Review article 30 Jan 2019
Review article | 30 Jan 2019
An interactive atlas for marine biodiversity conservation in the Coral Triangle
Irawan Asaad et al.
Related authors
No articles found.
Ádám T. Kocsis, Qianshuo Zhao, Mark J. Costello, and Wolfgang Kiessling
Biogeosciences, 18, 6567–6578, https://doi.org/10.5194/bg-18-6567-2021, https://doi.org/10.5194/bg-18-6567-2021, 2021
Short summary
Short summary
Biodiversity is under threat from the effects of global warming, and assessing the effects of climate change on areas of high species richness is of prime importance to conservation. Terrestrial and freshwater rich spots have been and will be less affected by climate change than other areas. However, marine rich spots of biodiversity are expected to experience more pronounced warming.
Zeenatul Basher, David A. Bowden, and Mark J. Costello
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-64, https://doi.org/10.5194/essd-2018-64, 2018
Revised manuscript not accepted
Short summary
Short summary
GMED is a global marine environment dataset with climatic, biological and geophysical environmental layers of both present days, past and future environmental conditions. Data layers were compiled together into a uniform Geographic Informations System ready dataset having a similar extent and spatial resolution (5 arc-minute, approx. 9.2 km). The GMED dataset is ready to use with popular species distribution modeling (SDM) software and for any other marine environment visualization exercises.
Related subject area
Oceanography – Biological
The Plankton Lifeform Extraction Tool: a digital tool to increase the discoverability and usability of plankton time-series data
Collection and analysis of a global marine phytoplankton primary-production dataset
Weight-to-weight conversion factors for benthic macrofauna: recent measurements from the Baltic and the North Seas
The ADRIREEF database: a comprehensive collection of natural/artificial reefs and wrecks in the Adriatic Sea
Diets of the Barents Sea cod (Gadus morhua) from the 1930s to 2018
A global viral oceanography database (gVOD)
PhytoBase: A global synthesis of open-ocean phytoplankton occurrences
A long-term (1965–2015) ecological marine database from the LTER-Italy Northern Adriatic Sea site: plankton and oceanographic observations
A synthetic satellite dataset of the spatio-temporal distributions of Emiliania huxleyi blooms and their impacts on Arctic and sub-Arctic marine environments (1998–2016)
A 40-year global data set of visible-channel remote-sensing reflectances and coccolithophore bloom occurrence derived from the Advanced Very High Resolution Radiometer catalogue
Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set
Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications
KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926–2016
A trait database for marine copepods
Global ocean particulate organic carbon flux merged with satellite parameters
A compilation of global bio-optical in situ data for ocean-colour satellite applications
Data compilation on the biological response to ocean acidification: an update
CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters
Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean
Biogeography of key mesozooplankton species in the North Atlantic and egg production of Calanus finmarchicus
Biogeography of jellyfish in the North Atlantic, by traditional and genomic methods
A metadata template for ocean acidification data
Spatially explicit estimates of stock sizes, structure and biomass of herring and blue whiting, and catch data of bluefin tuna
A new compilation of stomach content data for commercially important pelagic fish species in the northeast Atlantic
Spatially explicit estimates of stock size, structure and biomass of North Atlantic albacore tuna (Thunnus alalunga)
Data compilation of fluxes of sedimenting material from sediment traps in the Atlantic Ocean
Global database of surface ocean particulate organic carbon export fluxes diagnosed from the 234Th technique
Distribution of known macrozooplankton abundance and biomass in the global ocean
Global marine plankton functional type biomass distributions: coccolithophores
The MAREDAT global database of high performance liquid chromatography marine pigment measurements
Distribution of mesozooplankton biomass in the global ocean
Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags
The global distribution of pteropods and their contribution to carbonate and carbon biomass in the modern ocean
A global diatom database – abundance, biovolume and biomass in the world ocean
Global marine plankton functional type biomass distributions: Phaeocystis spp.
Picoheterotroph (Bacteria and Archaea) biomass distribution in the global ocean
Picophytoplankton biomass distribution in the global ocean
EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification
Clare Ostle, Kevin Paxman, Carolyn A. Graves, Mathew Arnold, Luis Felipe Artigas, Angus Atkinson, Anaïs Aubert, Malcolm Baptie, Beth Bear, Jacob Bedford, Michael Best, Eileen Bresnan, Rachel Brittain, Derek Broughton, Alexandre Budria, Kathryn Cook, Michelle Devlin, George Graham, Nick Halliday, Pierre Hélaouët, Marie Johansen, David G. Johns, Dan Lear, Margarita Machairopoulou, April McKinney, Adam Mellor, Alex Milligan, Sophie Pitois, Isabelle Rombouts, Cordula Scherer, Paul Tett, Claire Widdicombe, and Abigail McQuatters-Gollop
Earth Syst. Sci. Data, 13, 5617–5642, https://doi.org/10.5194/essd-13-5617-2021, https://doi.org/10.5194/essd-13-5617-2021, 2021
Short summary
Short summary
Plankton form the base of the marine food web and are sensitive indicators of environmental change. The Plankton Lifeform Extraction Tool brings together disparate plankton datasets into a central database from which it extracts abundance time series of plankton functional groups, called
lifeforms, according to shared biological traits. This tool has been designed to make complex plankton datasets accessible and meaningful for policy, public interest, and scientific discovery.
Francesco Mattei and Michele Scardi
Earth Syst. Sci. Data, 13, 4967–4985, https://doi.org/10.5194/essd-13-4967-2021, https://doi.org/10.5194/essd-13-4967-2021, 2021
Short summary
Short summary
Data paucity hinders the understanding of natural processes such as phytoplankton production. Several studies stressed how the lack of data is the main constraint for modeling phytoplankton production. We created a global and ready-to-use dataset regarding phytoplankton production, collecting and processing data from several sources. We performed a general data analysis from a numerical and an ecological perspective. This dataset will help enhance the understanding of phytoplankton production.
Mayya Gogina, Anja Zettler, and Michael L. Zettler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-157, https://doi.org/10.5194/essd-2021-157, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
For the first time we publish taxonomically most detailed and robust data set of biomass conversion factors for macrozoobenthos, often required in broad range of studies. Georeferenced raw data for 497 taxa empowers the user to do best selections for combining with own data, aggregation can help to quantify natural variability and uncertainty, and refine current ecological theory. Standardized measurements were done on material collected for over two decades in the Baltic and the North Seas.
Annalisa Minelli, Carmen Ferrà, Alessandra Spagnolo, Martina Scanu, Anna Nora Tassetti, Carla Rita Ferrari, Cristina Mazziotti, Silvia Pigozzi, Zrinka Jakl, Tena Šarčević, Miranda Šimac, Claudia Kruschel, Dubravko Pejdo, Enrico Barbone, Michele De Gioia, Diego Borme, Emiliano Gordini, Rocco Auriemma, Ivo Benzon, Đeni Vuković-Stanišić, Sandi Orlić, Vlado Frančić, Damir Zec, Ivana Orlić Kapović, Michela Soldati, Silvia Ulazzi, and Gianna Fabi
Earth Syst. Sci. Data, 13, 1905–1923, https://doi.org/10.5194/essd-13-1905-2021, https://doi.org/10.5194/essd-13-1905-2021, 2021
Short summary
Short summary
This data paper describes a dataset of natural and artificial reefs and wrecks in the Adriatic Sea collected, from a survey, in the frame of the ADRIREEF Interreg project. Information about the identification of the reef and its physical characteristics, surrounding area, and management actions/facilities has been collected in order to create a very detailed dataset, which has been harmonized and published in the SEANOE repository (https://doi.org/10.17882/74880).
Bryony L. Townhill, Rebecca E. Holt, Bjarte Bogstad, Joël M. Durant, John K. Pinnegar, Andrey V. Dolgov, Natalia A. Yaragina, Edda Johannesen, and Geir Ottersen
Earth Syst. Sci. Data, 13, 1361–1370, https://doi.org/10.5194/essd-13-1361-2021, https://doi.org/10.5194/essd-13-1361-2021, 2021
Short summary
Short summary
A dataset on the diet of Atlantic cod in the Barents Sea from the 1930s to 2018 has been compiled to produce one of the largest fish diet datasets available globally. A top predator, cod plays a key role in the food web. The data from Norway, the United Kingdom and Russia include data from 2.5 million fish. Diets have changed considerably from the start of the dataset in the 1930s. This dataset helps us understand how the environment and ecosystems are responding to a changing climate.
Le Xie, Wei Wei, Lanlan Cai, Xiaowei Chen, Yuhong Huang, Nianzhi Jiao, Rui Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 13, 1251–1271, https://doi.org/10.5194/essd-13-1251-2021, https://doi.org/10.5194/essd-13-1251-2021, 2021
Short summary
Short summary
Viruses play key roles in marine ecosystems by killing their hosts, maintaining diversity and recycling nutrients. In the global viral oceanography database (gVOD), 10 931 viral abundance data and 727 viral production data, along with host and other oceanographic parameters, were compiled. It identified viral data were undersampled in the southeast Pacific and Indian oceans. The gVOD can be used in marine viral ecology investigation and modeling of marine ecosystems and biogeochemical cycles.
Damiano Righetti, Meike Vogt, Niklaus E. Zimmermann, Michael D. Guiry, and Nicolas Gruber
Earth Syst. Sci. Data, 12, 907–933, https://doi.org/10.5194/essd-12-907-2020, https://doi.org/10.5194/essd-12-907-2020, 2020
Short summary
Short summary
Phytoplankton sustain marine life, as they are the principal primary producers in the global ocean. Despite their ecological importance, their distribution and diversity patterns are poorly known, mostly due to data limitations. We present a global dataset that synthesizes over 1.3 million occurrences of phytoplankton from public archives. It is easily extendable. This dataset can be used to characterize phytoplankton distribution and diversity in current and future oceans.
Francesco Acri, Mauro Bastianini, Fabrizio Bernardi Aubry, Elisa Camatti, Alfredo Boldrin, Caterina Bergami, Daniele Cassin, Amelia De Lazzari, Stefania Finotto, Annalisa Minelli, Alessandro Oggioni, Marco Pansera, Alessandro Sarretta, Giorgio Socal, and Alessandra Pugnetti
Earth Syst. Sci. Data, 12, 215–230, https://doi.org/10.5194/essd-12-215-2020, https://doi.org/10.5194/essd-12-215-2020, 2020
Short summary
Short summary
The present paper describes a database containing observations for 21 parameters of abiotic, phytoplankton, and zooplankton data collected in the northern Adriatic Sea region (Italy) from 1965 to 2015. Due to the long temporal coverage, the majority of parameters changed collection and analysis method over time. These variations are reported in the database and detailed in the paper.
Dmitry Kondrik, Eduard Kazakov, and Dmitry Pozdnyakov
Earth Syst. Sci. Data, 11, 119–128, https://doi.org/10.5194/essd-11-119-2019, https://doi.org/10.5194/essd-11-119-2019, 2019
Short summary
Short summary
This paper presents a description of the original database of blooms of the calcifying phytoplankton in sub-Arctic and Arctic seas, their spatio-temporal features and associated environmental influences. This type of phytoplankton is efficient in decreasing the ability of the ocean to intake external carbon dioxide and hence amplifies the greenhouse effect. The published database can be used by a large community of users involved in studies of both aquatic ecology and carbon cycles.
Benjamin Roger Loveday and Timothy Smyth
Earth Syst. Sci. Data, 10, 2043–2054, https://doi.org/10.5194/essd-10-2043-2018, https://doi.org/10.5194/essd-10-2043-2018, 2018
Short summary
Short summary
A 40-year data set of ocean reflectance is derived from an atmospherically corrected climate quality record of top-of-atmosphere signals taken from the satellite-based AVHRR sensor. The data set provides a unique view of visible changes in the global ocean over timescales where climatic effects are demonstrable and spans coverage gaps left by more traditional satellite ocean colour sensors. It is particularly relevant to monitoring bright plankton blooms, such as coccolithophores.
Heather A. Bouman, Trevor Platt, Martina Doblin, Francisco G. Figueiras, Kristinn Gudmundsson, Hafsteinn G. Gudfinnsson, Bangqin Huang, Anna Hickman, Michael Hiscock, Thomas Jackson, Vivian A. Lutz, Frédéric Mélin, Francisco Rey, Pierre Pepin, Valeria Segura, Gavin H. Tilstone, Virginie van Dongen-Vogels, and Shubha Sathyendranath
Earth Syst. Sci. Data, 10, 251–266, https://doi.org/10.5194/essd-10-251-2018, https://doi.org/10.5194/essd-10-251-2018, 2018
Short summary
Short summary
The photosynthetic response of marine phytoplankton to available irradiance is a central part of satellite-based models of ocean productivity. This study brings together data from a variety of oceanographic campaigns to examine how the parameters of photosynthesis–irradiance response curves vary over the global ocean. This global synthesis reveals biogeographic, latitudinal and depth-dependent patterns in the photosynthetic properties of natural phytoplankton assemblages.
Emanuele Organelli, Marie Barbieux, Hervé Claustre, Catherine Schmechtig, Antoine Poteau, Annick Bricaud, Emmanuel Boss, Nathan Briggs, Giorgio Dall'Olmo, Fabrizio D'Ortenzio, Edouard Leymarie, Antoine Mangin, Grigor Obolensky, Christophe Penkerc'h, Louis Prieur, Collin Roesler, Romain Serra, Julia Uitz, and Xiaogang Xing
Earth Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, https://doi.org/10.5194/essd-9-861-2017, 2017
Short summary
Short summary
Autonomous robotic platforms such as Biogeochemical-Argo floats allow observation of the ocean, from the surface to the interior, in a new and systematic way. A fleet of 105 of these platforms have collected several biological, biogeochemical, and optical variables in still unexplored regions. The quality-controlled databases presented here will enable scientists to improve knowledge on the functioning of marine ecosystems and investigate the climatic implications.
Angus Atkinson, Simeon L. Hill, Evgeny A. Pakhomov, Volker Siegel, Ricardo Anadon, Sanae Chiba, Kendra L. Daly, Rod Downie, Sophie Fielding, Peter Fretwell, Laura Gerrish, Graham W. Hosie, Mark J. Jessopp, So Kawaguchi, Bjørn A. Krafft, Valerie Loeb, Jun Nishikawa, Helen J. Peat, Christian S. Reiss, Robin M. Ross, Langdon B. Quetin, Katrin Schmidt, Deborah K. Steinberg, Roshni C. Subramaniam, Geraint A. Tarling, and Peter Ward
Earth Syst. Sci. Data, 9, 193–210, https://doi.org/10.5194/essd-9-193-2017, https://doi.org/10.5194/essd-9-193-2017, 2017
Short summary
Short summary
KRILLBASE is a data rescue and compilation project to improve the availability of information on two key Southern Ocean zooplankton: Antarctic krill and salps. We provide a circumpolar database that combines 15 194 scientific net hauls (1926 to 2016) from 10 countries. These data provide a resource for analysing the distribution and abundance of krill and salps throughout the Southern Ocean to support ecological and biogeochemical research as well as fisheries management and conservation.
Philipp Brun, Mark R. Payne, and Thomas Kiørboe
Earth Syst. Sci. Data, 9, 99–113, https://doi.org/10.5194/essd-9-99-2017, https://doi.org/10.5194/essd-9-99-2017, 2017
Short summary
Short summary
We compiled data to understand the organization of marine zooplankton based on their fundamental traits, such as body size or growth rate, rather than based on species names. Zooplankton, and in particular the dominant crustacean copepods, are central to marine food webs and the carbon cycle. The data include 14 traits and thousands of copepod species and may be used for comparisons between species or communities and ultimately to inspire better large-scale models of planktonic ecosystems.
Colleen B. Mouw, Audrey Barnett, Galen A. McKinley, Lucas Gloege, and Darren Pilcher
Earth Syst. Sci. Data, 8, 531–541, https://doi.org/10.5194/essd-8-531-2016, https://doi.org/10.5194/essd-8-531-2016, 2016
Short summary
Short summary
Particulate organic carbon (POC) flux estimated from POC concentration observations from sediment traps and 234Th are compiled across the global ocean. By providing merged coincident satellite imagery products, the dataset can be used to link phytoplankton surface process with POC flux. Due to rapid remineralization within the first 500 m of the water column, shallow observations from 234Th supplement the more extensive sediment trap record.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Hervé Claustre, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford Hooker, Mati Kahru, Holger Klein, Susanne Kratzer, Hubert Loisel, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Alex J. Poulton, Michel Repecaud, Timothy Smyth, Heidi M. Sosik, Michael Twardowski, Kenneth Voss, Jeremy Werdell, Marcel Wernand, and Giuseppe Zibordi
Earth Syst. Sci. Data, 8, 235–252, https://doi.org/10.5194/essd-8-235-2016, https://doi.org/10.5194/essd-8-235-2016, 2016
Short summary
Short summary
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2012) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Y. Yang, L. Hansson, and J.-P. Gattuso
Earth Syst. Sci. Data, 8, 79–87, https://doi.org/10.5194/essd-8-79-2016, https://doi.org/10.5194/essd-8-79-2016, 2016
Short summary
Short summary
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation was initiated in 2008 and is updated on a regular basis. By January 2015, a total of 581 data sets (over 4,000,000 data points) from 539 papers had been archived.
B. Nechad, K. Ruddick, T. Schroeder, K. Oubelkheir, D. Blondeau-Patissier, N. Cherukuru, V. Brando, A. Dekker, L. Clementson, A. C. Banks, S. Maritorena, P. J. Werdell, C. Sá, V. Brotas, I. Caballero de Frutos, Y.-H. Ahn, S. Salama, G. Tilstone, V. Martinez-Vicente, D. Foley, M. McKibben, J. Nahorniak, T. Peterson, A. Siliò-Calzada, R. Röttgers, Z. Lee, M. Peters, and C. Brockmann
Earth Syst. Sci. Data, 7, 319–348, https://doi.org/10.5194/essd-7-319-2015, https://doi.org/10.5194/essd-7-319-2015, 2015
Short summary
Short summary
The CoastColour Round Robin (CCRR) project (European Space Agency) was designed to set up the first database for remote-sensing algorithm testing and accuracy assessment of water quality parameter retrieval in coastal waters, from satellite imagery. This paper analyses the CCRR database, which includes in situ bio-geochemical and optical measurements in various water types, match-up reflectance products from the MEdium Resolution Imaging Spectrometer (MERIS), and radiative transfer simulations.
R. Sauzède, H. Lavigne, H. Claustre, J. Uitz, C. Schmechtig, F. D'Ortenzio, C. Guinet, and S. Pesant
Earth Syst. Sci. Data, 7, 261–273, https://doi.org/10.5194/essd-7-261-2015, https://doi.org/10.5194/essd-7-261-2015, 2015
W. Melle, J. A. Runge, E. Head, S. Plourde, C. Castellani, P. Licandro, J. Pierson, S. H. Jónasdóttir, C. Johnson, C. Broms, H. Debes, T. Falkenhaug, E. Gaard, A. Gislason, M. R. Heath, B. Niehoff, T. G. Nielsen, P. Pepin, E. K. Stenevik, and G. Chust
Earth Syst. Sci. Data, 7, 223–230, https://doi.org/10.5194/essd-7-223-2015, https://doi.org/10.5194/essd-7-223-2015, 2015
P. Licandro, M. Blackett, A. Fischer, A. Hosia, J. Kennedy, R. R. Kirby, K. Raab, R. Stern, and P. Tranter
Earth Syst. Sci. Data, 7, 173–191, https://doi.org/10.5194/essd-7-173-2015, https://doi.org/10.5194/essd-7-173-2015, 2015
L.-Q. Jiang, S. A. O'Connor, K. M. Arzayus, and A. R. Parsons
Earth Syst. Sci. Data, 7, 117–125, https://doi.org/10.5194/essd-7-117-2015, https://doi.org/10.5194/essd-7-117-2015, 2015
Short summary
Short summary
With the rapid expansion of studies on biological responses of organisms to OA, the lack of a common metadata template to document the resulting data poses a significant hindrance to effective OA data management efforts. In this paper, we present a metadata template that can be applied to a broad spectrum of OA studies, including those studying the biological responses of organisms to OA. This paper defines best practices for documenting ocean acidification (OA) data.
G. Huse, B. R. MacKenzie, V. Trenkel, M. Doray, L. Nøttestad, and G. Oskarsson
Earth Syst. Sci. Data, 7, 35–46, https://doi.org/10.5194/essd-7-35-2015, https://doi.org/10.5194/essd-7-35-2015, 2015
J. K. Pinnegar, N. Goñi, V. M. Trenkel, H. Arrizabalaga, W. Melle, J. Keating, and G. Óskarsson
Earth Syst. Sci. Data, 7, 19–28, https://doi.org/10.5194/essd-7-19-2015, https://doi.org/10.5194/essd-7-19-2015, 2015
Short summary
Short summary
This work describes a 148-year compilation of stomach content data for five pelagic fish species (herring, blue whiting, mackerel, albacore and bluefin tuna) sampled over a broad geographic region of the northeast Atlantic. We describe the main results in terms of diet composition and predator–prey relationships. The analyses suggests significant differences in the prey items selected by predators in different parts of the area at different times of year.
P. Lehodey, I. Senina, A.-C. Dragon, and H. Arrizabalaga
Earth Syst. Sci. Data, 6, 317–329, https://doi.org/10.5194/essd-6-317-2014, https://doi.org/10.5194/essd-6-317-2014, 2014
S. Torres Valdés, S. C. Painter, A. P. Martin, R. Sanders, and J. Felden
Earth Syst. Sci. Data, 6, 123–145, https://doi.org/10.5194/essd-6-123-2014, https://doi.org/10.5194/essd-6-123-2014, 2014
F. A. C. Le Moigne, S. A. Henson, R. J. Sanders, and E. Madsen
Earth Syst. Sci. Data, 5, 295–304, https://doi.org/10.5194/essd-5-295-2013, https://doi.org/10.5194/essd-5-295-2013, 2013
R. Moriarty, E. T. Buitenhuis, C. Le Quéré, and M.-P. Gosselin
Earth Syst. Sci. Data, 5, 241–257, https://doi.org/10.5194/essd-5-241-2013, https://doi.org/10.5194/essd-5-241-2013, 2013
C. J. O'Brien, J. A. Peloquin, M. Vogt, M. Heinle, N. Gruber, P. Ajani, H. Andruleit, J. Arístegui, L. Beaufort, M. Estrada, D. Karentz, E. Kopczyńska, R. Lee, A. J. Poulton, T. Pritchard, and C. Widdicombe
Earth Syst. Sci. Data, 5, 259–276, https://doi.org/10.5194/essd-5-259-2013, https://doi.org/10.5194/essd-5-259-2013, 2013
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
R. Moriarty and T. D. O'Brien
Earth Syst. Sci. Data, 5, 45–55, https://doi.org/10.5194/essd-5-45-2013, https://doi.org/10.5194/essd-5-45-2013, 2013
C. Guinet, X. Xing, E. Walker, P. Monestiez, S. Marchand, B. Picard, T. Jaud, M. Authier, C. Cotté, A. C. Dragon, E. Diamond, D. Antoine, P. Lovell, S. Blain, F. D'Ortenzio, and H. Claustre
Earth Syst. Sci. Data, 5, 15–29, https://doi.org/10.5194/essd-5-15-2013, https://doi.org/10.5194/essd-5-15-2013, 2013
N. Bednaršek, J. Možina, M. Vogt, C. O'Brien, and G. A. Tarling
Earth Syst. Sci. Data, 4, 167–186, https://doi.org/10.5194/essd-4-167-2012, https://doi.org/10.5194/essd-4-167-2012, 2012
K. Leblanc, J. Arístegui, L. Armand, P. Assmy, B. Beker, A. Bode, E. Breton, V. Cornet, J. Gibson, M.-P. Gosselin, E. Kopczynska, H. Marshall, J. Peloquin, S. Piontkovski, A. J. Poulton, B. Quéguiner, R. Schiebel, R. Shipe, J. Stefels, M. A. van Leeuwe, M. Varela, C. Widdicombe, and M. Yallop
Earth Syst. Sci. Data, 4, 149–165, https://doi.org/10.5194/essd-4-149-2012, https://doi.org/10.5194/essd-4-149-2012, 2012
M. Vogt, C. O'Brien, J. Peloquin, V. Schoemann, E. Breton, M. Estrada, J. Gibson, D. Karentz, M. A. Van Leeuwe, J. Stefels, C. Widdicombe, and L. Peperzak
Earth Syst. Sci. Data, 4, 107–120, https://doi.org/10.5194/essd-4-107-2012, https://doi.org/10.5194/essd-4-107-2012, 2012
E. T. Buitenhuis, W. K. W. Li, M. W. Lomas, D. M. Karl, M. R. Landry, and S. Jacquet
Earth Syst. Sci. Data, 4, 101–106, https://doi.org/10.5194/essd-4-101-2012, https://doi.org/10.5194/essd-4-101-2012, 2012
E. T. Buitenhuis, W. K. W. Li, D. Vaulot, M. W. Lomas, M. R. Landry, F. Partensky, D. M. Karl, O. Ulloa, L. Campbell, S. Jacquet, F. Lantoine, F. Chavez, D. Macias, M. Gosselin, and G. B. McManus
Earth Syst. Sci. Data, 4, 37–46, https://doi.org/10.5194/essd-4-37-2012, https://doi.org/10.5194/essd-4-37-2012, 2012
A.-M. Nisumaa, S. Pesant, R. G. J. Bellerby, B. Delille, J. J. Middelburg, J. C. Orr, U. Riebesell, T. Tyrrell, D. Wolf-Gladrow, and J.-P. Gattuso
Earth Syst. Sci. Data, 2, 167–175, https://doi.org/10.5194/essd-2-167-2010, https://doi.org/10.5194/essd-2-167-2010, 2010
Cited articles
Allen, G. R.: Conservation hotspots of biodiversity and endemism for
Indo-Pacific coral reef fishes, Aquat. Conserv., 18, 541–556, 2008.
Allen, G. R. and Erdmann, M. V.: Reef fishes of the East Indies. Mobile
Application Software, Version 1.1 (Rev.10.2016), available at:
https://geo.itunes.apple.com/us/app/reef-fishes-east-indies-vol./id705188551?mt=8(9).
(last access: 15 June 2016), 2013.
Asaad, I., Lundquist, C. J., Erdmann, M. V., and Costello, M. J.: Ecological
criteria to identify areas for biodiversity conservation, Biol. Conserv.,
213, 309–316, https://doi.org/10.1016/j.biocon.2016.10.007, 2016.
Asaad, I., Lundquist, C. J., Erdmann, M. V., and Costello, M. J.: Delineating
priority areas for marine biodiversity conservation in the Coral Triangle,
Biol. Conserv., 222, 198–211, https://doi.org/10.1016/j.biocon.2018.03.037, 2018a.
Asaad, I., Lundquist, C. J. L., Erdmann, M. V. E., Hooidonk, V., Van
Hooidonk, R., and Costello, M. J. : Designating spatial priorities for marine
biodiversity conservation in the Coral Triangle, Frontiers In Marine Science,
5, 400, https://doi.org/10.3389/fmars.2018.00400, 2018b.
Basher, Z., Bowden, D. A., and Costello, M. J.: Global Marine Environment
Datasets (GMED)-World Wide Web electronic publication, Ver. 1.0
(Rev.01.2014), available at: http://gmed.auckland.ac.nz (last access:
1 June 2016), 2014.
Barale, V., Assouline, M., Dusart, J., and Gaffuri, J.: The European atlas of
the seas: relating natural and socio-economic elements of coastal and marine
environments in the European Union, Mar. Geod., 38, 79–88, 2015.
Bisby, F. A.: The quiet revolution: biodiversity informatics and the
internet, Science, 289, 2309–2312, 2000.
Clarke, K. C.: Maps & Web Mapping, Pearson Education, New York, 2014.
Costello, M. J.: Motivating online publication of data, BioScience, 59,
418–427, 2009.
Costello, M. J. and Vanden Berghe, E.: 'Ocean biodiversity informatics'; A
new era in marine biology research and management, Mar. Ecol. Prog. Ser.,
316, 203–214, https://doi.org/10.3354/Meps316203, 2006.
Costello, M. J., Michener, W. K., Gahegan, M., Zhang, Z.-Q., and Bourne, P.
E.: Biodiversity data should be published, cited, and peer-reviewed, Trends
Ecol. Evol., 28, 454–461, 2013.
Cros, A., Fatan, N.A., White, A., Teoh, S.J., Tan, S., Handayani, C., Huang,
C., Peterson, N., Li, R.V., Siry, H.Y., Fitriana, R., Gove, J., Acoba, T.,
Knight, M., Acosta, R., Andrew, N., and Beare, D.: The Coral Triangle Atlas;
An Integrated Online Spatial Database System for Improving Coral Reef
Management, Plos One, 9, e96332, https://doi.org/10.1371/journal.pone.0096332, 2014.
CTI-CFF: The Regional Plan of Action of the Coral Triangle on Coral Reefs,
Fisheries and Food Security (CTI-CFF) Initiative, The secretariat of CTI-CFF
Initiative, Jakarta, Indonesia, 2009.
CTI-CFF: Coral Triangle Marine Protected Area System Framework and Action
Plan, CTI-CFF, United States Agency for International Development Coral
Triangle Support Partnership and US National Oceanic and Atmospheric
Administration, Cebu City, The Philippines, 2013.
ESRI: ArcGIS Desktop Ver.10.5, ESRI, Redlands, CA, 2016.
ESRI: ArcGIS Pro Ver. 2.0, ESRI, Redlands, CA, 2017.
Froese, R. and Pauly, D.: FishBase, World Wide Web electronic publication,
Ver. (06/2016), available at: http://www.fishbase.org, last access:
1 June 2016.
Fu, P. and Sun, J.: Web GIS; Principles and applications, ESRI Press,
Redlands, CA, 2010.
GBIF: https://www.gbif.org, last access: 1 April 2018.
GBIF: Darwin Core Archives – How-to Guide, Ver. 1 Released on 1 March 2010,
contributed by: Remsen, D., Braak, K., Döring, M., Robertson, T., Global
Biodiversity Information Facility, Copenhagen, 21 pp., 2010.
Giri, C., Ochieng, E., Tieszen, L., Zhu, Z., Singh, A., Loveland, T., Masek,
J., and Duke, N.: Status and distribution of mangrove forests of the world
using earth observation satellite data, Global Ecol. Biogeogr., 20, 154–159,
2011a.
Giri, C., Ochieng, E., Tieszen, L., Zhu, Z., Singh, A., Loveland, T., Masek,
J., and Duke, N.: Global distribution of mangroves forests of the world using
earth observation satellite data, in: Supplement to: Giri et al. (2011a),
UNEP World Conservation Monitoring Centre, Cambridge, UK, available at:
http://data.unep-wcmc.org/datasets/4 (last access: 1 June 2016), 2011b.
Green, A., Smith, S. E., Lipsett-Moore, G., Groves, C., Peterson, N.,
Sheppard, S., Lokani, P., Hamilton, R., Almany, J., and Aitsi, J.: Designing
a resilient network of marine protected areas for Kimbe Bay, Papua New
Guinea, Oryx, 43, 488–498, 2009.
Guiry, M. D. and Guiry, G. M.: AlgaeBase, World-wide electronic publications,
National University of Ireland, Galway, available at:
http://www.algaebase.org/, last access: 1 August 2018.
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F.,
D'Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R.,
Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R.,
Spalding, M., Steneck, R., and Watson, R.: A global map of human impact on
marine ecosystems, Science, 319, 948–952, https://doi.org/10.1126/science.1149345,
2008.
Halpern, B. S., Frazier, M., Potapenko, J., Casey, K. S., Koenig, K., Longo,
C., Lowndes, J. S., Rockwood, R. C., Selig, E. R., and Selkoe, K. A.: Spatial
and temporal changes in cumulative human impacts on the world's ocean, Nat.
Commun., 6, 7615, https://doi.org/10.1038/ncomms8615, 2015a.
Halpern, B. Frazier, M., Potapenko, J., Casey, K. S., Koenig, K., Longo, C.,
Lowndes, J. S., Rockwood, R. C., Selig, E. R., and Selkoe, K. A.: Cumulative
human impacts: raw stressor data (2008 and 2013), https://doi.org/10.5063/F1S180FS
2015b.
Hamylton, S. M.: Spatial Analysis of Coastal Environments, Cambridge
University Press, Cambridge, UK, 2017.
Heidorn, P. B.: Biodiversity informatics, Bulletin of the Association for
Information Science and Technology, 37, 38–44, 2011.
Hoeksema, B. W.: Delineation of the Indo-Malayan centre of maximum marine
biodiversity: the Coral Triangle, in: Biogeography, time, and place;
Distributions, barriers, and islands, edited by: Renema, W., Springer, The
Netherlands, 117–178, 2007.
IUCN: The IUCN Red List of Threatened Species, Version 2015.4, available at:
https://www.iucnredlist.org/, last assess: 19 November 2015.
IUCN and UNEP-WCMC: The World Database on Protected Areas (WDPA), UNEP –
World Conservation Monitoring Centre, Cambridge, UK, available at:
https://www.protectedplanet.net/, last assess: 1 August 2016.
Jetz, W., McPherson, J. M., and Guralnick, R. P.: Integrating biodiversity
distribution knowledge: toward a global map of life, Trends Ecol. Evol., 27,
151–159, https://doi.org/10.1016/j.tree.2011.09.007, 2012.
Kaschner, K., Rius-Barile, J., Kesner-Reyes, K., Garilao, C., Kullander, S.
O., Rees, T., and Froese, R.: AquaMaps; Predicted range maps for aquatic
species, World Wide Web electronic publication, Version 08/2016, available
at: http://www.aquamaps.org/, last assess: 1 August 2016.
Kot, C. Y., Fujioka, E., DiMatteo, A., Wallace, B., Hutchinson, B., Cleary,
J., Halpin, P., and Mast, R.: The State of the World's Sea Turtles Online
Database, Data provided by the SWOT Team and hosted on OBIS-SEAMAP, Oceanic
Society, IUCN Marine Turtle Specialist Group (MTSG), and Marine Geospatial
Ecology Lab, Duke University, available at:
http://seamap.env.duke.edu/swot (last assess: 1 June 2016), 2015.
Marchante, H., Morais, M. C., Gamela, A., and Marchante, E.: Using a
WebMapping platform to engage volunteers to collect data on invasive plants
distribution, T. GIS, 21, 238–252, 2017.
McLeod, E., Moffitt, R., Timmermann, A., Salm, R., Menviel, L., Palmer, M.
J., Selig, E. R., Casey, K. S., and Bruno, J. F.: Warming Seas in the Coral
Triangle; Coral Reef Vulnerability and Management Implications, Coast.
Manage., 38, 518–539, https://doi.org/10.1080/08920753.2010.509466, 2010.
Michener, W. K.: Ecological data sharing, Ecol. Inform., 29, 33–44, 2015.
Michener, W. K., Brunt, J. W., Helly, J. J., Kirchner, T. B., and Stafford,
S. G.: Nongeospatial metadata for the ecological sciences, Ecol. Appl., 7,
330–342, 1997.
MoF-MoMAF: Data of the Ecological representation gap analysis for
conservation areas in Indonesia, Ministry of Forestry and Ministry of Marine
Affairs and Fisheries, Jakarta, Indonesia, 2010.
MoMAF: The database of Marine Protected Areas in Indonesia, Ministry of
Marine Affairs and Fisheries, Jakarta, Indonesia, 2016.
Morets, D.: Internet GIS, in: Encyclopedia of GIS, edited by: Shekhar, S.,
Xiong, H., and Zhou, X., Springer International, Cham, Switzerland,
1074–1081, 2017.
Neumann, A.: Web Mapping and Web Cartography; Encyclopaedia of GIS, Springer,
Boston, MA, 1261–1269, 2008.
OBIS: Data from the Ocean Biogeographic Information System, Intergovernmental
Oceanographic Commission of UNESCO, available at:
http://www.iobis.org/, last access: 22 January 2015.
Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M.,
Ellison, J. C., Farnsworth, E. J., Fernando, E. S., Kathiresan, K., Koedam,
N. E., Livingstone, S. R., Miyagi, T., Moore, G. E., Vien, N. N., Ong, J. E.,
Primavera, J. H., Salmo, S. G., Sanciangco, J. C., Sukardjo, S., Wang, Y. M.,
and Yong, J. W. H.: The loss of species: Mangrove extinction risk and
geographic areas of global concern, Plos One, 5, e10095,
https://doi.org/10.1371/journal.pone.0010095, 2010.
Parr, C. S. and Thessen, A. E.: Biodiversity Informatics, in: Ecological
Informatics; Data Management and Knowledge Discovery, edited by: Recknagel,
F. and Michener, W. K., Springer International Publishing, Cham, Switzerland,
375–399, 2018.
Pauly D. and Zeller D. (Eds.): Sea Around Us Concepts, Design and Data,
available at: http://www.seaaroundus.org/ (last access: 1 April 2018),
2015.
Peterson, M. P.: International perspectives on maps and the Internet,
Springer, Berlin Heidelberg, 2018.
Reichman, O. J., Jones, M. B., and Schildhauer, M. P.: Challenges and
opportunities of open data in ecology, Science, 331, 703–705, 2011
Saeedi, H., Dennis, T. E., and Costello, M. J.: Bimodal latitudinal species
richness and high endemicity of razor clams (Mollusca), J. Biogeogr., 44,
592–604, https://doi.org/10.1111/jbi.12903, 2016.
Sui, D.: Opportunities and Impediments for Open GIS, T. GIS, 18, 1–24,
https://doi.org/10.1111/tgis.12075, 2014
Teacher, A. G., Griffiths, D. J., Hodgson, D. J., and Inger, R.: Smartphones
in ecology and evolution; A guide for the app-rehensive, Ecol. Evol., 3,
5268–5278, 2013.
UNEP-WCMC: The Checklist of CITES Species Website, CITES Secretariat, Geneva,
Switzerland, Compiled by UNEP-WCMC, Cambridge, UK, available at:
http://checklist.cites.org (last access: 1 February 2016), 2015.
UNEP-WCMC and Short, F. T.: Global distribution of seagrasses (version 3.0),
3rd update to the data layer used in Green and Short (2003), UNEP World
Conservation Monitoring Centre, Cambridge, UK, available at:
http://data.unep-wcmc.org/datasets/7 (last access: 1 June 2016), 2005.
UNEP-WCMC, WorldFish Centre, WRI, and TNC: Global distribution of coral
reefs, compiled from multiple sources including the Millennium Coral Reef
Mapping Project, Version 1.3, updated by UNEP-WCMC, includes contributions
from IMaRS USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. (2001),
UNEP World Conservation Monitoring Centre, Cambridge, UK, available at:
http://data.unep-wcmc.org/datasets/1 (last access: 1 June 2016), 2010.
Veron, J., Devantier, L. M., Turak, E., Green, A. L., Kininmonth, S.,
Stafford-Smith, M., and Peterson, N.: Delineating the Coral Triangle,
Galaxea, Journal of Coral Reef Studies, 11, 91–100, 2009.
VLIZ: Maritime Boundaries Geodatabase, Version 8, available at:
http://www.marineregions.org/ (last access: 22 March 2016), 2014.
Van Hooidonk, R., Maynard, J., Tamelander, J., Gove, J., Ahmadia, G.,
Raymundo, L., Williams, G., Heron, S. F., and Planes, S.: Local-scale
projections of coral reef futures and implications of the Paris Agreement,
Sci. Rep., 6, 39666, https://doi.org/10.1038/srep39666, 2016.
Wright, D., Pendleton, M., Boulware, J., Walbridge, S., Gerlt, B., Eslinger,
D., Sampson, D., and Huntley, E.: ArcGIS Benthic Terrain Modeler (BTM), V.
3.0, Environmental Systems Research Institute (ESRI), NOAA Coastal Services
Centre, Massachusetts Office of Coastal Zone Management, Redlands, CA, 2012.
Wright, D. J. (Ed.): Ocean Solutions, Earth Solutions, 2nd edn., Esri Press,
Redlands, CA, 2016.
Wright, D. J, Dwyer, N., and Cummins, V. (Eds.): Coastal Informatics: Web
Atlas Design and Implementation, IGI-Global, Hershey, New York, 2011.
Walton, A., White, A. T., Tighe, S., Alino, P. M., Laroya, L., Dermawan, A.,
Kasasiah, A., Hamid, S. A., Vave-Karamui, A., Genia, V., Martins, L. D., and
Green, A. L.: Establishing a functional region-wide Coral Triangle marine
protected area system, Coast. Manage., 42, 107–127,
https://doi.org/10.1080/08920753.2014.877765, 2014.
Short summary
This atlas is a compendium of geospatial online and open-access data describing biodiversity conservation in the Coral Triangle of the Indo-Pacific biogeographic realm. It consists of three sets of interlinked digital maps: (1) biodiversity features; (2) areas of importance for biodiversity conservation; and (3) recommended priorities for Marine Protected Area (MPA) Network Expansion. These maps provide the most comprehensive biodiversity datasets available to date for the region.
This atlas is a compendium of geospatial online and open-access data describing biodiversity...