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Abstract. Information on global cropland distribution and agricultural production is critical for the world’s
agricultural monitoring and food security. We present datasets of cropland extent and agricultural production
in a two-paper series of a cultivated planet in 2010. In the first part, we propose a new Self-adapting Statistics
Allocation Model (SASAM) to develop the global map of cropland distribution. SASAM is based on the fusion
of multiple existing cropland maps and multilevel statistics of the cropland area, which is independent of training
samples. First, cropland area statistics are used to rank the input cropland maps, and then a scoring table is built to
indicate the agreement among the input datasets. Secondly, statistics are allocated adaptively to the pixels with
higher agreement scores until the cumulative cropland area is close to the statistics. The multilevel allocation
results are then integrated to obtain the extent of cropland. We applied SASAM to produce a global cropland
synergy map with a 500 m spatial resolution for circa 2010. The accuracy assessments show that the synergy
map has higher accuracy than the input datasets and better consistency with the cropland statistics. The synergy
cropland map is available via an open-data repository (https://doi.org/10.7910/DVN/ZWSFAA; Lu et al., 2020).
This new cropland map has been used as an essential input to the Spatial Production Allocation Model (SPAM)
for producing the global dataset of agricultural production for circa 2010, which is described in the second part
of the two-paper series.

1 Introduction

Agricultural land satisfies global demands for human food,
stock feed, and biofuel, which are increasing at an unprece-
dented rate with the continuing population and consumption
growth (Gibbs et al., 2010; Godfray et al., 2010). Feeding
the growing population and meeting these rising consump-

tion demands remain a great challenge (Kastner et al., 2012;
Zhang et al., 2016; Gao and Bryan., 2017). Accurate spa-
tial information about cropland is vital baseline informa-
tion for agricultural monitoring and food security (Eitelberg
et al., 2015; Yu et al., 2019). Satellite-derived land cover
datasets have been widely used for this purpose. For exam-
ple, the Famine Early Warning Systems Network funded by
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the United States Agency for International Development has
been using cropland distribution and other remote-sensing
data to provide timely and dependable early-warning and
vulnerability information related to emerging and evolving
food security issues (Brown and Brickley, 2012). However,
there is significant disagreement and high uncertainty among
the various land cover datasets (Fritz et al., 2013; Tsendbazar
et al., 2015). The uncertainty and inconsistency are particu-
larly high for cultivated lands (cropland and managed pas-
ture) compared to other natural vegetation types, such as tree
cover (Congalton et al., 2014). One of the challenges when
working with existing cropland datasets is the lack of con-
sistent and reliable data on the location and areal extent of
cropland.

Uncertainties and inconsistencies in cropland information
are ubiquitous because of the differences in application pur-
poses, cropland definitions, and classification methods (Fritz
et al., 2013; Verburg et al., 2011; Yang et al., 2017). Glob-
ally, spatial agreement in the four global land cover datasets,
i.e., IGBP DISCover, the University of Maryland land cover
product, the MODIS land cover product, and Global Land
Cover 2000 (GLC2000), is about 71.5 % (Herold et al.,
2008). At the regional scales, Pérez-Hoyos et al. (2017)
compared nine cropland products, including FAO-GLCshare
(Food and Agriculture Organization of the United Nations’
Global Land Cover Network), GLC2000, GlobCover, Glo-
beland30, and so on, and found that the areas of full agree-
ment in Africa, the Americas, and Asia were only 2.15 %,
1.39 %, and 11.90 %, respectively. Cropland uncertainty is
generally higher than that of other land cover classes, espe-
cially in transition zones and areas with high landscape frag-
mentation. For example, disagreements in the Sahelian belt
of Africa are prominent because crops are more scattered and
often coexist with grassland (Pérez-Hoyos et al., 2017). In
China, the uncertainties and inconsistencies in northwestern
and southwestern regions, characterized by high elevations
and fragmented landscapes, are higher than those in northern
and northeastern areas with more homogeneous landscapes
(Lu et al., 2016).

Cropland areas estimated from satellite-based datasets are
often inconsistent with statistics, which limits their applica-
tions in agricultural economics and food policy. First, the ex-
isting datasets usually focus on the land cover rather than
land use because of the direct nature of remote-sensing ob-
servation (Kerr and Cihlar, 2003; Zeng et al., 2018). Crop-
land, as an integration of land cover and land use, is not
only defined as the crops covering the land surface but also
is influenced by human activities for food production. How-
ever, satellite-based cropland maps may fail to detect crop-
land features of land use (Zeng et al., 2018). For exam-
ple, according to estimates using GlobeLand30, the crop-
land area in Europe increased by 22 090 km2 from 2000 to
2010 (Xiang et al., 2018). Yet, the official statistics from
the Food and Agriculture Organization (FAO) indicate a de-
crease in cropland in Europe over the same period. One of the

main reasons is agricultural land abandonment, which can-
not be easily captured by remote sensing. Secondly, incon-
sistent definitions of cropland lead to discrepancies between
satellite-based estimates and official statistics. For exam-
ple, GlobCover 2005/2009, Climate Change Initiative Land
Cover (CCI-LC), and MODIS Collection 5 (MODIS C5) in-
clude mosaic classes that mix cropland with other land cover
types. Therefore, these products often under- or overestimate
cropland areas, depending on how these mosaic classes are
counted (Zeng et al., 2018). Agricultural statistics are usually
collected by interviews and sample surveys and then com-
puted by aggregating them with administrative data (Gallego
et al., 2010). These statistics provide highly suitable land use
information that is not collected by remote sensing but often
lack spatial details because they are aggregated to the level
of administrative units.

Data synergy approaches can take advantage of comple-
mentarities between land cover datasets and statistics to solve
the above issues. These approaches can integrate all avail-
able satellite-based maps and statistics into a single product,
giving improved accuracy. Synergy approaches are broadly
categorized into two types: agreement-scoring methods and
regression methods (Lu et al., 2017). The former assumes
that the statistical data provide the “true” areas of agricul-
tural land and spatially disaggregate statistics to pixels ac-
cording to the agreements of satellite-based datasets. For ex-
ample, Ramankutty et al. (2008) used this method to develop
global cropland and pasture extent maps at 1 km spatial res-
olution for circa 2000. Fritz et al. (2011, 2015) ranked the
input datasets and assigned different weights based on their
assessed accuracies to produce the International Institute for
Applied Systems Analysis (IIASA)–International Food Pol-
icy Research Institute (IFPRI) cropland map for 2005. Re-
gression methods, such as logistic regression and geograph-
ically weighted regression (GWR), establish a regression re-
lationship of cropland percentage between training sample
points and input datasets and then predict cropland percent-
age in regions without samples (Brunsdon et al., 1998; Chen
et al., 2019). GWR allows regression parameters to vary
over space and has a better fit with the observational data
(Chen et al., 2019). GWR has been used to create global land
cover maps and forest maps by using crowdsourced valida-
tion data from Geo-Wiki (See et al., 2015; Schepaschenko et
al., 2015). However, the above methods generally need suf-
ficient in situ samples for training. Agreement-scoring meth-
ods require training samples to assess the qualities of input
datasets, and regression models need training samples to esti-
mate the model parameters at each location. Although crowd-
sourcing platforms are available for the sample collection,
e.g., Geo-Wiki (http://www.geo-wiki.org, last access: 17 Au-
gust 2020), LACO-Wiki (https://laco-wiki.net, last access:
17 August 2020), and Collect Earth (http://www.openforis.
org/tools/collect-earth.html, last access: 17 August 2020),
the quality and consistency of samples cannot be assured
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because the domain knowledge of the contributors is varied
(Bey et al., 2016; Fritz et al., 2009; See et al., 2015).

The objective of this research is to address the issue of
training samples for global cropland mapping and to improve
the consistency with statistics and the accuracy of crop-
land maps. We propose a Self-adapting Statistics Allocation
Model (SASAM) by fusing multiple statistics and satellite-
based cropland datasets to produce a global synergy cropland
map. This method is based on agreement among the input
cropland datasets, and it is independent of training samples.
Cropland area statistics are used to rank the input cropland
maps and build a scoring table to indicate the agreement of
the input datasets. Statistics at the national as well as the first
and second subnational levels are allocated to the pixels with
higher cropland scores, and then the results are integrated to
obtain the cropland extent. Using this method, we have pro-
duced a global cropland synergy map for circa 2010 with a
spatial resolution of 500 m. The remainder of this paper is
organized as follows. We present the input data sources in
Sect. 2 and describe the SASAM in detail in Sect. 3. The
results and analysis are presented in Sect. 4, and data acces-
sibility is described in Sect. 5, followed by the discussion and
conclusion in Sect. 6.

2 Data sources

The data sources used in this study include global and re-
gional satellite-based cropland products and multilevel statis-
tics for cropland areas.

2.1 Satellite-based maps and data preprocessing

At the global scale, five cropland products for around
2010 were selected from GlobeLand30, CCI-LC, GlobCover
2009, MODIS C5, and the Unified Cropland Layer (Table 1).
GlobeLand30 was produced from Landsat images and China
HJ images by using the pixel–object–pixel (POK) classifi-
cation method (Chen et al., 2015). CCI-LC and GlobCover
2009 were generated by the European Space Agency (ESA)
with similar classification strategies of unsupervised clus-
tering and supervised learning (Bontemps et al., 2017; De-
fourny et al., 2017). MODIS C5 was generated from MODIS
time series data using the decision tree method (Friedl et al.,
2010). The Unified Cropland Layer is a hybrid map based on
a combination of the fittest products according to four dimen-
sions: timeliness, legend, resolution, and confidence (Wald-
ner et al., 2015).

At the regional scale, we selected publicly available prod-
ucts with high spatial resolution and quality in Europe and
North America (Table 1). CORINE Land Cover (CLC) 2012
covers 39 European countries, with a total area of over
5.8 million km2. CLC2012 is an update of CLC2006, de-
veloped using computer-assisted photointerpretation of high-
resolution satellite images from 2011 and 2012 (Hościło and
Tomaszewska, 2015). The North American Land Change

Monitoring System, cooperating with Natural Resources
Canada, the United States Geological Survey, and three Mex-
ican organizations, produced the 2010 North American Land
Cover 30 m dataset for Canada, the USA, and Mexico. Each
country developed its own classification method to identify
land cover classes and then provided an input layer to pro-
duce a continental land cover map across North America.

In addition, we collected land cover maps in two coun-
tries, i.e., Australia and China, as supplements. The Land
Use of Australia 2010–2011 dataset was produced by the
Australian Bureau of Agricultural and Resource Economics
and Sciences operated under the Australian Government De-
partment of Agriculture and Water Resources, and the agri-
cultural land use data are based on the Australian Bureau of
Statistics’ 2010–2011 agricultural census data (Smart, 2016).
The National Land Use/Cover Database of China (NLUD-C)
2010 was updated from NLUD-C 2008 based on images with
approximately 30 m spatial resolution using visual interpre-
tation, field surveys, and large amounts of auxiliary informa-
tion (Zhang et al., 2014).

Preprocessing of these satellite-based maps was essen-
tial because of their differences in coordinate systems, spa-
tial resolution, and classification schemes. First, we masked
nonagricultural areas in the satellite datasets. Then, the
geographic latitude–longitude coordinate system with the
WGS84 datum was chosen as the base projection for coor-
dinate transformation. Because the spatial resolutions of re-
gional and global products vary from 30 to 500 m, a standard
geographical grid with 0.0041667◦ (i.e., about 500 m) res-
olution was employed to aggregate the input products with
cropland percentages.

The critical part of the data preprocessing is the cropland
definition harmonization. We used FAO’s definition of crop-
land as “arable lands and permanent crops”. Arable land is
the land under temporary agricultural crops (multiple crop-
ping areas are counted only once), temporary meadows for
mowing or pasture, land under market and kitchen gardens,
and land temporarily fallow (less than 5 years). Permanent
crops are the land cultivated with long-term crops which do
not have to be replanted for several years (such as cocoa
and coffee), land under trees and shrubs producing flowers
(such as roses and jasmine), and nurseries (except those for
forest trees, which should be classified as “forest”). Aban-
doned land resulting from shifting cultivation and permanent
meadows and pastures are excluded from cropland in our
study. The cropland-related classes of each dataset were ex-
tracted and given percentage weights according to their crop-
land definition: pure cropland classes were assigned higher
percentage weights, and mosaic cropland classes were as-
signed lower weights (Lu et al., 2017). Through this process,
we produced cropland percentage maps derived from each
satellite-based product at 500 m resolution with the same co-
ordinate system.
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Table 1. Input satellite-based products.

Scale Products Time Resolution Producer & source (last access: 17 August 2020)

Global GlobeLand30 2010 30 m National Geomatics Center of China
http://www.globeland30.org

CCI-LC 2010 300 m European Space Agency
http://maps.elie.ucl.ac.be/CCI/viewer/download.php

GlobCover 2009 2009 300 m European Space Agency
http://due.esrin.esa.int/page_globcover.php

MODIS Collection 5 2010 500 m Boston University
https://lpdaac.usgs.gov/products/mcd12q1v006/

Unified Cropland Layer 2010 250 m Université catholique de Louvain
https://figshare.com/articles/ucl_2014_v2_0_tif/2066742

Regional CORINE Land Cover
(39 European countries)

2012 100 m European Space Agency
https://land.copernicus.eu/pan-european

Land Cover of North America
(Canada, USA, Mexico)

2010 30 m North American Land Change Monitoring System
https://www.mrlc.gov/data/north-american-land-change-
monitoring-system

Australia The Land Use of Australia 2010 50 m Australian Government Department of Agriculture
http://www.agriculture.gov.au/abares/aclump

China National Land Use/Cover
Database

2010 30 m Chinese Academy of Sciences
http://www.resdc.cn/data.aspx?DATAID=99

2.2 Statistics of the cropland area

We collected statistics of the cropland area at the national as
well as the first and second subnational levels for circa 2010.
The national statistics were acquired from FAO’s FAOSTAT
Land Use database (http://www.fao.org/faostat/en/#data/RL,
last access: 17 August 2020), which covers about 200 coun-
tries and territories of the world. The statistics are widely
useful for market management, production forecasts, and
policy making in the agricultural and food sectors. Follow-
ing our adopted cropland definition, the item “arable lands
and permanent crops” was selected from the statistics. Be-
cause the satellite-based products were mainly from 2009 to
2011, the average values from 2009 to 2011 were calculated
to provide more stable estimates for the synergy cropland in
2010. The cropland area statistics available at the national
level are shown in Fig. 1a, which covers almost all countries
in the world.

While statistics of the national cropland area are avail-
able from FAO, subnational statistics are not provided by
a single multinational institution, and they are rarely avail-
able at the global scale. Nevertheless, for several decades,
IFPRI and its partners have collected the subnational agri-
cultural statistics on cropland and individual crops in many
countries throughout the world, paying particular attention to
developing countries in Africa, Latin America, and Asia. If
a cropland value exists for a subnational unit, this value is
taken, and the harvested areas of individual crops within the
unit are ignored. Otherwise, the cropland area is calculated
by adding the harvested areas of all crops growing within

the administrative unit divided by the cropping intensities of
the individual crops. The cropping intensity varies by rainfed
or irrigated system and by country. The intensity data were
collected from various sources, such as seasonable harvested
area, expert judgments, and household surveys (Yu et al.,
2020). Because of possible missing areas or missing crops,
the cropland value at the subnational level is a minimum es-
timate of the actual cropland of that unit.

There are two levels of subnational statistics. The first sub-
national level indicates a lower unit than the national admin-
istrative division, such as provinces in China or Canada and
states in the United States or India. We collected the statistics
for 64.91 % of the first subnational units in most countries,
not in a few countries in Africa (Fig. 1b). The second sub-
national level indicates smaller administrative units such as
prefecture-level cities of China, counties of the United States,
and departments of France. Statistics for 34.76 % of the sec-
ond subnational units were obtained (Fig. 1c).

3 Methodology

The principle of SASAM is to automatically allocate the
cropland area taken from the statistics to the pixels with
higher cropland likelihood. The cropland distribution is
adjusted adaptively until the cumulative cropland area is
close to the statistics. The model has three main steps, i.e.,
agreement-ranking establishment, self-adapting statistics al-
location, and integration of multilevel allocation results.
First, the national statistics are used to assess the accuracies
and set weights for the satellite-based cropland input maps,
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Figure 1. The statistics of cropland area at the national (a), first subnational (b), and second subnational (c) levels.

and then a scoring table is built based on the weights of the
input maps to generate agreement-ranking results. The na-
tional and subnational statistics are self-adaptively allocated
to the pixels according to their agreement ranking. Lastly, the
allocated results are integrated to generate a synergy crop-
land map.

3.1 Agreement-ranking establishment

Generally, the higher agreement among input datasets indi-
cates a higher likelihood of cropland. The assessed accura-
cies of the input datasets also affect synergetic confidence

(Fritz et al., 2015; Lu et al., 2017). We use national statistics
to assess the accuracies of satellite-based datasets and then
adaptively establish agreement-ranking scores according to
the accuracies and agreements of the input datasets.

For each input dataset, the cropland area in each country
is estimated as

ai,j =

∑N

n=1
(mn×pn), (1)

where ai,j is the cropland area of country j estimated by in-
put dataset i, n is the pixel labeled as cropland, and Pn is
the percentage of cropland in pixel n after data processing.
Because we use a geographic latitude–longitude coordinate
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system, the pixel area mn is calculated by equal-area projec-
tion (Lu et al., 2017). Then the absolute difference Diffi,j
between the cropland area estimated from input dataset i and
the statistics is calculated to assess the accuracy of the input
map, as shown in Eq. (2):

Diffi,j = abs
(

aFAO,j − ai,j

aFAO,j

)
, (2)

where aFAO,j is the cropland area statistics of country j de-
rived from FAO. A lower value of Diffi,j indicates better
agreement with the official statistics and a higher ranking for
the input map.

An agreement-ranking score is established using a table
reflecting the agreement and rankings of the input datasets.
If there are five input datasets, the datasets from the high-
est to the lowest ranking are labeled A, B, C, D, and E (Ta-
ble 2). The agreement levels ranging from 0 to 5 indicate the
number of input datasets identifying a pixel as cropland. Be-
cause there are 32 permutations for the five input datasets
(25
= 32), the scores are from 0 to 31. A higher score value

indicates a higher likelihood of cropland. The agreement
level of 5 means that all the input datasets identify the pixel
as cropland, and the pixel has the highest score of 31, while
the agreement level 0 indicates that all the datasets classify
the pixel as noncropland, and the pixel has the lowest score
of 0. For other agreement levels, there are various permuta-
tions. For example, when the agreement level is 4, there are
five combinations for the datasets, with score values set from
26 to 30. Because A, B, C, and D have higher rankings, if
all four indicate cropland, then the score value is set as 30,
which is higher than other combinations. According to these
rules, we obtained values for the full scoring table with five
input datasets (Table 2). Similarly, we utilized this method
to obtain the scoring table ranging from 0 to 63 with six in-
put datasets. The scoring table is then used to transform the
input cropland layers into an agreement-ranking map. Mean-
while, the average cropland percentages of the input datasets
are calculated with a spatial resolution of 500 m.

3.2 Self-adapting statistics allocation

The self-adapting statistics allocation is to allocate cropland
area statistics to the pixels with higher ranking scores au-
tomatically, and this process is adjusted adaptively until the
cumulative cropland area is close to the statistics. Figure 2
shows the flowchart of statistics allocation with five input
datasets as an example. First, the pixels with the highest score
of 31 are selected, and their total area is calculated by Eq. (3):

A31 =
∑

(m31,n×p31,n), (3)

where m31,n and p31,n are the pixel area and average per-
centage of pixel n labeled as the score 31. Then the area is
compared with the statistics. If the area is much smaller than
the statistics, the cropland pixels with the next-highest agree-
ment ranking, such as 30, are chosen, and the total area is

Table 2. The ranking scoring table for five input datasets.

Agreement level Score A B C D E
of input datasets

5 31 1 1 1 1 1

4 30 1 1 1 1 0
29 1 1 1 0 1
28 1 1 0 1 1
27 1 0 1 1 1
26 0 1 1 1 1

3 25 1 1 1 0 0
24 1 1 0 1 0
23 1 0 1 1 0
22 0 1 1 1 0
21 1 1 0 0 1
20 1 0 1 0 1
19 0 1 1 0 1
18 1 0 0 1 1
17 0 1 0 1 1
16 0 0 1 1 1

2 15 1 1 0 0 0
14 1 0 1 0 0
13 1 0 0 1 0
12 1 0 0 0 1
11 0 1 1 0 0
10 0 1 0 1 0

9 0 1 0 0 1
8 0 0 1 1 0
7 0 0 1 0 1
6 0 0 0 1 1

1 5 1 0 0 0 0
4 0 1 0 0 0
3 0 0 1 0 0
2 0 0 0 1 0
1 0 0 0 0 1

0 0 0 0 0 0 0

then calculated as in Eq. (3). The cumulative cropland area
with a score of 30 and above is compared with the statis-
tics. If the cumulative area is very close to the statistics,
the pixels labeled with scores of 31 and 30 are selected as
cropland pixels. Otherwise, pixels with lower scores are se-
lected and added until the cumulative area reaches the statis-
tics. In Fig. 2, when the cumulative area with a score of 29
is the closest to the statistics, the pixels with score values
from 29 to 31 are selected as the cropland extent. We obtain
the cropland percentages and scores of the cropland pixels.
The values of the scores indicate the agreements of the input
cropland datasets, which reflects the confidence level of the
cropland pixel. The scores range from 0 to 31 for five input
datasets and from 0 to 63 for six input datasets. Therefore,
min–max normalization is used to normalize the scores to
the same scale. The normalization results are the confidence
levels with values from 0 % to 100 %.
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Figure 2. The flowchart of cropland area statistics allocation with five input products.

Allocation results include the score values and the aver-
age percentage maps comprising the selected cropland pix-
els. Using the above method, we allocated the national as
well as the first and second subnational statistics to the pix-
els, respectively, and obtained multilevel allocation results.

3.3 Integration of multilevel allocation results

The qualities of the cropland area statistics are varied. At the
national level, the FAO statistical system includes a qual-
ity framework and a mechanism to ensure the compliance
of FAO statistics to this framework. Therefore, it is reason-
able to consider that national statistics have higher reliability.
Subnational statistics are estimated by the harvested crop ar-
eas and the cropping intensity factors when the official statis-
tics are unavailable. In some subnational units, especially at
the second subnational level, only a few harvested areas of
some crops are available, so the estimated cropland areas
may be much lower than the actual cropland amount (You
et al., 2014; Fritz et al., 2015). Meanwhile, some cropland
area statistics are absent in subnational units. We collected
the statistics for 64.91 % of the first subnational units and
34.76 % of the second subnational units (Fig. 1). Therefore, it
is reasonable to consider that the national statistics are more
reliable than the subnational ones, and the first subnational
statistics are more reliable than the second ones. The integra-
tion principle is that the overall cropland area at the national
level should be consistent with the statistics, and the cropland

area of the lower level should be equal to or greater than the
statistics.

We take San Luis Province in Argentina as an example to
describe the integration process. The first and second subna-
tional allocation results with cropland are shown in Fig. 3a
and b. This province consists of nine departments, labeled
A–I in Fig. 3b. The cropland areas of the second subnational
allocation results in departments C, D, E, F, and G are 0 be-
cause of the absence of the second subnational statistics. The
cropland areas of the first subnational allocation results in
each department are calculated (Table 3). The integration of
the first and second subnational allocation results uses the
following rules:

1. For the departments which have statistics, when the
cropland area in the second subnational unit is higher
than the area at the first subnational level, the second
subnational allocation results are used for this depart-
ment. Otherwise, the first subnational allocation results
are used. As shown in Table 3, the total cropland area
of the second subnational units (692.09 km2) in de-
partment I is higher than that for the first subnational
area (291.46 km2). The result for the second subnational
units is selected as the allocation result for department
I. For departments A, B, and H, the results of the two
levels are the same, and the allocation is unchanged
(Fig. 3c, Table 3).
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2. Next, the departments with no statistics are merged.
The cropland area differences between the first and sec-
ond subnational allocation results are calculated and
allocated to the merged departments. For example, in
Fig. 3, the total cropland areas of the first subna-
tional allocation results and the second subnational re-
sults are 4909.10 and 4144.12 km2, and their difference,
764.98 km2, is allocated to the merged departments of
C, D, E, F, and G (Fig. 3c, Table 3).

3. The self-adapting statistics allocation in Sect. 3.2 is re-
run for the merged departments of C, D, E, F, and G with
a cropland area of 764.98 km2. Based on the agreement-
ranking scores established in Sect. 3.1, the cropland area
of 764.98 km2 is allocated to the pixels with higher-
ranking scores automatically until the cumulative crop-
land area is close to the 764.98 km2. Then, we obtained
the allocation results of the merged region, as shown in
Fig. 3d.

According to the integration rules above, we first integrated
the first and second subnational results to obtain subnational
cropland results and then combined the subnational and na-
tional allocation results to create the final synergy cropland
map.

3.4 Validation of the global cropland map and
comparison with the IIASA–IFPRI method

The accuracies of the spatial location and cropland area for
the global cropland map were assessed. The percentage crop-
land map was first reclassified into a binary map of cropland–
noncropland, where a cropland percentage greater than zero
was assigned to the cropland category. The spatial accura-
cies were assessed by using an error matrix based on training
samples. These samples originated from the Tsinghua Uni-
versity in their development of the FROM-GLC land cover
product (Gong et al., 2013). The sample types were identi-
fied manually by hundreds of students, researchers, and ex-
perts using Google Earth images in or around 2010. We se-
lected the samples between 70◦ N and 60◦ S, where almost
all the cropland in the world lies. The test data consisted
of 5743 cropland samples and 28 076 noncropland samples.
The cropland areas of cropland maps were calculated in each
country and then compared with FAO statistics using the cor-
relation coefficient (R) and root mean square error (RMSE)
to assess the consistency.

We compared the SASAM with the IIASA–IFPRI method
(Fritz et al., 2015) in China. Unlike SASAM, the IIASA–
IFPRI method needs training samples to assess the accura-
cies of input datasets for building the weighted scoring table
(Fritz et al., 2015). Training samples from China (1387 crop-
land and 1430 noncropland) were employed to assess the ac-
curacies of the input datasets. Then, the spatial location and
the cropland area accuracies for the results of SASAM and
the IIASA–IFPRI method were calculated and compared.

4 Results and analysis

4.1 Results of global synergy cropland

Agreement ranking was used to generate scores and aver-
age cropland percentages for the satellite-based input data.
The ranges of scores were determined by the number of in-
put datasets. Regional cropland maps in Europe, the USA,
Canada, Mexico, Australia, China, and South Africa were
available, so agreement-ranking scores ranged from 1 to 63.
The agreement-ranking score map with values from 1 to 63
is shown in Fig. 4a for Europe. In the other regions, e.g.,
Africa (Fig. 4c), the scores ranged from 1 to 31, with the
five global input datasets used for cropland synergy. Mean-
while, average cropland percentages were obtained by taking
the mean percentages of the input datasets. Maps for Europe
and Africa are shown in Fig. 4b and d, respectively. The ar-
eas with higher scores usually have higher average cropland
percentages.

After the agreement rankings were determined, the statis-
tics were allocated to pixels with higher scores, and then the
national as well as the first and second subnational statistics
allocation results were obtained. In Europe, all the national
statistics were collected, and the national synergy results are
shown in Fig. 5a. We obtained the first subnational statistics
for 510 out of the 586 administrative units (87.03 %) and the
second subnational statistics for 951 out of the 3313 admin-
istrative units (28.71 %). Therefore, the cropland extent of
the national level is greater than that of the subnational level,
and the first subnational level has more cropland extent than
the second subnational level (Fig. 5a–c). In Africa, the na-
tional synergy results are shown in Fig. 5d. At the first sub-
national level, 618 of the 796 administrative units have statis-
tics (77.63 %). We did not have the first subnational statis-
tics for the Central African Republic, Congo, Seychelles,
Libya, Equatorial Guinea, Eritrea, Western Sahara, and Cape
Verde. Therefore, in these countries, there are no first subna-
tional synergy results. At the second subnational level, only
13.89 % (770 out of the 5541) of the administrative units have
statistics. About 37 countries, including Nigeria, Sudan, and
Namibia, do not have the second subnational statistics. As a
result, the corresponding areas do not have allocation results
(Fig. 5f).

The allocation results of the national as well as the first
and second subnational levels were integrated using the rules
described in Sect. 3.3. First, the first and second subna-
tional allocation results were combined to obtain the sub-
national allocation results, and then the results were inte-
grated with the national allocation results to generate the fi-
nal synergy cropland map at the global scale (Fig. 6a). The
confidence level map of synergy results was created by nor-
malizing the agreement-ranking scores of the synergy crop-
land pixels (Fig. 6b). The results indicate that India, China,
the USA, Russia, Kazakhstan, and Ukraine have large crop-
land areas. Latin America is becoming an important grain-
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Figure 3. The integration of the first and second subnational allocation results in San Luis Province, Argentina: (a) the first subnational
allocation result, (b) the second subnational allocation result, (c) the combination of the departments with no statistics, and (d) the allocation
results of the departments with no statistics.

Table 3. Cropland areas of each department from the first and second subnational allocation results and their coordination (values in bold)
in San Luis Province of Argentina.

Departments Cropland area of Cropland area of the Coordination of
the first subnational second subnational the two levels

allocation result (km2) allocation result (km2) (km2)

A 93.51 93.51 93.51
B 86.59 86.59 86.59
C 1.87 0 4909.10–4144.12 =764.98
D 45.80 0
E 496.55 0
F 537.24 0
G 84.15 0
H 3271.93 3271.93 3271.93
I 291.46 692.09 692.09

producing area because new agricultural land has been being
established from intact and disturbed forests since the 1980s
(Gibbs et al., 2010). The higher confidence levels are usu-
ally in homogeneous areas, while lower confidence levels are
in areas with heterogeneous landscapes or at the margins of
cropland extent (Fig. 6b).

4.2 Accuracy assessments and analysis

4.2.1 Spatial accuracy assessment

The spatial accuracies of the five global input datasets and
the synergy cropland map were assessed at the continent
and global scales (Table 4). The accuracy of the synergy
cropland mapping is 90.8 %, which is higher than those of
the five input datasets at the global scale. In North Amer-
ica, Europe, Oceania, and Asia, the overall accuracies are
92.4 %, 93.7 %, 96.5 %, and 88.3 %, respectively, which are
higher than any of the five input datasets. In South America,

the accuracy of the synergy cropland (89.4 %) is somewhat
lower than GlobeLand30 (90.1 %). Also, in Africa, the accu-
racy of synergy cropland (89.1 %) is slightly lower than Glo-
beLand30 (89.9 %). In North America, Europe, Oceania, and
Asia, the regional cropland data are available, while the re-
gional datasets are unavailable in South America and Africa.
This is one reason why the accuracies of the synergy results
in South America and Africa are slightly lower than some of
the input datasets.

4.2.2 Statistical consistency

The cropland areas of the global input datasets and the syn-
ergy cropland map in each country were calculated and cor-
related with the statistics (Fig. 7). The correlation coefficient
of the synergy map is 0.99 and higher than any of the input
datasets (Fig. 7f). The high correlation is because the synergy
map is produced by the fusion of statistics and land cover
maps. GlobeLand30 and MODIS Collection 5 have higher
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Figure 4. Agreement-ranking score maps and average cropland percentages in Europe and Africa: (a) and (b) are the score map and cropland
percentage of Europe; (c) and (d) are the score map and cropland percentage of Africa.

Figure 5. Statistics allocation results in Europe and Africa: (a) and (d) are the national allocation results; (b) and (e) are the first subnational
allocation results; (c) and (f) are the second subnational allocation results.
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Figure 6. The results of global synergy cropland: (a) cropland percentage map, (b) confidence level of synergy cropland.

Table 4. Overall accuracies of input datasets and synergy cropland at the continent and global scales.

CCI-LC GlobCover GlobeLand30 MODIS C5 Unified Cropland Layer Synergy map

(%) (%) (%) (%) (%) (%)

North America 90.4 87.4 92.1 90.0 92.3 92.4
South America 78.8 78.9 90.1 87.5 89.7 89.4
Europe 89.7 87.5 87.1 89.4 88.6 93.7
Africa 79.1 83.1 89.9 88.7 86.1 89.1
Oceania 93.9 88.3 95.4 95.0 95.4 96.5
Asia 82.6 77.5 86.0 86.7 84.9 88.3
Global 84.5 83.0 89.3 88.8 88.1 90.8

correlation coefficients (0.97) than other input datasets, while
CCI-LC and GlobCover have lower correlation coefficients
(0.88 and 0.89, respectively). In addition, RMSE is used as
another indicator to assess the dispersion between the crop-
land maps and the statistics. Although the correlation co-
efficients of the synergy cropland map, GlobeLand30, and
MODIS C5 are similar, the RMSE of the synergy cropland
(3.41× 104) is much lower than that of GlobeLand30 and
MODIS C5, which are 8.75× 104 and 7.03× 104, respec-

tively. Therefore, the synergy map has the best consistency
with the national statistics.

The cropland areas of the synergy map are higher than the
statistics in some countries (Fig. 7). SASAM is a process that
accumulates cropland areas from high to low scores until
the accumulated area reaches the statistics. Because cumu-
lative areas are not continuous, the cropland area estimated
by the synergy map might not be very close to the required
statistics. Sometimes the difference may be substantial. For
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Figure 7. The consistency analysis between cropland areas estimated from products and statistics: (a) GlobeLand30, (b) Unified Cropland
Layer, (c) CCI-LC, (d) GlobCover 2009, (e) MODIS C5, and (f) synergy map.

example, in Japan’s case, the national statistic for the crop-
land area is 45 977.50 km2. The accumulated cropland ar-
eas with scores above 27 and above 26 are 40 618.13 and
52 867.19 km2, respectively. If we take all pixels with scores
above 26, the national area estimated by the synergy map
(52 867.19 km2) is almost 15 % more than the national statis-
tics. Meanwhile, in a few countries, such as Niger, Saudi Ara-
bia, and Dominica, the areas of synergy cropland are slightly
lower than the statistics. This is because the cropland ar-
eas estimated from the input datasets are all lower than the
statistics. For example, in Niger, the cropland area of na-
tional statistics is 152 250 km2, while the cropland areas es-
timated by GlobeLand30, Unified Cropland Layer, CCI-LC,
GlobCover, and MODIS C5 (i.e., 66 163, 140 259, 139 734,
21 925, and 76 018 km2, respectively) are all smaller than the
statistics. The synergy map is based on these input cropland
layers, and so the synergy cropland area, 140 022 km2, is in-
evitably smaller than the statistics.

4.2.3 Comparison with the IIASA–IFPRI method

For the IIASA–IFPRI method, the rankings from high to low
are MODIS C5, Unified Cropland Layer, CCI-LC, NLUC-C,
GlobeLand30, and GlobCover by using the training samples
in China. The input datasets were ranked according to their
accuracies for the scoring table, and then national statistics
were allocated to the pixels with higher scores (Fritz et al.,
2015). From the highest score of 63, the accumulated area
was calculated until the score of 59, where the cropland area
was closest to the statistics of 1.23× 106 km2 (Table 5a).

At the same time, SASAM was employed for synergy crop-
land estimation using the same input datasets and statistics.
The cropland areas of the input datasets were estimated and
compared with statistics for ranking, giving the ranks from
high to low as MODIS C5, NLUC-C, GlobeLand30, Unified
Cropland Layer, CCI-LC, and GlobCover. The accumulated
area was calculated from the score of 63 to the score of 58,
which is closest to the statistics (Table 5b).

There are a few slight differences between the results de-
rived from the IIASA–IFPRI and SASAM methods. Valida-
tion samples, i.e., 1403 cropland and 1430 noncropland, were
employed to compare the accuracies of the results. The over-
all accuracy of the IIASA–IFPRI result is 77.68 %, and that
of SASAM is 77.75 %. The cropland areas estimated from
the IIASA–IFPRI method and SASAM are 1.23× 106 and
1.25× 106 km2, respectively, which are both consistent with
the national statistics of 1.23× 106 km2. The comparison in
Table 5a and b shows that the selected combinations of input
datasets are similar, except that SASAM has one more com-
bination with a score of 58. SASAM provides excellent per-
formance without training samples, which is a cost-effective
way to map cropland using the synergy between datasets.

5 Data availability

The global cropland map and the confidence
level map are open-access and available at
https://doi.org/10.7910/DVN/ZWSFAA (Lu et al.,
2020). The subnational statistics of cropland area are
available at https://doi.org/10.7910/DVN/PRFF8V (In-
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Table 5. Calculation of accumulated areas from high score value to low: (a) IIASA–IFPRI method, (b) SASAM.

(a) IIASA–IFPRI method

Score Accumulated area GlobeLand30 Unified GlobCover CCI-LC MODIS C5 NLUC-C
value (km2) Cropland

63 9.58× 105 1 1 1 1 1 1
62 1.08× 106 1 1 0 1 1 1
61 1.11× 106 0 1 1 1 1 1
60 1.17× 106 1 1 1 1 1 0
59 1.23× 106 1 1 1 0 1 1

(b) SASAM

Score Accumulated area GlobeLand30 Unified GlobCover CCI-LC MODIS C5 NLUC-C
value (km2) Cropland

63 9.58× 105 1 1 1 1 1 1
62 1.08× 106 1 1 0 1 1 1
61 1.14× 106 1 1 1 0 1 1
60 1.17× 106 1 0 1 1 1 1
59 1.19× 106 0 1 1 1 1 1
58 1.25× 106 1 1 1 1 1 0

ternational Food Policy Research Institute, 2019).
All the code with annotations used for the synergy
cropland mapping is shared at this website: https:
//sourceforge.net/projects/global-synergy-cropland-map/
(Lu, 2020).

6 Discussion and conclusion

The cropland areas estimated from satellite-based products
are generally inconsistent with statistics, which hinders the
application of cropland maps in some studies, such as food
security, agricultural sustainability, and the carbon cycle. In
this study, a synergy method (SASAM) was developed to
produce a new global cropland map for the year 2010 with
500 m spatial resolution. Our research makes two contribu-
tions to cropland mapping at the global scale. First, SASAM
addresses the issue of requiring lots of training samples for
global cropland mapping. Second, we have considerably im-
proved the accuracy of the final cropland map for 2010,
which is consistent with official statistics.

SASAM does not rely on training samples, which is
more cost-effective for cropland mapping. Traditional syn-
ergy methods usually need a relatively large number of train-
ing samples to assess the accuracy of the input datasets.
Although crowdsourcing tools, such as Geo-Wiki, provide
a new low-cost way of gathering samples, quality and un-
certainty issues cannot be ignored because the samples are
collected mostly by volunteers. Our method uses official
statistics as the reference to assess the accuracies of the in-
put datasets. Datasets with higher accuracies generally have
greater consistencies with statistics (Lu et al., 2016, 2017).

For example, the accuracies of GlobeLand30 and MODIS C5
are higher, and their consistencies are also better than other
input datasets. By contrast, GlobCover has lower overall ac-
curacy and consistency with statistics (Table 4 and Fig. 7).
Hence, statistics can replace training samples to assess the in-
put datasets. The comparison with the IIASA–IFPRI method
in China confirms that, without training samples, SASAM
performs well in cropland synergy.

The accuracy of the synergy cropland map and its consis-
tency with statistics are higher than the input datasets. At the
global scale, the accuracy of the synergy cropland mapping
(90.8 %) is higher than the five input global datasets. At the
regional scale, the continents with regional input datasets,
such as North America, Europe, Oceania, and Asia, have
the highest overall accuracies. For the continents without re-
gional datasets, such as South America and Africa, the ac-
curacies of the synergy cropland are a little lower than Glo-
beLand30. Therefore, the regional datasets are essential for
improving the accuracy of the synergy map. The higher cor-
relation coefficient and lower RMSE indicate that the syn-
ergy map has better consistency with statistics than the input
datasets. SASAM is a process that selects pixels with a high
likelihood of cropland until the cumulative area reaches the
statistics. The synergy map combines the advantages of land
cover products and statistics, taking into account the land use
and land cover characteristics for cropland.

The cropland areas estimated by the synergy map are close
but not exactly equal to the statistics. The scoring table is dis-
crete, and its values range from 0 to 2n

− 1, where n is the
number of input datasets. The agreement-ranking scores are
from 0 to 31 for the five input datasets and from 0 to 63 for
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six input datasets. The cumulative cropland area is calculated
from high to low score until it is close to the statistics. The
final cumulative area is slightly higher than the statistical ar-
eas to further support the spatial production allocation model
(SPAM), which is described in the second part of the two-
paper series of a cultivated planet in 2010. The allocation
rule can be adjusted to suit various applications of cropland
mapping. If the synergy result needs to be strictly consistent
with the statistics, the closest cumulative area, which may be
lower than the statistics, can be selected. We employed the
national as well as the first and second subnational statistics
for SASAM. Subnational statistics are critical, especially for
large countries such as India, China, and the USA, because
the subnational statistics not only consider the spatial hetero-
geneity of cropland distribution but also reduce the allocation
errors from the national statistics.

Although we have shown that cropland extraction from
multiple sources in this study is efficient, we also recognize
that there are uncertainties associated with this approach.
First, the agricultural landscape is an essential factor affect-
ing the agreements of the input datasets for the cropland
synergy map. In homogeneous areas, the high agreements
among the input datasets are dominant, so the selected cumu-
lative areas have high agreement-ranking scores, such as In-
dia, the USA, Argentina, and Brazil. In heterogeneous areas,
the agreements of the input datasets are lower, so the syn-
ergy results have more uncertainties. Secondly, differences in
the cropland definition can also affect the agreement among
the input datasets. For CCI-LC and GlobCover, some mosaic
classes of cropland and forest are common in hilly areas.
For example, in Indonesia, Malaysia, and the Philippines,
CCI-LC and GlobCover classified permanent crops (coffee,
cocoa, and rubber) as cropland, while GlobeLand30 classi-
fied these as forests. Besides, because pastures have similar
features as cropland, GlobeLand30 employing textural and
spectral features for classification usually classifies pastures
as cropland. Therefore, the cropland synergy map has uncer-
tainties in farming pastoral zones. Thirdly, subnational statis-
tics at the global scale were collected from multiple sources,
and uncertainties are high because of differences in data pro-
cessing and quality criteria across countries. In Europe, the
USA, Canada, China, and other regions, the official censuses
of cropland area at the subnational level are available and
reliable. While the cropland areas are the ratios between har-
vested areas of all crops and the cropping intensities, in some
developing countries of Africa, Latin America, and Asia, the
cropland area statistics in these regions are less reliable be-
cause of possible missing harvested areas of crops.

We will collect more reliable input data and explore the
integration of a synergy approach and machine learning in
the future to solve the above uncertainties and further im-
prove the quality of the cropland dataset. The quantity and
quality of the input datasets are the basis of the synergy ap-
proach. We will collect more existing cropland maps with
a high spatial resolution to refine the agreement-ranking

scores. SASAM accumulates cropland areas from high to
low score until the accumulated area reaches the statistics.
The cumulative cropland area will be closer to the statistics
with more input cropland datasets. Meanwhile, we will col-
lect more statistics of cropland area at the subnational level.
If all the subnational statistics at the global scale were avail-
able, the integration of multilevel allocation results would not
be needed, which would greatly simplify the synergy pro-
cess. To improve the method, we will explore the integration
of the synergy approach and machine learning according to
the agreement of the input data and the geographical land-
scape. The synergy method is economical and efficient for
cropland mapping in those regions with highly homogeneous
landscapes. The regions with heterogeneous landscapes usu-
ally have lower agreements with higher uncertainties. There-
fore, we will employ deep learning for cropland classification
based on using high-spatial-resolution images with training
samples from the agreements of existing cropland maps.

We applied SASAM to produce a global cropland map for
2010 with 500 m spatial resolution. The synergy map has
higher accuracy and better consistency with statistics than
the original datasets, and it combines the advantages of the
land cover products and statistical datasets. Therefore, the
map can better support relevant studies such as hydrologi-
cal modeling, land use assessment, and agricultural monitor-
ing. In particular, the current synergy cropland dataset under-
pins the development of SPAM2010, the latest global gridded
agricultural production maps in 2010, which is introduced
in the second part of the two-paper series (Yu et al., 2020).
Although some products of more recent years are available,
such as CCI-LC for 2015, the quantity of the input datasets
is still not sufficient to support SASAM to produce a more
recent cropland map. With the development of new individ-
ual cropland maps, we will update the synergy cropland map
in the future and further improve the accuracy of synergis-
tic mapping, especially in regions with heterogeneous land-
scapes.
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