Articles | Volume 12, issue 3
https://doi.org/10.5194/essd-12-1913-2020
https://doi.org/10.5194/essd-12-1913-2020
Data description paper
 | 
28 Aug 2020
Data description paper |  | 28 Aug 2020

A cultivated planet in 2010 – Part 1: The global synergy cropland map

Miao Lu, Wenbin Wu, Liangzhi You, Linda See, Steffen Fritz, Qiangyi Yu, Yanbing Wei, Di Chen, Peng Yang, and Bing Xue

Related authors

A global reference data set for land cover mapping at 10 m resolution
Myroslava Lesiv, Steffen Fritz, Martina Duerauer, Ivelina Georgieva, Marcel Buchhorn, Luc Bertels, Nandika Tsendbazar, Ruben Van De Kerchove, Daniele Zanaga, Dmitry Schepaschenko, Linda See, Martin Herold, Bruno Smets, Michael Cherlet, and Ian Mccallum
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-468,https://doi.org/10.5194/essd-2025-468, 2025
Preprint under review for ESSD
Short summary
Statistical atlas of European agriculture: gridded data from the agricultural census 2020 and the spatial distribution of CAP contextual indicators
Nicolas Lampach, Jon Olav Skøien, Helena Ramos, Julien Gaffuri, Renate Koeble, Linda See, and Marijn van der Velde
Earth Syst. Sci. Data, 17, 3893–3919, https://doi.org/10.5194/essd-17-3893-2025,https://doi.org/10.5194/essd-17-3893-2025, 2025
Short summary
GFC2020: A Global Map of Forest Land Use for year 2020 to Support the EU Deforestation Regulation
Clément Bourgoin, Astrid Verhegghen, Silvia Carboni, Iban Ameztoy, Lucas Degreve, Steffen Fritz, Martin Herold, Nandika Tsendbazar, Myroslava Lesiv, Fréderic Achard, and René Colditz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-351,https://doi.org/10.5194/essd-2025-351, 2025
Preprint under review for ESSD
Short summary
Long history paddy rice mapping across Northeast China with deep learning and annual result enhancement method
Zihui Zhang, Lang Xia, Fen Zhao, Yue Gu, Jing Yang, Yan Zha, Shangrong Wu, and Peng Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-516,https://doi.org/10.5194/essd-2024-516, 2025
Preprint under review for ESSD
Short summary
Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024,https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary

Cited articles

Bey, A., Diaz, A. S.-P., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., Bastin, J.-F., Moore, R., Federici, S., Rezende, M., Patriarca, C., Turia, R., Gamoga, G., Abe, H., Kaidong, E., and Miceli, G.: Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation, Remote Sensing, 8, 807, https://doi.org/10.3390/rs8100807, 2016. 
Bontemps, S., Defourny, P., Bogaert, E. V., Arino, O., Kalogirou, V., and Perez, J. R.: GLOBCOVER 2009: Products Description and Validation Report, available at: https://core.ac.uk/download/pdf/11773712.pdf (last access: 17 August 2020), 2017. 
Brown, M. E. and Brickley, E. B.: Evaluating the use of remote sensing data in the US Agency for International Development Famine Early Warning Systems Network, J. Appl. Remote Sens., 6, 0635111, https://doi.org/10.1117/1.Jrs.6.063511, 2012. 
Brunsdon, C., Fotheringham, S., and Charlton, M.: Geographically weighted regression – modelling spatial non-stationarity, J. Roy. Stat. Soc., 47, 431–443, https://doi.org/10.1111/1467-9884.00145, 1998. 
Chen, D., Lu, M., Zhou, Q., Xiao, J., Ru, Y., Wei, Y., and Wu, W.: Comparison of Two Synergy Approaches for Hybrid Cropland Mapping, Remote Sensing, 11, 213, https://doi.org/10.3390/rs11030213, 2019. 
Short summary
Global cropland distribution is critical for agricultural monitoring and food security. We propose a new Self-adapting Statistics Allocation Model (SASAM) to develop the global map of cropland distribution. SASAM is based on the fusion of multiple existing cropland maps and multilevel statistics of cropland area, which is independent of training samples. The synergy map has higher accuracy than the input datasets and better consistency with the cropland statistics.
Share
Altmetrics
Final-revised paper
Preprint