Articles | Volume 11, issue 3
https://doi.org/10.5194/essd-11-959-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-11-959-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012
Greet Janssens-Maenhout
CORRESPONDING AUTHOR
European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (T.P. 123), 21027 Ispra, Varese, Italy
Ghent University, Faculty of Engineering and Architecture, Technology Park, 9052 Zwijnaarde, Ghent, Belgium
Monica Crippa
European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (T.P. 123), 21027 Ispra, Varese, Italy
Diego Guizzardi
Didesk Informatica di Diego Guizzardi, Via al Lago, 4, 28921 Verbania, Italy (consultant to the European Commission)
Marilena Muntean
European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (T.P. 123), 21027 Ispra, Varese, Italy
Edwin Schaaf
European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (T.P. 123), 21027 Ispra, Varese, Italy
Frank Dentener
European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (T.P. 123), 21027 Ispra, Varese, Italy
Peter Bergamaschi
European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (T.P. 123), 21027 Ispra, Varese, Italy
Valerio Pagliari
European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (T.P. 123), 21027 Ispra, Varese, Italy
Jos G. J. Olivier
PBL Netherlands Environmental Assessment Bureau, the Hague, the Netherlands
Jeroen A. H. W. Peters
PBL Netherlands Environmental Assessment Bureau, the Hague, the Netherlands
John A. van Aardenne
European Environment Agency, Climate Change, Energy & Transport Dep., Kongens Nytorv 6, 1050 Copenhagen, Denmark
Suvi Monni
Benviroc Ltd., Espoo, Finland
Ulrike Doering
Umweltbundesamt, Fachbereich Klimaschutz, Energie, Deutsche Emissionshandelsstelle, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
A. M. Roxana Petrescu
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
Efisio Solazzo
European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (T.P. 123), 21027 Ispra, Varese, Italy
Gabriel D. Oreggioni
European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (T.P. 123), 21027 Ispra, Varese, Italy
Related authors
Ruben Urraca, Greet Janssens-Maenhout, Nicolás Álamos, Lucas Berna-Peña, Monica Crippa, Sabine Darras, Stijn Dellaert, Hugo Denier van der Gon, Mark Dowell, Nadine Gobron, Claire Granier, Giacomo Grassi, Marc Guevara, Diego Guizzardi, Kevin Gurney, Nicolás Huneeus, Sekou Keita, Jeroen Kuenen, Ana Lopez-Noreña, Enrique Puliafito, Geoffrey Roest, Simone Rossi, Antonin Soulie, and Antoon Visschedijk
Earth Syst. Sci. Data, 16, 501–523, https://doi.org/10.5194/essd-16-501-2024, https://doi.org/10.5194/essd-16-501-2024, 2024
Short summary
Short summary
CoCO2-MOSAIC 1.0 is a global mosaic of regional bottom-up inventories providing gridded (0.1×0.1) monthly emissions of anthropogenic CO2. Regional inventories include country-specific information and finer spatial resolution than global inventories. CoCO2-MOSAIC provides harmonized access to these datasets and can be considered as a regionally accepted reference to assess the quality of global inventories, as done in the current paper.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Margarita Choulga, Greet Janssens-Maenhout, Ingrid Super, Efisio Solazzo, Anna Agusti-Panareda, Gianpaolo Balsamo, Nicolas Bousserez, Monica Crippa, Hugo Denier van der Gon, Richard Engelen, Diego Guizzardi, Jeroen Kuenen, Joe McNorton, Gabriel Oreggioni, and Antoon Visschedijk
Earth Syst. Sci. Data, 13, 5311–5335, https://doi.org/10.5194/essd-13-5311-2021, https://doi.org/10.5194/essd-13-5311-2021, 2021
Short summary
Short summary
People worry that growing man-made carbon dioxide (CO2) concentrations lead to climate change. Global models, use of observations, and datasets can help us better understand behaviour of CO2. Here a tool to compute uncertainty in man-made CO2 sources per country per year and month is presented. An example of all sources separated into seven groups (intensive and average energy, industry, humans, ground and air transport, others) is presented. Results will be used to predict CO2 concentrations.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Efisio Solazzo, Monica Crippa, Diego Guizzardi, Marilena Muntean, Margarita Choulga, and Greet Janssens-Maenhout
Atmos. Chem. Phys., 21, 5655–5683, https://doi.org/10.5194/acp-21-5655-2021, https://doi.org/10.5194/acp-21-5655-2021, 2021
Short summary
Short summary
We conducted an extensive analysis of the structural uncertainty of the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases, which adds a much needed reliability dimension to the accuracy of the emission estimates. The study undertakes in-depth analyses of the implication of aggregating emissions from different sources and/or countries on the accuracy. Results are presented for all emissions sectors according to IPCC definitions.
Yilong Wang, Grégoire Broquet, François-Marie Bréon, Franck Lespinas, Michael Buchwitz, Maximilian Reuter, Yasjka Meijer, Armin Loescher, Greet Janssens-Maenhout, Bo Zheng, and Philippe Ciais
Geosci. Model Dev., 13, 5813–5831, https://doi.org/10.5194/gmd-13-5813-2020, https://doi.org/10.5194/gmd-13-5813-2020, 2020
Pengfei Han, Ning Zeng, Tom Oda, Xiaohui Lin, Monica Crippa, Dabo Guan, Greet Janssens-Maenhout, Xiaolin Ma, Zhu Liu, Yuli Shan, Shu Tao, Haikun Wang, Rong Wang, Lin Wu, Xiao Yun, Qiang Zhang, Fang Zhao, and Bo Zheng
Atmos. Chem. Phys., 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020, https://doi.org/10.5194/acp-20-11371-2020, 2020
Short summary
Short summary
An accurate estimation of China’s fossil-fuel CO2 emissions (FFCO2) is significant for quantification of carbon budget and emissions reductions towards the Paris Agreement goals. Here we assessed 9 global and regional inventories. Our findings highlight the significance of using locally measured coal emission factors. We call on the enhancement of physical measurements for validation and provide comprehensive information for inventory, monitoring, modeling, assimilation, and reducing emissions.
Manjola Banja, Monica Crippa, Diego Guizzardi, Marilena Muntean, Federico Pagani, and Enrico Pisoni
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-385, https://doi.org/10.5194/essd-2025-385, 2025
Preprint under review for ESSD
Short summary
Short summary
Global efforts to decrease emissions rely on inventories that differ widely in scope and methodology. Alongside national inventories, independent databases provide yearly globally consistent emission inventories. Comparing independent inventories with countries submissions provides clear and consistent track of the real progress. Improvement of emissions inventories, reporting timelines, and statistical systems are essential to ensure reliable and comparable data.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
William Lamb, Robbie Andrew, Matthew Jones, Zebedee Nicholls, Glen Peters, Chris Smith, Marielle Saunois, Giacomo Grassi, Julia Pongratz, Steven Smith, Francesco Tubiello, Monica Crippa, Matthew Gidden, Pierre Friedlingstein, Jan Minx, and Piers Forster
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-188, https://doi.org/10.5194/essd-2025-188, 2025
Preprint under review for ESSD
Short summary
Short summary
This study explores why global greenhouse gas (GHG) emissions estimates vary. Key reasons include different coverage of gases and sectors, varying definitions of anthropogenic land use change emissions, and the Paris Agreement not covering all emission sources. The study highlights three main ways emissions data is reported, each with different objectives and resulting in varying global emission totals. It emphasizes the need for transparency in choosing datasets and setting assessment scopes.
Maria K. Tenkanen, Aki Tsuruta, Hugo Denier van der Gon, Lena Höglund-Isaksson, Antti Leppänen, Tiina Markkanen, Ana Maria Roxana Petrescu, Maarit Raivonen, Hermanni Aaltonen, and Tuula Aalto
Atmos. Chem. Phys., 25, 2181–2206, https://doi.org/10.5194/acp-25-2181-2025, https://doi.org/10.5194/acp-25-2181-2025, 2025
Short summary
Short summary
Accurate national methane (CH4) emission estimates are essential for tracking progress towards climate goals. This study compares estimates from Finland, which use different methods and scales, and shows how well a global model estimates emissions within a country. The bottom-up estimates vary a lot, but constraining them with atmospheric CH4 measurements brought the estimates closer together. We also highlight the importance of quantifying natural emissions alongside anthropogenic emissions.
Diego Guizzardi, Monica Crippa, Tim Butler, Terry Keating, Rosa Wu, Jacek W. Kamiński, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Rachel Hoesly, Marilena Muntean, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Annie Duhamel, Tabish Ansari, Kristen Foley, Guannan Geng, Yifei Chen, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-601, https://doi.org/10.5194/essd-2024-601, 2025
Preprint under review for ESSD
Short summary
Short summary
The global air pollution emission mosaic HTAP_v3.1 is the state-of-the-art database for addressing the evolution of a set of policy-relevant air pollutants over the past 2 decades. The inventory is made by the harmonization and blending of seven regional inventories, gapfilled using the most recent release of EDGAR (EDGARv8). By incorporating the best available local information, the HTAP_v3.1 mosaic inventory can be used for policy-relevant studies at both regional and global levels.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Monica Crippa, Diego Guizzardi, Federico Pagani, Marcello Schiavina, Michele Melchiorri, Enrico Pisoni, Francesco Graziosi, Marilena Muntean, Joachim Maes, Lewis Dijkstra, Martin Van Damme, Lieven Clarisse, and Pierre Coheur
Earth Syst. Sci. Data, 16, 2811–2830, https://doi.org/10.5194/essd-16-2811-2024, https://doi.org/10.5194/essd-16-2811-2024, 2024
Short summary
Short summary
Knowing where emissions occur is essential for planning effective emission reduction measures and atmospheric modelling. Disaggregating national emissions over high-resolution grids requires spatial proxies that contain information on the location of different emission sources. This work incorporates state-of-the-art spatial information to improve the spatial representation of global emissions with the Emissions Database for Global Atmospheric Research (EDGAR).
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Philippe Thunis, Jeroen Kuenen, Enrico Pisoni, Bertrand Bessagnet, Manjola Banja, Lech Gawuc, Karol Szymankiewicz, Diego Guizardi, Monica Crippa, Susana Lopez-Aparicio, Marc Guevara, Alexander De Meij, Sabine Schindlbacher, and Alain Clappier
Geosci. Model Dev., 17, 3631–3643, https://doi.org/10.5194/gmd-17-3631-2024, https://doi.org/10.5194/gmd-17-3631-2024, 2024
Short summary
Short summary
An ensemble emission inventory is created with the aim of monitoring the status and progress made with the development of EU-wide inventories. This emission ensemble serves as a common benchmark for the screening and allows for the comparison of more than two inventories at a time. Because the emission “truth” is unknown, the approach does not tell which inventory is the closest to reality, but it identifies inconsistencies that require special attention.
Antonin Soulie, Claire Granier, Sabine Darras, Nicolas Zilbermann, Thierno Doumbia, Marc Guevara, Jukka-Pekka Jalkanen, Sekou Keita, Cathy Liousse, Monica Crippa, Diego Guizzardi, Rachel Hoesly, and Steven J. Smith
Earth Syst. Sci. Data, 16, 2261–2279, https://doi.org/10.5194/essd-16-2261-2024, https://doi.org/10.5194/essd-16-2261-2024, 2024
Short summary
Short summary
Anthropogenic emissions are the result of transportation, power generation, industrial, residential and commercial activities as well as waste treatment and agriculture practices. This work describes the new CAMS-GLOB-ANT gridded inventory of 2000–2023 anthropogenic emissions of air pollutants and greenhouse gases. The methodology to generate the emissions is explained and the datasets are analysed and compared with publicly available global and regional inventories for selected world regions.
Ruben Urraca, Greet Janssens-Maenhout, Nicolás Álamos, Lucas Berna-Peña, Monica Crippa, Sabine Darras, Stijn Dellaert, Hugo Denier van der Gon, Mark Dowell, Nadine Gobron, Claire Granier, Giacomo Grassi, Marc Guevara, Diego Guizzardi, Kevin Gurney, Nicolás Huneeus, Sekou Keita, Jeroen Kuenen, Ana Lopez-Noreña, Enrique Puliafito, Geoffrey Roest, Simone Rossi, Antonin Soulie, and Antoon Visschedijk
Earth Syst. Sci. Data, 16, 501–523, https://doi.org/10.5194/essd-16-501-2024, https://doi.org/10.5194/essd-16-501-2024, 2024
Short summary
Short summary
CoCO2-MOSAIC 1.0 is a global mosaic of regional bottom-up inventories providing gridded (0.1×0.1) monthly emissions of anthropogenic CO2. Regional inventories include country-specific information and finer spatial resolution than global inventories. CoCO2-MOSAIC provides harmonized access to these datasets and can be considered as a regionally accepted reference to assess the quality of global inventories, as done in the current paper.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Hannah J. Rubin, Joshua S. Fu, Frank Dentener, Rui Li, Kan Huang, and Hongbo Fu
Atmos. Chem. Phys., 23, 7091–7102, https://doi.org/10.5194/acp-23-7091-2023, https://doi.org/10.5194/acp-23-7091-2023, 2023
Short summary
Short summary
We update the 2010 global deposition budget for nitrogen (N) and sulfur (S) with new regional wet deposition measurements, improving the ensemble results of 11 global chemistry transport models from HTAP II. Our study demonstrates that a global measurement–model fusion approach can substantially improve N and S deposition model estimates at a regional scale and represents a step forward toward the WMO goal of global fusion products for accurately mapping harmful air pollution.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022, https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Short summary
We present a novel high-resolution inverse modelling system, "FLEXVAR", and its application for the inverse modelling of European CH4 emissions in 2018. The new system combines a high spatial resolution of 7 km x 7 km with a variational data assimilation technique, which allows CH4 emissions to be optimized from individual model grid cells. The high resolution allows the observations to be better reproduced, while the derived emissions show overall good consistency with two existing models.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Margarita Choulga, Greet Janssens-Maenhout, Ingrid Super, Efisio Solazzo, Anna Agusti-Panareda, Gianpaolo Balsamo, Nicolas Bousserez, Monica Crippa, Hugo Denier van der Gon, Richard Engelen, Diego Guizzardi, Jeroen Kuenen, Joe McNorton, Gabriel Oreggioni, and Antoon Visschedijk
Earth Syst. Sci. Data, 13, 5311–5335, https://doi.org/10.5194/essd-13-5311-2021, https://doi.org/10.5194/essd-13-5311-2021, 2021
Short summary
Short summary
People worry that growing man-made carbon dioxide (CO2) concentrations lead to climate change. Global models, use of observations, and datasets can help us better understand behaviour of CO2. Here a tool to compute uncertainty in man-made CO2 sources per country per year and month is presented. An example of all sources separated into seven groups (intensive and average energy, industry, humans, ground and air transport, others) is presented. Results will be used to predict CO2 concentrations.
Jan C. Minx, William F. Lamb, Robbie M. Andrew, Josep G. Canadell, Monica Crippa, Niklas Döbbeling, Piers M. Forster, Diego Guizzardi, Jos Olivier, Glen P. Peters, Julia Pongratz, Andy Reisinger, Matthew Rigby, Marielle Saunois, Steven J. Smith, Efisio Solazzo, and Hanqin Tian
Earth Syst. Sci. Data, 13, 5213–5252, https://doi.org/10.5194/essd-13-5213-2021, https://doi.org/10.5194/essd-13-5213-2021, 2021
Short summary
Short summary
We provide a synthetic dataset on anthropogenic greenhouse gas (GHG) emissions for 1970–2018 with a fast-track extension to 2019. We show that GHG emissions continued to rise across all gases and sectors. Annual average GHG emissions growth slowed, but absolute decadal increases have never been higher in human history. We identify a number of data gaps and data quality issues in global inventories and highlight their importance for monitoring progress towards international climate goals.
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Adrien Berchet, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine D. Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, https://doi.org/10.5194/gmd-14-5331-2021, 2021
Short summary
Short summary
We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source Python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Efisio Solazzo, Monica Crippa, Diego Guizzardi, Marilena Muntean, Margarita Choulga, and Greet Janssens-Maenhout
Atmos. Chem. Phys., 21, 5655–5683, https://doi.org/10.5194/acp-21-5655-2021, https://doi.org/10.5194/acp-21-5655-2021, 2021
Short summary
Short summary
We conducted an extensive analysis of the structural uncertainty of the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases, which adds a much needed reliability dimension to the accuracy of the emission estimates. The study undertakes in-depth analyses of the implication of aggregating emissions from different sources and/or countries on the accuracy. Results are presented for all emissions sectors according to IPCC definitions.
Xiaohui Lin, Wen Zhang, Monica Crippa, Shushi Peng, Pengfei Han, Ning Zeng, Lijun Yu, and Guocheng Wang
Earth Syst. Sci. Data, 13, 1073–1088, https://doi.org/10.5194/essd-13-1073-2021, https://doi.org/10.5194/essd-13-1073-2021, 2021
Short summary
Short summary
CH4 is a potent greenhouse gas, and China’s anthropogenic CH4 emissions account for a large proportion of global total emissions. However, the existing estimates either focus on a specific sector or lag behind real time by several years. We collected and analyzed 12 datasets and compared them to reveal the spatiotemporal changes and their uncertainties. We further estimated the emissions from 1990–2019, and the estimates showed a robust trend in recent years when compared to top-down results.
Francesco Canonaco, Anna Tobler, Gang Chen, Yulia Sosedova, Jay Gates Slowik, Carlo Bozzetti, Kaspar Rudolf Daellenbach, Imad El Haddad, Monica Crippa, Ru-Jin Huang, Markus Furger, Urs Baltensperger, and André Stephan Henry Prévôt
Atmos. Meas. Tech., 14, 923–943, https://doi.org/10.5194/amt-14-923-2021, https://doi.org/10.5194/amt-14-923-2021, 2021
Short summary
Short summary
Long-term ambient aerosol mass spectrometric data were analyzed with a statistical model (PMF) to obtain source contributions and fingerprints. The new aspects of this paper involve time-dependent source fingerprints by a rolling technique and the replacement of the full visual inspection of each run by a user-defined set of criteria to monitor the quality of each of these runs more efficiently. More reliable sources will finally provide better instruments for political mitigation strategies.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Erin E. McDuffie, Steven J. Smith, Patrick O'Rourke, Kushal Tibrewal, Chandra Venkataraman, Eloise A. Marais, Bo Zheng, Monica Crippa, Michael Brauer, and Randall V. Martin
Earth Syst. Sci. Data, 12, 3413–3442, https://doi.org/10.5194/essd-12-3413-2020, https://doi.org/10.5194/essd-12-3413-2020, 2020
Short summary
Short summary
Global emission inventories are vital to understanding the impacts of air pollution on the environment, human health, and society. We update the open-source Community Emissions Data System (CEDS) to provide global gridded emissions of seven key air pollutants from 1970–2017 for 11 source sectors and multiple fuel types, including coal, solid biofuel, and liquid oil and natural gas. This dataset includes both monthly global gridded emissions and annual national totals.
Robert J. Parker, Alex Webb, Hartmut Boesch, Peter Somkuti, Rocio Barrio Guillo, Antonio Di Noia, Nikoleta Kalaitzi, Jasdeep S. Anand, Peter Bergamaschi, Frederic Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Coleen Roehl, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Thorsten Warneke, Paul O. Wennberg, and Debra Wunch
Earth Syst. Sci. Data, 12, 3383–3412, https://doi.org/10.5194/essd-12-3383-2020, https://doi.org/10.5194/essd-12-3383-2020, 2020
Short summary
Short summary
This work presents the latest release of the University of Leicester GOSAT methane data and acts as the definitive description of this dataset. We detail the processing, validation and evaluation involved in producing these data and highlight its many applications. With now over a decade of global atmospheric methane observations, this dataset has helped, and will continue to help, us better understand the global methane budget and investigate how it may respond to a future changing climate.
Yilong Wang, Grégoire Broquet, François-Marie Bréon, Franck Lespinas, Michael Buchwitz, Maximilian Reuter, Yasjka Meijer, Armin Loescher, Greet Janssens-Maenhout, Bo Zheng, and Philippe Ciais
Geosci. Model Dev., 13, 5813–5831, https://doi.org/10.5194/gmd-13-5813-2020, https://doi.org/10.5194/gmd-13-5813-2020, 2020
Pengfei Han, Ning Zeng, Tom Oda, Xiaohui Lin, Monica Crippa, Dabo Guan, Greet Janssens-Maenhout, Xiaolin Ma, Zhu Liu, Yuli Shan, Shu Tao, Haikun Wang, Rong Wang, Lin Wu, Xiao Yun, Qiang Zhang, Fang Zhao, and Bo Zheng
Atmos. Chem. Phys., 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020, https://doi.org/10.5194/acp-20-11371-2020, 2020
Short summary
Short summary
An accurate estimation of China’s fossil-fuel CO2 emissions (FFCO2) is significant for quantification of carbon budget and emissions reductions towards the Paris Agreement goals. Here we assessed 9 global and regional inventories. Our findings highlight the significance of using locally measured coal emission factors. We call on the enhancement of physical measurements for validation and provide comprehensive information for inventory, monitoring, modeling, assimilation, and reducing emissions.
Cited articles
Andres, R. J., Gregg, J. S., Losey, L., Marland, G., and Boden, T. A.:
Monthly, global emissions of carbon dioxide from fossil fuel consumption,
Tellus B, 63, 309–327, 2011.
Andres, R. J., Boden, T. A., Bréon, F.-M., Ciais, P., Davis, S.,
Erickson, D., Gregg, J. S., Jacobson, A., Marland, G., Miller, J., Oda, T.,
Olivier, J. G. J., Raupach, M. R., Rayner, P., and Treanton, K.: A synthesis
of carbon dioxide emissions from fossil-fuel combustion, Biogeosciences, 9,
1845–1871, https://doi.org/10.5194/bg-9-1845-2012, 2012.
Andres, R. J., Boden, T. A., and Highdon, D.: A new evaluation of the
uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide
emission, Tellus B, 66, 1–15, https://doi.org/10.3402/tellusb.v66.23616, 2014.
Andres, R. J., Boden, T. A., and Higdon, D. M.: Gridded uncertainty in fossil
fuel carbon dioxide emission maps, a CDIAC example, Atmos. Chem. Phys., 16,
14979–14995, https://doi.org/10.5194/acp-16-14979-2016, 2016.
Andrew, R. M.: Global CO2 emissions from cement production, Earth
Syst. Sci. Data, 10, 195–217, https://doi.org/10.5194/essd-10-195-2018, 2018.
Berezin, E. V., Konovalov, I. B., Ciais, P., Richter, A., Tao, S.,
Janssens-Maenhout, G., Beekmann, M., and Schulze, E.-D.: Multiannual changes
of CO2 emissions in China: indirect estimates derived from satellite
measurements of tropospheric NO2 columns, Atmos. Chem. Phys., 13,
9415–9438, https://doi.org/10.5194/acp-13-9415-2013, 2013.
Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C.,
Scheepmaker, R., Dlugokencky, E., Wofsy, S., Kort, E., and Sweeney, C.:
Atmospheric CH4 in the first decade of the 21st century: Inverse
modelling analysis using SCIAMACHY satellite retrievals and NOAA surface
measurements, J. Geophys. Res.-Atmos., 118, 7350–7369, 2013.
Bergamaschi, P., Corazza, M., Karstens, U., Athanassiadou, M., Thompson, R.
L., Pison, I., Manning, A. J., Bousquet, P., Segers, A., Vermeulen, A. T.,
Janssens-Maenhout, G., Schmidt, M., Ramonet, M., Meinhardt, F., Aalto, T.,
Haszpra, L., Moncrieff, J., Popa, M. E., Lowry, D., Steinbacher, M., Jordan,
A., O'Doherty, S., Piacentino, S., and Dlugokencky, E.: Top-down estimates of
European CH4 and N2O emissions based on four different
inverse models, Atmos. Chem. Phys., 15, 715–736,
https://doi.org/10.5194/acp-15-715-2015, 2015.
Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M., Tsuruta, A.,
Berchet, A., Vermeulen, A. T., Arnold, T., Janssens-Maenhout, G., Hammer, S.,
Levin, I., Schmidt, M., Ramonet, M., Lopez, M., Lavric, J., Aalto, T., Chen,
H., Feist, D. G., Gerbig, C., Haszpra, L., Hermansen, O., Manca, G.,
Moncrieff, J., Meinhardt, F., Necki, J., Galkowski, M., O'Doherty, S.,
Paramonova, N., Scheeren, H. A., Steinbacher, M., and Dlugokencky, E.:
Inverse modelling of European CH4 emissions during 2006–2012 using
different inverse models and reassessed atmospheric observations, Atmos.
Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, 2018.
Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity,
likelihood, hypothesis testing, and communication, Hydrolog. Sci. J., 61,
1652–1665, https://doi.org/10.1080/02626667.2015.1031761, 2016.
Boden, T. A., Marland, G., and Andres, R. J.: Global, Regional, and National
Fossil-Fuel CO2 Emissions, Carbon Dioxide Information Analysis
Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
TN, USA, https://doi.org/10.3334/CDIAC/00001_V2017, 2017.
Bouwman, A. F., Van der Hoek, K. W., Eickhout, B., and Soenario, I.: Exploring changes in world ruminant production systems, Agr. Syst., 84, 121–153, 2005.
BP: BP Statistical Review of World Energy 2016, available at:
http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
last access: 8 June 2017.
Brandt, A. R., Heath, G. A., Kort, E. A., O'Sullivan, F., Petron, G.,
Jordaan, S. M., Tans, P., Wilcox, J., Gopstein, A. M., Arent, D., Wofsy, S.,
Brown, N. J., Bradley, R., Stucky, G. D., Eardley, D., and Harriss, R.:
Methane Leaks from North American Natural Gas Systems, Science, 343,
733–735, 2014.
Bun, R., Hamal, K. H., Gusti, M., and Bun, A.: Spatial GHG inventory on
regional level: Accounting for uncertainty, Climatic Change, 103, 227–244,
2010.
Carlson, D. and Oda, T.: Editorial: Data publication – ESSD goals,
practices and recommendations, Earth Syst. Sci. Data, 10, 2275–2278,
https://doi.org/10.5194/essd-10-2275-2018, 2018.
CIA: Central Intelligence Agency, The World Fact Book, Washington DC, available at: http://www.cia.gov/library/publications/the-world-factbook (last access: 30 April 2017), 2016.
Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova,
K., Muntean, M., Van Dingenen, R., and Granier, C.: Forty years of
improvements in European air quality: regional policy-industry interactions
with global impacts, Atmos. Chem. Phys., 16, 3825–3841,
https://doi.org/10.5194/acp-16-3825-2016, 2016a.
Crippa, M., Janssens-Maenhout, G., Guizzardi, D., and Galmarini, S: EU
effect: Exporting emission standards for vehicles through the global market
economy, J. Environ. Manage., 183, 959–971,
https://doi.org/10.1016/j.jenvman.2016.09.068, 2016b
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van
Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and
Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period
1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013,
https://doi.org/10.5194/essd-10-1987-2018, 2018.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E. Muntean, M.,
Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: Towards time
varying emissions: development of high resolution temporal profiles in the
Emissions Database for Global Atmospheric Research, Sci. Total Environ.,
STOTEN-D-19-06014, submitted, 2019.
Denier van der Gon, H. A. C., Bergström, R., Fountoukis, C., Johansson,
C., Pandis, S. N., Simpson, D., and Visschedijk, A. J. H.: Particulate
emissions from residential wood combustion in Europe – revised estimates and
an evaluation, Atmos. Chem. Phys., 15, 6503–6519,
https://doi.org/10.5194/acp-15-6503-2015, 2015.
Dentener, F., Drevet, J., Lamarque, J., Bey, I., Eickhout, B., Fiore, A. M.,
Hauglustaine, D., Horowitz, L., Krol, M., and Kulshrestha, U.: Nitrogen and
sulfur deposition on regional and global scales: a multimodel evaluation,
Global Biogeochem. Cy., 20, GB4003, https://doi.org/10.1029/2005GB002672, 2006.
Ding, J., Miyazaki, K., van der A, R. J., Mijling, B., Kurokawa, J.-I., Cho,
S., Janssens-Maenhout, G., Zhang, Q., Liu, F., and Levelt, P. F.:
Intercomparison of NOx emission inventories over East Asia,
Atmos. Chem. Phys., 17, 10125–10141, https://doi.org/10.5194/acp-17-10125-2017, 2017.
Doorn, M. J. and Liles, D. S.: Quantification of methane emissions and discussion of nitrous oxide, and ammonia emissions from septic tanks, latrines, and stagnant open sewers in the world, EPA, Washington, EPA report EPA-600/R-99-089, October 1999.
Doorn, M. R. J., Strait, R. P., Barnard, W. R., and Eklund, B.: Estimates of global greenhouse-gas emissions from industrial and domestic waste water treatment, Report no. NRMRL-RTP-086. R 8/18/97, Pechan & Ass., Durham, 1997.
EC-JRC/PBL, European Commission, Joint Research Centre (JRC)/Netherlands
Environmental Assessment Agency (PBL): Emission Database for Global
Atmospheric Research (EDGAR), release EDGAR version 4.2, available at:
http://edgar.jrc.ec.europa.eu/overview.php?v=42 (last access:
31 December 2017), 2011.
EEA: EMEP-EEA emission inventory guidebook, European Environment Agency, available at:
https://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009
(last access: 8 June 2019), 2009.
EEA: EMEP-EEA emission inventory guidebook, European Environment Agency,
available at:
https://www.eea.europa.eu/publications/emep-eea-guidebook-2013 (last
access: 8 June 2019), 2013.
EIA: International Energy Statistics, U.S. Energy Information Administration,
Washington DC, USA, available at:
http://www.eia.doe.gov/emeu/international/contents.html, last access:
30 October 2014.
EIA: Shale gas and tight oil are commercially produced in just four
countries, Today in Energy, 13 February 2015, available at:
http://www.eia.gov/todayinenergy/detail.cfm?id=19991, last access:
30 October 2015.
Elvidge, C. D., Zhizhin, M., Baugh, B., Hsu, T.-C., and Ghosh, T.: Methods
for Global Survey of Natural Gas Flaring from Visible Infrared Imaging
Radiometer Suite Data, Energies, 9, 14, https://doi.org/10.3390/en9010014, 2016.
EPRTR: European Pollutant Transfer Register, database version v4.2, available
at: http://prtr.ec.europa.eu/ (last access: 30 October 2017), 2012.
FAO Geonetwork: Digital Soil Map of the world and Digital Climate Map of the world, Food and Agriculture Organisation of the UN, available at: http://www.fao.org/geonetwork/srv/en/main.home, (last access: 30 April 2017), 2011.
FAOSTAT: Statistics Division of the Food and Agricultural Organisation of the
UN, Live animal numbers, crop production, total nitrogen fertiliser
consumption statistics till 2012, available at:
http://www.fao.org/faostat/en/#home, last access: 30 October 2014.
Feenstra, R. C., Inklaar, R., and Timmer, M.: The Next Generation of the Penn
World Table, NBER Working Paper no. 19255, available at:
http://cid.econ.ucdavis.edu/pwt.html (last access: 8 June 2019), 2013.
Ganesan, A. L., Manning, A. J., Grant, A., Young, D., Oram, D. E., Sturges,
W. T., Moncrieff, J. B., and O'Doherty, S.: Quantifying methane and nitrous
oxide emissions from the UK and Ireland using a national-scale monitoring
network, Atmos. Chem. Phys., 15, 6393–6406, https://doi.org/10.5194/acp-15-6393-2015,
2015.
Gately, C. K. and Hutyra, L. R.: Large uncertainties in Urban-Scale Carbon
Emissions, J. Geophys. Res.-Atmos., 122, 11242–11260,
https://doi.org/10.1002/2017JD027359, 2017.
Goldewijk, K., van Drecht, G., and Bouwman, A: Mapping contemporary global cropland and grassland distribution on a 5×5 minute resolution, Journal of Land Use Science, 2, 167–190, 2007.
Grassi, G., House, J., Kurz, W., Cescatti, A., Houghton, R. A., Peters, G.
P., Sanz, M. J., Viñas, R. A., Alkama, R., Arneth, A., Bondeau, A.,
Dentener, F., Fader, M., Federici, S., Friedlingstein, P., Jain, A. K., Kato,
E., Koven, C. D., Lee, D., Nabel, J. E. M. S., Nassikas, A. A., Perugini, L.,
Rossi, S., Sitch, S., Viovy, N., Wiltshire, A., and Zaehle, S.: Reconciling
global-model estimates and country reporting of anthropogenic forest
CO2 sinks, Nat. Clim. Change, 8, 914–920,
https://doi.org/10.1038/s41558-018-0283-x, 2018.
Guan, D., Liu, A., Geng, Y., Lindner, S., Hubacek, K.: The gigatonne gap in
China's carbon dioxide inventories, Nat. Clim. Change, 2, 672–675,
https://doi.org/10.1038/NCLIMATE1560, 2012
Gupta, S., Mohan, K., Prasad, R. K., Gupta, S., and Kansal, A.: Solid waste management in India: options and opportunities, Resour. Conserv. Recy., 24, 137–154, 1998.
Gütschow, J., Jeffery, M. L., Gieseke, R., Gebel, R., Stevens, D., Krapp,
M., and Rocha, M.: The PRIMAP-hist national historical emissions time series,
Earth Syst. Sci. Data, 8, 571–603, https://doi.org/10.5194/essd-8-571-2016, 2016.
Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W., Bamberger,
I., Meinhardt, F., Steinbacher, M., and Emmenegger, L.: Validation of the
Swiss methane emission inventory by atmospheric observations and inverse
modelling, Atmos. Chem. Phys., 16, 3683–3710,
https://doi.org/10.5194/acp-16-3683-2016, 2016.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G.,
Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T.
C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z.,
Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014)
anthropogenic emissions of reactive gases and aerosols from the Community
Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408,
https://doi.org/10.5194/gmd-11-369-2018, 2018.
Höglund-Isaksson, L.: Global anthropogenic methane emissions 2005–2030:
technical mitigation potentials and costs, Atmos. Chem. Phys., 12,
9079–9096, https://doi.org/10.5194/acp-12-9079-2012, 2012.
Höglund-Isaksson, L.: Bottom-up simulations of methane and ethane
emissions from global oil and gas systems 1980 to 2012, Environ. Res. Lett.,
12, 024007, https://doi.org/10.1088/1748-9326/aa583e, 2017.
Höglund-Isaksson, L., Winiwarter, W., Wagner, F., Klimont, Z., and Amann,
M.: Potentials and costs for mitigation of non-CO2 greenhouse gas emissions
in the European Union until 2030: Results, Report to the European Commission,
DG Climate Action, Contract No. 07.030700/2009/545854/SER/C5, available at:
http://pure.iiasa.ac.at/id/eprint/9396/, last access: May 2010.
Höglund-Isaksson, L., Thomson, A., Kupiainen, K., Rao, S., and Janssens-Maenhout, G.:
Chapter 5: Anthropogenic methane sources, emissions and future projections, in: AMAP Assessment
2015: Methane as an Arctic climate forcer, Arctic Monitoring and Assessment Programme (AMAP), Oslo, 2015.
Hogue, S., Marland, E., Andres, R. J., Marland, G., and Woodard, D.:
Uncertainty in gridded CO2 emissions estimates, Earth's Future, 4, 225–239,
https://doi.org/10.1002/2015EF000343, 2016.
Hooghiemstra, P. B., Krol, M. C., Meirink, J. F., Bergamaschi, P., van der
Werf, G. R., Novelli, P. C., Aben, I., and Röckmann, T.: Optimizing
global CO emission estimates using a four-dimensional variational data
assimilation system and surface network observations, Atmos. Chem. Phys., 11,
4705–4723, https://doi.org/10.5194/acp-11-4705-2011, 2011.
Huang, G., Brook, R., Crippa, M., Janssens-Maenhout, G., Schieberle, C.,
Dore, C., Guizzardi, D., Muntean, M., Schaaf, E., and Friedrich, R.:
Speciation of anthropogenic emissions of non-methane volatile organic
compounds: a global gridded data set for 1970–2012, Atmos. Chem. Phys., 17,
7683–7701, https://doi.org/10.5194/acp-17-7683-2017, 2017.
Huang, G., Schieberle, C., and Friedrich, R.: Mapping and integration of
temporal profiles in the EDGAR system, JRC specific contract No. 2
implementing FC 389299, Final report, University Stuttgart, Stuttgart,
Germany, 2018.
Husain, T.: Kuwaiti oil fires -– Source estimate and plume characterization, Atmos. Environ., 28, 2149–2158, https://doi.org/10.1016/1352-2310(94)90357-3, 1994.
IAI: International Aluminium Institute, Report on Aluminum industry's global gas emissions reduction programme. Results of the 2004/2006 anode effect survey, London, UK,, available at: http://www.world-aluminium.org/statistics/ (last access: 30 April 2017), 2008.
IEA: Energy Balances of OECD and non-OECD countries, International Energy
Agency, Paris, Beyond 2020 Online Database, available at:
http://data.iea.org, last access: 30 October 2014.
IEA: World Energy Balances 2016, International Energy Agency, Paris,
ISBN 978-92-64-26311-6, 2016.
IFA: International Ferilizer Industry Organisation, Historical production, trade and consumption statistics, available at: http://www.fertilizer.org//En/Statistics/PIT_Excel_Files.aspx (last access: 30 April 2017), 2015.
IIASA: GAINS model. Greenhouse Gas – Air Pollution Interactions and Synergies, International Institute for Applied Systems Analysis, available at: http://gains.iiasa.ac.at/models/index.html (last access: 30 April 2017), 2007.
IMA: The Magnesium Diecasters Guide 1999, Vol. III, version 23, available at https://www.intlmag.org/store/default.aspx (last access: 30 April 2017), February 1999.
IPCC: Climate Change: The IPCC Scientific Assessment 1990, Report prepared
for Intergovernmental Panel on Climate Change by Working Group I – First
Assessment Report, edited by: Houghton, J. T., Jenkins, G. J., and Ephraums,
J. J., Cambridge, 1990.
IPCC: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories
IPCC/OECD/ IEA, Paris, 1996a.
IPCC: Climate Change 1995: The Science of Climate Change – A Contribution of
Working Group I to the Second Assessment Report, edited by: Houghton, J.
T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K., Cambridge, 1996b.
IPCC: Good Practice Guidance and Uncertainty Management in National
Greenhouse Gas Inventories, IPCC-TSU NGGIP, Japan, 2000.
IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, edited
by: Eggleston, S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., (prepared by the National Greenhouse Gas Inventory Programme), published by the Institute for Global Environmental Strategies, Hayama, Japan, IPCC-TSU
NGGIP, IGES, Hayama, Japan, 2006a.
IPCC: 2006 Guidelines for National Greenhouse Gas Inventories: Volume 1:
General Guidance and Reporting, Chapter 8: Reporting Guidance and Tables by Sanz Sánchez, M. J., Bhattacharya, S., and Mareckova, K., IGES, Hayama, Japan, 2006b.
IPCC: Appendix A: IPCC Source/Sink Categories and Fuel Categories, EFDB User
Manual, 39–53, available at:
http://www.ipcc-nggip.iges.or.jp/EFDB/documents/EFDB_User_Manual_A-D.pdf
(last access: 30 April 2017), 2006c.
IPCC: Guidelines for National Greenhouse Gas Inventory, Volume 5: Waste,
available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html
(last access: October 2016), 2006d.
IPCC: AR4, Climate Change 2007: The Physical Science Basis. Cotnribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen,
Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Chapter 2:
Changes in Atmospheric Constitutents and in Radiative Forcing by Foster, P.,
Ramasamy, V., Artaxo, T., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J.,
Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz,
M., and Van Dorland, R., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, 2007.
IPCC: AR5, Climate Change 2014: Mitigation. Contribution of Working Group III
to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani,
E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier,
P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel,
T., and Minx, J. C., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2014.
IRRI: World Rice statistics. Distribution of rice crop area by environment, International Rice Research Institute, https://www.irri.org/resources-and-tools/publications (last access: 30 April 2017), 2007.
Janssens-Maenhout, G., Pagliari, V., Guizzardi, D., and Muntean, M.: Global
emission inventories in the Emission Database for Global Atmospheric Research
(EDGAR) – Manual (I): Gridding: EDGAR emissions distribution on global
grid-maps, JRC Report, EUR 25785 EN, ISBN 978-92-79-28283-6,
https://doi.org/10.2788/81454, 2013.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M.,
Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier
van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi,
B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid
maps for 2008 and 2010 to study hemispheric transport of air pollution,
Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E.,
Olivier, J. G. J., Peters, J. A. H. W., and Schure, K. M.: Fossil CO2
and GHG emissions of all world countries, EUR 28766 EN, Publications Office
of the EU, Luxembourg, PDF ISBN 978-92-79-73207-2, https://doi.org/10.2760/709792,
2017.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., and Schaaf,
E.: Emissions Database for Global Atmospheric Research, version v4.3.2 part I
Greenhouse gases (Version v4.3.2 Greenhouse gases) [Data set], Earth System
Science Data, Zenodo, https://doi.org/10.5281/zenodo.2658138, also accessible on the EDGAR website: https://edgar.jrc.ec.europa.eu/overview.php?v=432_GHG&SECURE=123 (last access: 31 December 2018), 2019.
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones,
L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der
Werf, G. R.: Biomass burning emissions estimated with a global fire
assimilation system based on observed fire radiative power, Biogeosciences,
9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel,
P. B., Lamarque, J. F., Langenfelds, R. L., Le Quéré, C., Naik, V.,
O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R.
G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T.,
Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa,
S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F.,
Williams, J. E., and Zeng, G.: Three decades of global methane sources and
sinks, Nat. Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013.
Kort, E. A., Eluszkiewicz, J., Stephens, B. B., Miller, J. B., Gerbig, C.,
Nehrkorn, T., Daube, B. C., Kaplan, J. O., Houweling, S., and Wofsy, S. C.:
Emissions of CH4 and N2O over the United States and Canada based on a
receptor-oriented modeling framework and COBRA-NA atmospheric observations,
Geophys. Res. Lett., 35, L18808, https://doi.org/10.1029/2008GL034031, 2008.
Leip, A., Britz, W., Weiss, F., and de Vries, W.: Farm, land, and soil
nitrogen budgets for agriculture in Europe calculated with CAPRI, Environ.
Pollut., 159, 3243–3253, https://doi.org/10.1016/j.envpol.2011.01.040, 2011.
Lelieveld, J., Lechtenbohmer, S., Assonov, S. S., Brenninkmeijer, C. A. M.,
Dienst, C., Fischedick, M., and Hanke, T.: Greenhouse gases: Low methane
leakage from gas pipelines, Nature, 434, 841–842, https://doi.org/10.1038/434841a,
2005.
Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken,
J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R.
A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp,
L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney,
S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V.,
Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A.,
Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi,
D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R.,
Nabel, J. E. M. S., Nakaoka, S.-I., O'Brien, K., Olsen, A., Omar, A. M., Ono,
T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U.,
Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A.
J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van
der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.:
Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649,
https://doi.org/10.5194/essd-8-605-2016, 2016.
Li, C., Qiu, J., Frolking, S., Xiao, X., Salas, W., Moore, B., Boles, S.,
Huang, Y., and Sass, R.: Reduced methane emissions from large-scale changes
in water management of China's rice paddies during 1980–2000, Geophys. Res.
Lett., 29, 1972, https://doi.org/10.1029/2002GL015370, 2002.
Liu, F., Choi, S., Li, C., Fioletov, V. E., McLinden, C. A., Joiner, J.,
Krotkov, N. A., Bian, H., Janssens-Maenhout, G., Darmenov, A. S., and da
Silva, A. M.: A new global anthropogenic SO2 emission inventory for the last
decade: a mosaic of satellite-derived and bottom-up emissions, Atmos. Chem.
Phys., 18, 16571–16586, https://doi.org/10.5194/acp-18-16571-2018, 2018.
Liu, Z., Guan, D., Wei, W., Davis, S. J., Ciais, P., Bai, J., Peng, S.,
Zhang, Q., Hubacek, K., Marland, G., Andres, R. J., Crawford-Brown, D., Lin,
J., Zhao, H., Hong, C., Boden, T. A., Feng, K., Peters, G. P., Xi, F., Liu,
J., Li, Y., Zhao, Y., Zeng, N., and He, K.: Reduced carbon emission estimates
from fossil fuel combustion and cement production in China, Nature, 524,
335–338, https://doi.org/10.1038/nature14677, 2015.
Lyon, D. R., Zavala-Araiza, D., Alvarez, R. A., Harriss, R., Palacios, V.,
Lan, X., Talbot, R., Lavoie, T., Shepson, P., Yacovitch, T. I., Herndon, S.
C., Marchese, A. J., Zimmerle, D., Robinson, A. L., and Hamburg, S. P.:
Constructing a Spatially Resolved Methane Emission Inventory for the Barnett
Shale Region, Environ. Sci. Technol., 49, 8147–8157,
https://doi.org/10.1021/es506359c, 2015.
Marcogaz: Technical statistics 01-01-2013, technical sheet of Marcogaz
technical association of the European natural gas industry, available at:
https://www.marcogaz.org/app/download/7719248963/Technical_statistics_01-01-2013_revision_on_15-09-2014_-_WEB_VERSION.pdf?t=_1529588711
(last access: 30 April 2017), 2013
Marland, G., Brenkert, A., and Olivier, J.: CO2 from fossil fuel
burning: A comparison of ORNL and EDGAR estimates of national emissions,
Environ. Sci. Policy, 2, 265–274, 1999.
Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E.,
Biraud, S. C., Dlugokencky, E. J., Eluszkiewicz, J., Fischer, M. L.,
Janssens-Maenhout, G., Miller, B. R., Miller, J. B., Montzka, S. A.,
Nehrkorn, T., and Sweeney, C.: Anthropogenic emissions of methane in the
United States, P. Natl. Acad. Sci. USA, 110, 20018–20022,
https://doi.org/10.1073/pnas.1314392110, 2013.
Monteil, G., Houweling, S., Dlugockenky, E. J., Maenhout, G., Vaughn, B. H.,
White, J. W. C., and Rockmann, T.: Interpreting methane variations in the
past two decades using measurements of CH4 mixing ratio and isotopic
composition, Atmos. Chem. Phys., 11, 9141–9153,
https://doi.org/10.5194/acp-11-9141-2011, 2011.
Muntean, M., Janssens-Maenhout, G., Song, S., Selin, N. E., Olivier, J. G.
J., Guizzardi, D., Maas, R., and Dentener, F.: Trend analysis from 1970 to
2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury
emissions, Sci. Total Environ., 494–495, 337–350, 2014.
Muntean, M., Janssens-Maenhout, G., Song, S., Giang, A., Selin, N. E., Zhong,
H., Zhao, Y., Olivier, J. G. J., Guizzardi, D., Crippa, M., Schaaf, E., and
Dentener, F.: Evaluating EDGARv4.tox2 speciated mercury emissions ex-post
scenarios and their impacts on modelled global and regional wet deposition
patterns, Atmos. Environ., 184, 56–68, 2018.
NOAA-NGDC, National Oceanic & Atmospheric Administration, National Centers
for Environmental Information, Image and Data processing by NOAA's National
Geophysical Data Center: Visible Infrared Imaging Radiometer Suite (VIIRS),
available at: https://www.ngdc.noaa.gov/eog/viirs.html (last access: 30 April 2017), 2015.
Oda, T. and Maksyutov, S.: A very high-resolution (1 km × 1 km)
global fossil fuel CO2 emission inventory derived using a point
source database and satellite observations of nighttime lights, Atmos. Chem.
Phys., 11, 543–556, https://doi.org/10.5194/acp-11-543-2011, 2011.
Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data Inventory for
Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil
fuel CO2 gridded emissions data product for tracer transport
simulations and surface flux inversions, Earth Syst. Sci. Data, 10, 87–107,
https://doi.org/10.5194/essd-10-87-2018, 2018.
Olivier, J. G. J.: On the Quality of Global Emission Inventories, Approaches,
Methodologies, Input Data and Uncertainties, PhD thesis, Utrecht University,
ISBN 90-393-3103-0, 2002.
Olivier, J. G. J. and Janssens-Maenhout, G.: CO2 Emissions from Fuel
Combustion – 2016 Edition, IEA CO2 report 2016, Part III,
Greenhouse-Gas Emissions, ISBN 978-92-64-25856-3, 2016.
Olivier, J. G. J., Bouwman, A. F., Van der Maas, C. W. M., Berdowski, J. J.
M., Veldt, C., Bloos, J. P. J., Visschedijk, A. J. H., Zandveld, P. Y. J.,
and Haverslag, J. L.: Description of EDGAR Version 2.0: A set of global
emission inventories of greenhouse gases and ozone depleting substances for
all anthropogenic and most natural sources on a per country basis and on
1∘,× 1∘ grid, RIVM Techn. Report nr. 771060002,
TNO-MEP report nr. R96/119, Nat. Inst. Of Public Health and the
Environment/Netherlands Organisation for Applied Scientific Research,
Bilthoven, the Netherlands, 1996.
Olivier, J. G. J., van Aardenne, J. A., Monni, S., Döring, U. M., Peters,
J. A. H. W., and Janssens-Maenhout, G.: Application of the IPCC uncertainty
methods to EDGAR v4.1 global greenhouse gas inventories, in: Proceedings 3rd
International Workshop on Uncertainty in Greenhouse Gas Inventories, Lviv,
September 2010, 219–226, ISBN: 978-966-8460-81-4, 2010.
Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M., and Peters, J. A. H.
W.: Trends in global CO2 emissions: 2014 report, European Commission – PBL Netherlands Environmental Assessment Agency, The Hague, JRC93171/PBL1490 report, ISBN 978-94-91506-87-1, 2014.
Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M., and Peters, J. A. H.
W.: Trends in global CO2 emissions: 2015 report, European Commission – PBL Netherlands Environmental Assessment Agency, The Hague, JRC 98184, 2015.
Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M., and Peters, J. A. H.
W.: Trends in global CO2 emissions: 2016 report, European Commission – PBL Netherlands Environmental Assessment Agency, The Hague, JRC 103425, 2016.
Oonk, H.: Literature Review: Methane from landfills: Methods to quantify generation oxidation and emission, Report of OonKAY Innovations in Env. Techn. Co., available at: http://www.waste.ccacoalition.org/file/1854/download?token=I2f1s17k (last access: 30 October 2014), 2010.
Paruolo, P., Murphy, B., and Janssens-Maenhout, G.: Do emissions and income
have a common trend? A country-specific, time-series, global analysis,
1970–2008, Stoch. Env. Res. Risk A., 29, 93–107,
https://doi.org/10.1007/s00477-014-0929-9, 2015.
Peischl, J., Ryerson, T. B., Aikin, K. C., De Gouw, J. A., Gilman, J. B.,
Holloway, J. S., Lerner, B. M., Nadkarni, R., Neuman, J. A., Nowak, J. B.,
Trainer, M., Warneke, C., and Parrish, D. D.: Quantifying atmospheric methane
emissions from the Haynesville, Fayetteville, and northeastern Marcellus
shale gas production regions, J. Geophys. Res.-Atmos., 120, 2119–2139,
https://doi.org/10.1002/2014JD022697, 2015.
Peng, S., Piao, S., Bousquet, P., Ciais, P., Li, B., Lin, X., Tao, S., Wang,
Z., Zhang, Y., and Zhou, F.: Inventory of anthropogenic methane emissions in
mainland China from 1980 to 2010, Atmos. Chem. Phys., 16, 14545–14562,
https://doi.org/10.5194/acp-16-14545-2016, 2016.
Petrescu, A. M. R., Abad-Viñas, R., Janssens-Maenhout, G., Blujdea, V. N.
B., and Grassi, G.: Global estimates of carbon stock changes in living forest
biomass: EDGARv4.3 – time series from 1990 to 2010, Biogeosciences, 9,
3437–3447, https://doi.org/10.5194/bg-9-3437-2012, 2012.
Pozzer, A., Zimmermann, P., Doering, U. M., van Aardenne, J., Tost, H.,
Dentener, F., Janssens-Maenhout, G., and Lelieveld, J.: Effects of
business-as-usual anthropogenic emissions on air quality, Atmos. Chem. Phys.,
12, 6915–6937, https://doi.org/10.5194/acp-12-6915-2012, 2012.
Pulles, T.: Twenty-five years of emission inventorying, Carbon Manag., 9,
1–5, https://doi.org/10.1080/17583004.2018.1426970, 2018.
RFA Renewable Fuels Association: World fuel ethanol production, available at: http://www.ethanolrfa.org/resources/industry/statistics/#1454099271060-171d2f93-158a, last access: 31 October 2016.
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.
G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S.,
Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe,
M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Brailsford,
G., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Frankenberg, C.,
Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim,
H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli,
R., Machida, T., Maksyutov, S., Melton, J. R., Morino, I., Naik, V.,
O'Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng, C., Peng, S.,
Peters, G. P., Pison, I., Prinn, R., Ramonet, M., Riley, W. J., Saito, M.,
Santini, M., Schroeder, R., Simpson, I. J., Spahni, R., Takizawa, A.,
Thornton, B. F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., Weiss,
R., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y.,
Zhang, B., Zhang, Z., and Zhu, Q.: Variability and quasi-decadal changes in
the methane budget over the period 2000–2012, Atmos. Chem. Phys., 17,
11135–11161, https://doi.org/10.5194/acp-17-11135-2017, 2017.
Schneider, L., Lazarus, M., and Kollmuss, A.: Industrial N2O Projects
under CDM: Adipic Acid – A Case of Carbon Leakage?, Report WP-US-1006,
Washington DC, Stockholm Environment Institute, 2010.
Sharholy, M., Ahmad, K., Mahmood, G., and Trivedi, R. C.: Municipal solid waste management in Indian cities – A review, Waste Manage., 28, 459–467, 2008.
Solazzo, E. and Galmarini, S.: Comparing apples with apples: Using spatially
distributed time series of monitoring data for model evaluation, Atmos.
Environ., 112, 234–245, 2015.
Theloke, J., Thiruchittampalam, B., Orlikova, S., Uzbasich, M., and Gauger,
T.: Methodology development for the spatial distribution of the diffuse
emissions in Europe, University Stuttgart IER report, under EC contract
070307/2009/548773/SER/C4, 2011.
Tian, H.: Global methane and nitrous oxide emissions from terrestrial
ecosystems due to multiple environmental changes, Ecosystem Health and
Sustainability, 1, 1–20, https://doi.org/10.1890/EHS14-0015.1, 2015.
Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J.G., Jackson, R.B., Arneth,
A., Chang, J., Chen, G., Ciais, P., Gerber, S., Ito, A., Huang, Y., Joos, F.,
Lienert, S., Messina, P., Olin, S., Pan, S., Peng, C., Saikawa, E., Thompson,
R., Vuichard, N., Winiwarter, W., Zaehle, S., Zhang, B., Zhang, K., and Zhu,
Q.: The Global N2O Model Intercomparison Project, B. Am. Meteorol.
Soc., 99, 1231–1251, https://doi.org/10.1175/BAMS-D-17-0212.1, 2018.
Tubiello, F. N., Salvatore, M., Ferraa, A. F., House, J., Federici, S.,
Rossi, S., Biancalani, R., Condor Golec, R. D., Jacobs, H., Flammini, A.,
Prosperi, P., Cardenas-Galindo, P., Schmidhuber, J., Sanz Sanchez, M. J.,
Srivastava, N., and Smith, P.: The Contribution of Agriculture, Forestry and
other Land Use activities to Global Warming, 1990–2012, Glob. Change Biol.,
21, 2655–2660, https://doi.org/10.1111/gcb.12865, 2015.
UN Comtrade: United Nations, Department of Economic and Social Affairs, Statistics Division, International Trade Statistics Database, available at: https://comtrade.un.org/data (last access: 30 April 2017), 2016.
UN DP: World Urbanization Prospects: The 2014 Revision, United Nations, Department of Economic and Social Affairs, Population Division, CD-ROM edn., 2014.
UN DP: World Population Prospects: The 2015 Revision, United Nations, Department of Economic and Social Affairs, Population Division, DVD edn., 2015.
UNEP: The Emissions Gap Report 2012, Appendix 1, United Nations Environment Programme (UNEP), Nairobi, 2012.
UNEP: The Emissions Gap Report 2015, United Nations Environment Programme (UNEP), Nairobi, 2015.
UNEP DTU: Clean Development Mechanisms/Joint Implementation
Pipeline Analysis and Database, Copenhagen, 2011.
UNEP Risø Centre: Clean Developing Mechanisms/Joint Implementation Pipeline Analysis and Database, available at: http://cdmpipeline.org/ (last access: 30 April 2017), 2011.
UNFCCC: The Kyoto Protocol to the United Nations Framework Convention on
Climate Change, Conference of Parties to the UNFCCC (COP 3),
Kyoto, 11 December 1997.
UNFCCC: Submitted National Communications from Non-Annex I Parties, available at: https://unfccc.int/resource/docs/natc/chnnc1e.pdf (last access: 30 October 2014), 2004.
UNFCCC: Submitted National Communications from Non-Annex I Parties, available at: https://unfccc.int/resource/docs/natc/chnnc2e.pdf (last access: 30 October 2014), 2012.
UNFCCC: National Inventory Report, submissions of the greenhouse gas
inventories for Annex I countries, available at:
http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/7383.php (last access: 30 October 2014), 2014.
UNFCCC: The Paris Agreement, done at: COP 21 (the 21st meeting of the
Conference of the Parties, which guides the Conference), Paris, 12 December 2015.
UNFCCC: National Inventory Report, submissions of the greenhouse gas inventories for Annex I countries,
available at: http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/9492.php
(last access: 30 October 2016), 2016.
UNFCCC: Submitted Biennial Update Reports from Non-Annex I Parties, 2017.
UN HABITAT: UN Human Settlements Programme, Global Urban Indicators database, Nairobi, info on population in slums (% of urban population). Available at: http://mirror.unhabitat.org/stats/Default.aspx (last access: 30 April 2017), 2016a.
UN HABITAT: UN Human Settlements Programme, World Atlas of Slum Evolution 2015, Nairobi, available at: http://unhabitat.org/world-atlas-of-slum-evolution/ (last access: 30 April 2017), 2016b.
UN STATS: UN Statistics Division, Industrial Commodity Production Statistics 1970–2013, available at: http://unstats.un.org/unsd/industry/publications.asp (last access: 30 April 2017), 2014.
US DA: US Department of Agriculture, Biofuel Annuals. GAIN Reports for Argentina, Brasil (Sugar Annual), China, India, Indonesia, Malaysia, Peru, Philippines and Thailand, available at: https://gain.fas.usda.gov/Pages/Default.aspx (last access: 30 April 2017), 2014.
US EPA: Global Anthropogenic Non-CO2 Greenhouse Gas Emissions:
1990–2030, US Environmental Protection Agency, EPA report 430-R-12-002,
190 pp., available at:
https://19january2017snapshot.epa.gov/sites/production/files/2016-08/documents/epa_global_nonco2_projections_dec2012.pdf
(last access: 30 April 2017), 2012.
US EPA: 2011-2012-2013-2014 GHGRP Industrial Profiles. Petroleum and Natural
Gas Systems. US Environmental Protection Agency, available at:
http://www2.epa.gov/sites/production/files/2015-10/documents/subpart_w_2014_data_summary_10-05-2015_final.pdf
(last access: 30 April 2017), 2015.
USGS: US Geological Survey Minerals Yearbook, US Geological Survey, Reston,
Virginia, available at:
https://minerals.usgs.gov/minerals/pubs/commodity/ (last access:
30 October 2016), 2014.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10,
11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
van Dijk, P. M., Kuenzer, C., Zhang, J., Wolf, K. H. A. A., and Wang, J.:
Fossil fuel deposit fires, Occurrence Inventory, design and assessment of Instrumental Options. WAB report 500102021. PBL Netherlands Environmental Assessment Agency,
The Hague/Bilthoven, available at: https://www.pbl.nl/en/publications/2009/Fossil-Fuel-Deposit-Fires-Occurrence-Inventory-design-and-assessment-of-Instrumental-Options (last access: 30 April 2017), 2009.
Van Drecht, G., Bouwman, A. F., Harrison, J., and Knoop, J. M.: Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050, Global Biogeochem. Cy., 23, GB0A03, https://doi.org/10.1029/2009GB003458, 2009.
Wang, R., Tao, S., Ciais, P., Shen, H. Z., Huang, Y., Chen, H., Shen, G. F.,
Wang, B., Li, W., Zhang, Y. Y., Lu, Y., Zhu, D., Chen, Y. C., Liu, X. P.,
Wang, W. T., Wang, X. L., Liu, W. X., Li, B. G., and Piao, S. L.:
High-resolution mapping of combustion processes and implications for
CO2 emissions, Atmos. Chem. Phys., 13, 5189–5203,
https://doi.org/10.5194/acp-13-5189-2013, 2013.
WBCSD-CSI: World Business Council for Sustainable Development-Cement, http://www.wbcsdcement.org/GNR 2012/index.html (last access: 30 April 2017), 2015.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J.
A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a
high resolution global model to estimate the emissions from open burning,
Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
Winiwarter, W., Höglund-Isaksson, L., Klimont, Z., Schöpp, W., and
Amann, M.: Technical opportunities to reduce global anthropogenic emissions
of nitrous oxide, Environ. Res. Lett., 13, 014011,
https://doi.org/10.1088/1748-9326/aa9ec9, 2018.
World Bank: Population living in slums, info on urban population in slums, available at: http://data.worldbank.org/indicator/EN.POP.SLUM.UR.ZS, last access: 31 October 2016.
WSA: World Steel Association, Steel statistics, available at: https://www.worldsteel.org/steel-by-topic/statistics.html (last access: 30 April 2017), 2015.
Xi, F., Davis, S. J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., Shi,
T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Keun-Hyeok, Y.,
Lagerblad, B., Galan, I., Andrade, C., Zhang, Y., and Liu, Z.: Substantial
global carbon uptake by cement carbonation, Nat. Geosci., 9, 880–883,
https://doi.org/10.1038/NGEO2840, 2016.
Yevich, R. and Logan, J.: An assessment of biofuel use and burning of agricultural waste
in the developing world, Global Biogeochem. Cy., 17, 1095, https://doi.org/10.1029/2002GB001952, 2003.
Yu, W., Ma, M. M. Li, Z., Tan, J., and Wy, A.: New Scheme for Validating
Remote-Sensing Land Surface Temperature Products with Station Observations,
Remote Sensing, 9, 1210–2017, https://doi.org/10.3390/rs9121210, 2017.
Short summary
In support of the Paris Agreement, EDGARv4.3.2 provides global annual estimates, broken down into IPCC-compliant source-sector levels, from 1970 to 2012. The anthropogenic CO2, CH4 and N2O emissions were calculated bottom up with international statistics and emission factors for 226 countries and spatially distributed. EDGARv4.3.2 is input for the top-down modelling of the Global Carbon Project and EU policy-making, needing GHG emission estimates for each country at the climate negotiations.
In support of the Paris Agreement, EDGARv4.3.2 provides global annual estimates, broken down...
Altmetrics
Final-revised paper
Preprint