Articles | Volume 12, issue 3
https://doi.org/10.5194/essd-12-1913-2020
https://doi.org/10.5194/essd-12-1913-2020
Data description paper
 | 
28 Aug 2020
Data description paper |  | 28 Aug 2020

A cultivated planet in 2010 – Part 1: The global synergy cropland map

Miao Lu, Wenbin Wu, Liangzhi You, Linda See, Steffen Fritz, Qiangyi Yu, Yanbing Wei, Di Chen, Peng Yang, and Bing Xue

Related authors

Statistical Atlas of European Agriculture: Gridded Data from the Agricultural Census 2020 and the Spatial Distribution of CAP Contextual Indicators
Nicolas Lampach, Jon Olav Skoien, Helena Ramos, Julien Gaffuri, Renate Koeble, Linda See, and Marijn Van der Velde
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-59,https://doi.org/10.5194/essd-2025-59, 2025
Preprint under review for ESSD
Short summary
Long history paddy rice mapping across Northeast China with deep learning and annual result enhancement method
Zihui Zhang, Lang Xia, Fen Zhao, Yue Gu, Jing Yang, Yan Zha, Shangrong Wu, and Peng Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-516,https://doi.org/10.5194/essd-2024-516, 2025
Revised manuscript under review for ESSD
Short summary
Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024,https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
WorldCereal: a dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping
Kristof Van Tricht, Jeroen Degerickx, Sven Gilliams, Daniele Zanaga, Marjorie Battude, Alex Grosu, Joost Brombacher, Myroslava Lesiv, Juan Carlos Laso Bayas, Santosh Karanam, Steffen Fritz, Inbal Becker-Reshef, Belén Franch, Bertran Mollà-Bononad, Hendrik Boogaard, Arun Kumar Pratihast, Benjamin Koetz, and Zoltan Szantoi
Earth Syst. Sci. Data, 15, 5491–5515, https://doi.org/10.5194/essd-15-5491-2023,https://doi.org/10.5194/essd-15-5491-2023, 2023
Short summary
Estimating local agricultural gross domestic product (AgGDP) across the world
Yating Ru, Brian Blankespoor, Ulrike Wood-Sichra, Timothy S. Thomas, Liangzhi You, and Erwin Kalvelagen
Earth Syst. Sci. Data, 15, 1357–1387, https://doi.org/10.5194/essd-15-1357-2023,https://doi.org/10.5194/essd-15-1357-2023, 2023
Short summary

Related subject area

Land Cover and Land Use
The Earth Topography 2022 (ETOPO 2022) global DEM dataset
Michael MacFerrin, Christopher Amante, Kelly Carignan, Matthew Love, and Elliot Lim
Earth Syst. Sci. Data, 17, 1835–1849, https://doi.org/10.5194/essd-17-1835-2025,https://doi.org/10.5194/essd-17-1835-2025, 2025
Short summary
The 20 m Africa rice distribution map of 2023
Jingling Jiang, Hong Zhang, Ji Ge, Lijun Zuo, Lu Xu, Mingyang Song, Yinhaibin Ding, Yazhe Xie, and Wenjiang Huang
Earth Syst. Sci. Data, 17, 1781–1805, https://doi.org/10.5194/essd-17-1781-2025,https://doi.org/10.5194/essd-17-1781-2025, 2025
Short summary
Revised and updated geospatial monitoring of 21st century forest carbon fluxes
David A. Gibbs, Melissa Rose, Giacomo Grassi, Joana Melo, Simone Rossi, Viola Heinrich, and Nancy L. Harris
Earth Syst. Sci. Data, 17, 1217–1243, https://doi.org/10.5194/essd-17-1217-2025,https://doi.org/10.5194/essd-17-1217-2025, 2025
Short summary
ChatEarthNet: a global-scale image–text dataset empowering vision–language geo-foundation models
Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu
Earth Syst. Sci. Data, 17, 1245–1263, https://doi.org/10.5194/essd-17-1245-2025,https://doi.org/10.5194/essd-17-1245-2025, 2025
Short summary
Aboveground biomass dataset from SMOS L-band vegetation optical depth and reference maps
Simon Boitard, Arnaud Mialon, Stéphane Mermoz, Nemesio J. Rodríguez-Fernández, Philippe Richaume, Julio César Salazar-Neira, Stéphane Tarot, and Yann H. Kerr
Earth Syst. Sci. Data, 17, 1101–1119, https://doi.org/10.5194/essd-17-1101-2025,https://doi.org/10.5194/essd-17-1101-2025, 2025
Short summary

Cited articles

Bey, A., Diaz, A. S.-P., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., Bastin, J.-F., Moore, R., Federici, S., Rezende, M., Patriarca, C., Turia, R., Gamoga, G., Abe, H., Kaidong, E., and Miceli, G.: Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation, Remote Sensing, 8, 807, https://doi.org/10.3390/rs8100807, 2016. 
Bontemps, S., Defourny, P., Bogaert, E. V., Arino, O., Kalogirou, V., and Perez, J. R.: GLOBCOVER 2009: Products Description and Validation Report, available at: https://core.ac.uk/download/pdf/11773712.pdf (last access: 17 August 2020), 2017. 
Brown, M. E. and Brickley, E. B.: Evaluating the use of remote sensing data in the US Agency for International Development Famine Early Warning Systems Network, J. Appl. Remote Sens., 6, 0635111, https://doi.org/10.1117/1.Jrs.6.063511, 2012. 
Brunsdon, C., Fotheringham, S., and Charlton, M.: Geographically weighted regression – modelling spatial non-stationarity, J. Roy. Stat. Soc., 47, 431–443, https://doi.org/10.1111/1467-9884.00145, 1998. 
Chen, D., Lu, M., Zhou, Q., Xiao, J., Ru, Y., Wei, Y., and Wu, W.: Comparison of Two Synergy Approaches for Hybrid Cropland Mapping, Remote Sensing, 11, 213, https://doi.org/10.3390/rs11030213, 2019. 
Short summary
Global cropland distribution is critical for agricultural monitoring and food security. We propose a new Self-adapting Statistics Allocation Model (SASAM) to develop the global map of cropland distribution. SASAM is based on the fusion of multiple existing cropland maps and multilevel statistics of cropland area, which is independent of training samples. The synergy map has higher accuracy than the input datasets and better consistency with the cropland statistics.
Share
Altmetrics
Final-revised paper
Preprint