/cp-14-1869-2018, 2018.
Kaushal, N., Breitenbach, F. M. S., Lechleitner, A. F., Sinha, A., Tewari, C. V., Ahmad, M. S., Berkelhammer, M., Band, S., Yadava, M., Ramesh, R., and
Henderson, M. G.: The Indian Summer Monsoon from a Speleothem δ18O
Perspective – A Review, Quaternary, 1, 29,
https://doi.org/10.3390/quat1030029, 2018.
Kern, Z., Demény, A., Perşoiu, A., and Hatvani, G. I.: Speleothem
Records from the Eastern Part of Europe and Turkey – Discussion on Stable
Oxygen and Carbon Isotopes, Quaternary, 2, 31,
https://doi.org/10.3390/quat2030031, 2019.
Krause, C. E., Gagan, M. K., Dunbar, G. B., Hantoro, W. S., Hellstrom, J. C., Cheng, H., Edwards, R. L., Suwargadi, B. W., Abram, N. J., and Rifai, H.: Spatio-temporal evolution of Australasian monsoon hydroclimate over the
last 40,000 years, Earth Planet. Sc. Lett., 513, 103–112,
https://doi.org/10.1016/J.EPSL.2019.01.045, 2019.
Lachniet, M. S., Asmerom, Y., Burns, S. J., Patterson, W. P., Polyak, V. J.,
and Seltzer, G. O.: Tropical response to the 8200 yr BP cold event?
Speleothem isotopes indicate a weakened early Holocene monsoon in Costa
Rica, Geology, 32, 957–960, https://doi.org/10.1130/g20797.1, 2004.
Lachniet, M. S., Johnson, L., Asmerom, Y., Burns, S. J., Polyak, V.,
Patterson, W. P., Burt, L., and Azouz, A.: Late Quaternary moisture export
across Central America and to Greenland: evidence for tropical rainfall
variability from Costa Rican stalagmites, Quaternary Sci. Rev., 28,
3348–3360, https://doi.org/10.1016/J.QUASCIREV.2009.09.018, 2009.
Laskar, A. H., Yadava, M. G., Ramesh, R., Polyak, V. J., and Asmerom, Y.: A
4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in
the Andaman Islands, Geochem., Geophy., Geosy., 14, 3555–3566,
https://doi.org/10.1002/ggge.20203, 2013.
Lauritzen, S.-E., and Onac, B. P.: Isotopic Stratigraphy of a Last
Interglacial Stalagmite from Northwestern Romania: Correlation with the
Deep-Sea record and Northern-Latitude Speleothem, J. Cave Karst
Stud., 61, 22–30, 1999.
Lechleitner, F. A., Amirnezhad-Mozhdehi, S., Columbu, A., Comas-Bru, L.,
Labuhn, I., Pérez-Mejías, C., and Rehfeld, K.: The Potential of
Speleothems from Western Europe as Recorders of Regional Climate: A Critical
Assessment of the SISAL Database, Quaternary, 1, 30,
https://doi.org/10.3390/quat1030030, 2018.
Li, H., Cheng, H., Sinha, A., Kathayat, G., Spötl, C., André, A. A., Meunier, A., Biswas, J., Duan, P., Ning, Y., and Edwards, R. L.: Hydro-climatic variability in the southwestern Indian Ocean between 6000 and 3000 years ago, Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, 2018.
Liu, X., Rao, Z., Shen, C. C., Liu, J., Chen, J., Chen, S., Wang, X., and
Chen, F.: Holocene Solar Activity Imprint on Centennial- to
Multidecadal-Scale Hydroclimatic Oscillations in Arid Central Asia, J.
Geophys. Res.-Atmos., 124, 2562–2573,
https://doi.org/10.1029/2018JD029699, 2019.
Logan, A. J.: A new paleoclimate record for North Westland, New Zealand,
with implications for the interpretation of speleothem based paleoclimate
proxies, Master of Science, Geology, University of Canterbury, 109 pp.,
available at: http://hdl.handle.net/10092/5762 (last access: 31 January 2020),
2011.
Lončar, N., Bar-Matthews, M., Ayalon, A., Faivre, S., and Surić, M.:
Holocene climatic conditions in the eastern Adriatic recorded in stalagmites
from Strašna peć Cave (Croatia), Quatern. Int., 508,
98–106, https://doi.org/10.1016/j.quaint.2018.11.006, 2019.
Lorrey, A., Williams, P., Salinger, J., Martin, T., Palmer, J., Fowler, A.,
Zhao, J.-x., and Neil, H.: Speleothem stable isotope records interpreted
within a multi-proxy framework and implications for New Zealand
palaeoclimate reconstruction, Quatern. Int., 187, 52–75,
https://doi.org/10.1016/j.quaint.2007.09.039, 2008.
Lorrey, A. M., Vandergoes, M., Renwick, J., Newnham, R., Ackerley, D., Bostock, H., Williams, P. W., King, D. N. T., Neil, H., Harper, S., et al.: A Regional Climate Regime Classification Synthesis for New Zealand Covering Three Critical Periods of the Late Quaternary: The Last 2000 Years, the Mid-Holocene, and the End of the Last Glacial Coldest Period; NIWA Client Report AKL2010-025; National Institute of Water and Atmospheric Research Ltd., Auckland, New Zealand, 2010.
Marsh, A., Fleitmann, D., Al-Manmi, D. A. M., Altaweel, M., Wengrow, D., and
Carter, R.: Mid- to late-Holocene archaeology, environment and climate in
the northeast Kurdistan region of Iraq, Holocene, 28, 955–967,
https://doi.org/10.1177/0959683617752843, 2018.
McCabe-Glynn, S., Johnson, K. R., Strong, C., Berkelhammer, M., Sinha, A.,
Cheng, H., and Edwards, R. L.: Variable North Pacific influence on drought
in southwestern North America since AD 854, Nat. Geosci., 6, 617–621,
https://doi.org/10.1038/ngeo1862, 2013.
Medina-Elizalde, M., Burns, S. J., Polanco-Martinez, J. M., Beach, T.,
Lases-Hernandez, F., Shen, C. C., and Wang, H. C.: High-resolution
speleothem record of precipitation from the Yucatan Peninsula spanning the
Maya Preclassic Period, Global Planet. Change, 138, 93–102,
https://doi.org/10.1016/j.gloplacha.2015.10.003, 2016.
Medina-Elizalde, M., Burns, S. J., Polanco-Martinez, J., Lases-Hernandez, F., Bradley, R., Wang, H. C., and Shen, C. C.: Synchronous precipitation
reduction in the American Tropics associated with Heinrich 2, Sci.
Rep., 7, 11216, https://doi.org/10.1038/s41598-017-11742-8, 2017.
Moseley, G. E., Spötl, C., BrandstÄtter, S., Erhardt, T., Luetscher, M., and Edwards, R. L.: NALPS19: sub-orbital-scale climate variability recorded in northern Alpine speleothems during the last glacial period, Clim. Past, 16, 29–50, https://doi.org/10.5194/cp-16-29-2020, 2020.
Mudelsee, M., Fohlmeister, J., and Scholz, D.: Effects of dating errors on nonparametric trend analyses of speleothem time series, Clim. Past, 8, 1637–1648, https://doi.org/10.5194/cp-8-1637-2012, 2012.
Niggemann, S., Mangini, A., Mudelsee, M., Richter, D. K., and Wurth, G.:
Sub-Milankovitch climatic cycles in Holocene stalagmites from Sauerland,
Germany, Earth Planet. Sc. Lett., 216, 539–547,
https://doi.org/10.1016/S0012-821X(03)00513-2, 2003a.
Niggemann, S., Mangini, A., Richter, D. K., and Wurth, G.: A paleoclimate
record of the last 17,600 years in stalagmites from the B7 cave, Sauerland,
Germany, Quaternary Sci. Rev., 22, 555–567,
https://doi.org/10.1016/s0277-3791(02)00143-9, 2003b.
Osete, M. L., Martin-Chivelet, J., Rossi, C., Edwards, R. L., Egli, R.,
Munoz-Garcia, M. B., Wang, X. F., Pavon-Carrasco, F. J., and Heller, F.: The
Blake geomagnetic excursion recorded in a radiometrically dated speleothem,
Earth Planet. Sc. Lett., 353, 173–181,
https://doi.org/10.1016/j.epsl.2012.07.041, 2012.
Oster, J. L., Warken, S. F., Sekhon, N., Arienzo, M., and Lachniet, M.:
Speleothem Paleoclimatology for the Caribbean, Central America, and North
America, Quaternary, 2, 5, https://doi.org/10.3390/quat2010005, 2019.
Parnell, A.: Bchron: Radiocarbon dating, age-depth modelling, relative sea
level rate estimation, and non-parametric phase modelling, R package version
4.3.0, 2018.
Partin, J. W., Quinn, T. M., Shen, C. C., Okumura, Y., Cardenas, M. B.,
Siringan, F. P., Banner, J. L., Lin, K., Hu, H. M., and Taylor, F. W.:
Gradual onset and recovery of the Younger Dryas abrupt climate event in the
tropics, Nat. Commun., 6, 8061–8061,
https://doi.org/10.1038/ncomms9061, 2015.
Pawlak, J., Błaszczyk, M., Hercman, H., and Matoušková, Š.: A
continuous stable isotope record of last interglacial age from the Bulgarian
Cave Orlova Chuka, Geochronometria, 46, 87–101,
https://doi.org/10.1515/geochr-2015-0107, 2019.
Peckover, E. N., Andrews, J. E., Leeder, M. R., Rowe, P. J., Marca, A.,
Sahy, D., Noble, S., and Gawthorpe, R.: Coupled stalagmite – Alluvial fan
response to the 8.2 ka event and early Holocene palaeoclimate change in
Greece, Palaeogeogr. Palaeocl., 532,
109252–109252, https://doi.org/10.1016/j.palaeo.2019.109252, 2019.
Polyak, V. J., Asmerom, Y., and Lachniet, M. S.: Rapid speleothem δ13C change in southwestern North America coincident with Greenland stadial
20 and the Toba (Indonesia) supereruption, Geology, 45, 843–846,
https://doi.org/10.1130/g39149.1, 2017.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
available at: http://www.r-project.org/index.html (last access: 31 January 2020), 2019.
Rehfeld, K. and Kurths, J.: Similarity estimators for irregular and age-uncertain time series, Clim. Past, 10, 107–122, https://doi.org/10.5194/cp-10-107-2014, 2014.
Rehfeld, K., Goswami B., Juncu, D. Marwan N., and Breitenbach, S.: COPRA –
Constructing Proxy Records From Age Models, Version 1.15, last mod.
2 November 2017, available at: https://tocsy.pik-potsdam.de/copra.php (last access: 31 January 2020),
2017.
Rehfeld, K., Roesch, C., Comas-Bru, L., and Amirnezhad-Mozhdehi, S.:
Age-depth model ensembles for SISAL v2 speleothem records (Version 1.0),
Data set, Zenodo, https://doi.org/10.5281/zenodo.3816804,
2020.
Rivera-Collazo, I., Winter, A., Scholz, D., Mangini, A., Miller, T.,
Kushnir, Y., and Black, D.: Human adaptation strategies to abrupt climate
change in Puerto Rico ca. 3.5 ka, Holocene, 25, 627–640,
https://doi.org/10.1177/0959683614565951, 2015.
Roesch, C. and Rehfeld, K.: Automatising construction and evaluation of
age-depth models for hundreds of speleothems, 9th International Workshop on
Climate Informatics, Paris, France, 2–4 October, 2019.
Rossi, C., Mertz-Kraus, R., and Osete, M. L.: Paleoclimate variability
during the Blake geomagnetic excursion (MIS 5d) deduced from a speleothem
record, Quaternary Sci. Rev., 102, 166–180,
https://doi.org/10.1016/j.quascirev.2014.08.007, 2014.
Rossi, C., Bajo, P., Lozano, R. P., and Hellstrom, J.: Younger Dryas to
Early Holocene paleoclimate in Cantabria (N Spain): Constraints from
speleothem Mg, annual fluorescence banding and stable isotope records,
Quaternary Sci. Rev., 192, 71–85,
https://doi.org/10.1016/j.quascirev.2018.05.025, 2018.
Rudzka, D., McDermott, F., and Suric, M.: A late Holocene climate record in
stalagmites from Modric Cave (Croatia), J. Quaternary Sci., 27,
585–596, https://doi.org/10.1002/jqs.2550, 2012.
Rudzka-Phillips, D., McDermott, F., Jackson, A., and Fleitmann, D.: Inverse
modelling of the C-14 bomb pulse in stalagmites to constrain the dynamics of
soil carbon cycling at selected European cave sites, Geochim.
Cosmochim. Ac., 112, 32–51, https://doi.org/10.1016/j.gca.2013.02.032,
2013.
Scholz, D. and Hoffmann, D. L.: StalAge – An algorithm designed for
construction of speleothem age models, Quat. Geochronol., 6, 369–382,
https://doi.org/10.1016/j.quageo.2011.02.002, 2011.
Scroxton, N., Burns, S. J., McGee, D., Hardt, B., Godfrey, L. R.,
Ranivoharimanana, L., and Faina, P.: Competing Temperature and Atmospheric
Circulation Effects on Southwest Madagascan Rainfall During the Last
Deglaciation, Paleoceanogr. Paleocl., 34, 275–286,
https://doi.org/10.1029/2018PA003466, 2019.
Sinha, N., Gandhi, N., Chakraborty, S., Krishnan, R., Yadava, M. G., and
Ramesh, R.: Abrupt climate change at ∼2800 yr BP evidenced by
a stalagmite record from peninsular India, Holocene, 28, 1720–1730,
https://doi.org/10.1177/0959683618788647, 2018.
Staubwasser, M., Drăguşin, V., Onac, B. P., Assonov, S., Ersek, V.,
Hoffmann, D. L., and Veres, D.: Impact of climate change on the transition
of Neanderthals to modern humans in Europe, P. Natl.
Acad. Sci. USA, 115, 9116–9121,
https://doi.org/10.1073/pnas.1808647115, 2018.
Steponaitis, E., Andrews, A., McGee, D., Quade, J., Hsieh, Y. T., Broecker, W. S., Shuman, B. N., Burns, S. J., and Cheng, H.: Mid-Holocene drying of
the US Great Basin recorded in Nevada speleothems, Quaternary Sci.
Rev., 127, 174–185, https://doi.org/10.1016/j.quascirev.2015.04.011,
2015.
Strikis, N. M., Chiessi, C. M., Cruz, F. W., Vuille, M., Cheng, H., Barreto, E. A. D., Mollenhauer, G., Kasten, S., Karmann, I., Edwards, R. L., Bernal, J. P., and Sales, H. D.: Timing and structure of Mega-SACZ events during
Heinrich Stadial 1, Geophys. Res. Lett., 42, 5477–5484,
https://doi.org/10.1002/2015gl064048, 2015.
Stríkis, N. M., Cruz, F. W., Barreto, E. A. S., Naughton, F., Vuille, M., Cheng, H., Voelker, A. H. L., Zhang, H., Karmann, I., Edwards, R. L.,
Auler, A. S., Santos, R. V., and Sales, H. R.: South American monsoon
response to iceberg discharge in the North Atlantic, P.
Natl. Acad. Sci. USA, 115,
3788–3793, https://doi.org/10.1073/pnas.1717784115, 2018.
Talma, A. S. and Vogel, J. C.: Late Quaternary Paleotemperatures Derived
from a Speleothem from Cango Caves, Cape Province, South Africa, Quaternary
Res., 37, 203–213, https://doi.org/10.1016/0033-5894(92)90082-t,
1992.
Tan, L., An, Z., Huh, C.-A., Cai, Y., Shen, C.-C., Shiau, L.-J., Yan, L.,
Cheng, H., and Edwards, R. L.: Cyclic precipitation variation on the western
Loess Plateau of China during the past four centuries, Sci. Rep.,
4, 6381–6381, https://doi.org/10.1038/srep06381, 2015.
Tan, L., Cai, Y., Cheng, H., Edwards, L. R., Gao, Y., Xu, H., Zhang, H., and
An, Z.: Centennial- to decadal-scale monsoon precipitation variations in the
upper Hanjiang River region, China over the past 6650 years, Earth
Planet. Sc. Lett., 482, 580–590,
https://doi.org/10.1016/j.epsl.2017.11.044, 2018a.
Tan, L., Cai, Y., Cheng, H., Edwards, L. R., Lan, J., Zhang, H., Li, D., Ma, L., Zhao, P., and Gao, Y.: High resolution monsoon precipitation changes on
southeastern Tibetan Plateau over the past 2300 years, Quaternary Sci.
Rev., 195, 122–132, https://doi.org/10.1016/J.QUASCIREV.2018.07.021,
2018b.
Tzedakis, P. C., Drysdale, R. N., Margari, V., Skinner, L. C., Menviel, L.,
Rhodes, R. H., Taschetto, A. S., Hodell, D. A., Crowhurst, S. J., Hellstrom, J. C., Fallick, A. E., Grimalt, J. O., McManus, J. F., Martrat, B.,
Mokeddem, Z., Parrenin, F., Regattieri, E., Roe, K., and Zanchetta, G.:
Enhanced climate instability in the North Atlantic and southern Europe
during the Last Interglacial, Nat. Commun., 9, 4235–4235,
https://doi.org/10.1038/s41467-018-06683-3, 2018.
van Breukelen, M. R., Vonhof, H. B., Hellstrom, J. C., Wester, W. C. G., and
Kroon, D.: Fossil dripwater in stalagmites reveals Holocene temperature and
rainfall variation in Amazonia, Earth Planet. Sc. Lett., 275,
54–60, https://doi.org/10.1016/J.EPSL.2008.07.060, 2008.
Van Rampelbergh, M., Fleitmann, D., Verheyden, S., Cheng, H., Edwards, L.,
De Geest, P., De Vleeschouwer, D., Burns, S. J., Matter, A., Claeys, P., and
Keppens, E.: Mid- to late Holocene Indian Ocean Monsoon variability recorded
in four speleothems from Socotra Island, Yemen, Quaternary Sci. Rev.,
65, 129–142, https://doi.org/10.1016/j.quascirev.2013.01.016, 2013.
Verheyden, S., Keppens, E., Fairchild, I. J., McDermott, F., and Weis, D.:
Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem:
implications for paleoclimate reconstructions, Chem. Geol., 169,
131–144, https://doi.org/10.1016/s0009-2541(00)00299-0, 2000.
Verheyden, S., Keppens, E., Quinif, Y., Cheng, H. J., and Edwards, L. R.:
Late-glacial and Holocene climate reconstruction as inferred from a
stalagmite-Grotte du Père Noël, Han-sur-Lesse, Belgium, Geol.
Belg., 17, 83–89, available at:
https://popups.uliege.be:443/1374-8505/index.php?id=4412 (last access: 31 January 2020),
2014.
Wang, J. K., Johnson, K. R., Borsato, A., Amaya, D. J., Griffiths, M. L.,
Henderson, G. M., Frisia, S., and Mason, A.: Hydroclimatic variability in
Southeast Asia over the past two millennia, Earth Planet. Sc.
Lett., 525, 115737–115737, https://doi.org/10.1016/j.epsl.2019.115737,
2019.
Wang, Y. J., Cheng, H., Edwards, R. L., Kong, X. G., Shao, X. H., Chen, S. T., Wu, J. Y., Jiang, X. Y., Wang, X. F., and An, Z. S.: Millennial- and
orbital-scale changes in the East Asian monsoon over the past 224,000 years,
Nature, 451, 1090–1093, https://doi.org/10.1038/nature06692, 2008.
Ward, B. M., Wong, C. I., Novello, V. F., McGee, D., Santos, R. V., Silva, L. C. R., Cruz, F. W., Wang, X., Edwards, R. L., and Cheng, H.:
Reconstruction of Holocene coupling between the South American Monsoon
System and local moisture variability from speleothem δ18O and
87Sr∕86Sr records, Quaternary Sci. Rev., 210, 51–63,
https://doi.org/10.1016/J.QUASCIREV.2019.02.019, 2019.
Warken, S. F., Fohlmeister, J., Schröder-Ritzrau, A., Constantin, S.,
Spötl, C., Gerdes, A., Esper, J., Frank, N., Arps, J., Terente, M.,
Riechelmann, D. F. C., Mangini, A. and Scholz, D.: Reconstruction of late
Holocene autumn/winter precipitation variability in SW Romania from a
high-resolution speleothem trace element record, Earth Planet. Sc. Lett.,
499, 122–133, https://doi.org/10.1016/j.epsl.2018.07.027, 2018.
Warken, S. F., Scholz, D., Spötl, C., Jochum, K. P., Pajón, J. M.,
Bahr, A., and Mangini, A.: Caribbean hydroclimate and vegetation history
across the last glacial period, Quaternary Sci.. Rev., 218, 75–90,
https://doi.org/10.1016/J.QUASCIREV.2019.06.019, 2019.
Webb, M., Dredge, J., Barker, P. A., Muller, W., Jex, C., Desmarchelier, J.,
Hellstrom, J., and Wynn, P. M.: Quaternary climatic instability in
south-east Australia from a multi-proxy speleothem record, J.
Quaternary Sci., 29, 589–596, https://doi.org/10.1002/jqs.2734, 2014.
Weber, M., Scholz, D., Schröder-Ritzrau, A., Deininger, M., Spötl, C., Lugli, F., Mertz-Kraus, R., Jochum, K. P., Fohlmeister, J., Stumpf, C. F., and Riechelmann, D. F. C.: Evidence of warm and humid interstadials in
central Europe during early MIS 3 revealed by a multi-proxy speleothem
record, Quaternary Sci. Rev., 200, 276–286,
https://doi.org/10.1016/J.QUASCIREV.2018.09.045, 2018.
Wendt, K. A., Häuselmann, A. D., Fleitmann, D., Berry, A. E., Wang, X.,
Auler, A. S., Cheng, H., and Edwards, R. L.: Three-phased Heinrich Stadial 4
recorded in NE Brazil stalagmites, Earth Planet. Sc. Lett., 510,
94–102, https://doi.org/10.1016/J.EPSL.2018.12.025, 2019.
Whittaker, T. E.: High-resolution speleothem-based palaeoclimate records
from New Zealand reveal robust teleconnection to North Atlantic during MIS
1–4, unpublished PhD Thesis, The University of Waikato, 2008.
Wilcox, P. S., Dorale, J. A., Baichtal, J. F., Spötl, C., Fowell, S. J.,
Edwards, R. L., and Kovarik, J. L.: Millennial-scale glacial climate
variability in Southeastern Alaska follows Dansgaard-Oeschger cyclicity,
Sci. Rep., 9, 7880–7880,
https://doi.org/10.1038/s41598-019-44231-1, 2019.
Williams, P. W., King, D. N. T., Zhao, J. X., and Collerson, K. D.: Late
pleistocene to holocene composite speleothem O-18 and C-13 chronologies from
south island, new Zealand-did a global younger dryas really exist?, Earth
Planet. Sc. Lett., 230, 301–317,
https://doi.org/10.1016/j.epsl.2004.10.024, 2005.
Williams, P. W., Neil, H. L., and Zhao, J. X.: Age frequency distribution
and revised stable isotope curves for New Zealand speleothems:
palaeoclimatic implications, Int. J. Speleol., 39,
99–112, https://doi.org/10.5038/1827-806x.39.2.5, 2010.
Wu, J. Y., Wang, Y. J., Cheng, H., Kong, X. G., and Liu, D. B.: Stable isotope and trace element investigation of two contemporaneous annually-laminated stalagmites from northeastern China surrounding the “8.2 ka event”, Clim. Past, 8, 1497–1507, https://doi.org/10.5194/cp-8-1497-2012, 2012.
Yadava, M. G., Ramesh, R., and Pant, G. B.: Past monsoon rainfall variations
in peninsular India recorded in a 331-year-old speleothem, Holocene, 14,
517–524, https://doi.org/10.1191/0959683604hl728rp, 2004.
Yin, J. J., Li, H. C., Rao, Z. G., Shen, C. C., Mii, H. S., Pillutla, R. K.,
Hu, H. M., Li, Y. X., and Feng, X. H.: Variations of monsoonal rain and
vegetation during the past millennium in Tiangui Mountain, North China
reflected by stalagmite delta O-18 and delta C-13 records from Zhenzhu Cave,
Quatern. Int., 447, 89–101,
https://doi.org/10.1016/j.quaint.2017.06.039, 2017.
Zhang, H., Cheng, H., Cai, Y., Spötl, C., Kathayat, G., Sinha, A., Edwards, R. L., and Tan, L.: Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records, Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, 2018a.
Zhang, H., Cheng, H., Spötl, C., Cai, Y., Sinha, A., Tan, L., Yi, L.,
Yan, H., Kathayat, G., Ning, Y., Li, X., Zhang, F., Zhao, J., and Edwards, R. L.: A 200-year annually laminated stalagmite record of precipitation
seasonality in southeastern China and its linkages to ENSO and PDO,
Sci. Rep., 8, 12344–12344,
https://doi.org/10.1038/s41598-018-30112-6, 2018b.
Zhang, H., Ait Brahim, Y., Li, H., Zhao, J., Kathayat, G., Tian, Y., Baker, J., Wang, J., Zhang, F., Ning, Y., Edwards, L. R., and Cheng, H.: The Asian
Summer Monsoon: Teleconnections and Forcing Mechanisms – A Review from
Chinese Speleothem δ18O Records, Quaternary, 2, 26,
https://doi.org/10.3390/quat2030026, 2019.
Zhang, H. B., Griffiths, M. L., Huang, J. H., Cai, Y. J., Wang, C. F.,
Zhang, F., Cheng, H., Ning, Y. F., Hu, C. Y., and Xie, S. C.: Antarctic link
with East Asian summer monsoon variability during the Heinrich
Stadial-Bølling interstadial transition, Earth Planet. Sc.
Lett., 453, 243–251, https://doi.org/10.1016/j.epsl.2016.08.008, 2016.
Zhang, H. L., Yu, K. F., Zhao, J. X., Feng, Y. X., Lin, Y. S., Zhou, W., and
Liu, G. H.: East Asian Summer Monsoon variations in the past 12.5 ka:
High-resolution δ18O record from a precisely dated aragonite
stalagmite in central China, J. Asian Earth Sci., 73, 162–175,
https://doi.org/10.1016/j.jseaes.2013.04.015, 2013.
Zhang, P., Cheng, H., Edwards, R. L., Chen, F., Wang, Y., Yang, X., Liu, J.,
Tan, M., Wang, X., Liu, J., An, C., Dai, Z., Zhou, J., Zhang, D., Jia, J.,
Jin, L., and Johnson, K. R.: A Test of Climate, Sun, and Culture
Relationships from an 1810-Year Chinese Cave Record, Science, 322, 940–942,
https://doi.org/10.1126/science.1163965, 2008.
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis)...
Altmetrics
Final-revised paper
Preprint