Articles | Volume 11, issue 4
https://doi.org/10.5194/essd-11-1531-2019
https://doi.org/10.5194/essd-11-1531-2019
Data description paper
 | 
14 Oct 2019
Data description paper |  | 14 Oct 2019

seNorge_2018, daily precipitation, and temperature datasets over Norway

Cristian Lussana, Ole Einar Tveito, Andreas Dobler, and Ketil Tunheim

Related authors

Exploratory analysis of citizen observations of hourly precipitation over Scandinavia
Cristian Lussana, Emma Baietti, Line Båserud, Thomas Nils Nipen, and Ivar Ambjørn Seierstad
Adv. Sci. Res., 20, 35–48, https://doi.org/10.5194/asr-20-35-2023,https://doi.org/10.5194/asr-20-35-2023, 2023
Short summary
Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys., 28, 61–91, https://doi.org/10.5194/npg-28-61-2021,https://doi.org/10.5194/npg-28-61-2021, 2021
Short summary
TITAN automatic spatial quality control of meteorological in-situ observations
Line Båserud, Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, Louise Oram, and Trygve Aspelien
Adv. Sci. Res., 17, 153–163, https://doi.org/10.5194/asr-17-153-2020,https://doi.org/10.5194/asr-17-153-2020, 2020
Short summary
seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day
Cristian Lussana, Tuomo Saloranta, Thomas Skaugen, Jan Magnusson, Ole Einar Tveito, and Jess Andersen
Earth Syst. Sci. Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018,https://doi.org/10.5194/essd-10-235-2018, 2018
Short summary
A spatial bootstrap technique for parameter estimation of rainfall annual maxima distribution
F. Uboldi, A. N. Sulis, C. Lussana, M. Cislaghi, and M. Russo
Hydrol. Earth Syst. Sci., 18, 981–995, https://doi.org/10.5194/hess-18-981-2014,https://doi.org/10.5194/hess-18-981-2014, 2014

Related subject area

Meteorology
A database of deep convective systems derived from the intercalibrated meteorological geostationary satellite fleet and the TOOCAN algorithm (2012–2020)
Thomas Fiolleau and Rémy Roca
Earth Syst. Sci. Data, 16, 4021–4050, https://doi.org/10.5194/essd-16-4021-2024,https://doi.org/10.5194/essd-16-4021-2024, 2024
Short summary
Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024,https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Global tropical cyclone size and intensity reconstruction dataset for 1959–2022 based on IBTrACS and ERA5 data
Zhiqi Xu, Jianping Guo, Guwei Zhang, Yuchen Ye, Haikun Zhao, and Haishan Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-329,https://doi.org/10.5194/essd-2024-329, 2024
Revised manuscript accepted for ESSD
Short summary
Special Observing Period (SOP) data for the Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP)
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024,https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Dataset of spatially extensive long-term quality-assured land–atmosphere interactions over the Tibetan Plateau
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024,https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary

Cited articles

Bremnes, J. B.: Probabilistic wind power forecasts using local quantile regression, Wind Energy, 7, 47–54, https://doi.org/10.1002/we.107, 2004. a
Cardinali, C., Pezzulli, S., and Andersson, E.: Influence-matrix diagnostic of a data assimilation system, Q. J. Roy. Meteorological Society, 130, 2767–2786, https://doi.org/10.1256/qj.03.205, available at: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.03.205 (last access: 7 October 2019), 2004. a
Casati, B.: New Developments of the Intensity-Scale Technique within the Spatial Verification Methods Intercomparison Project, Weather Forecast., 25, 113–143, https://doi.org/10.1175/2009WAF2222257.1, 2010. a
Casati, B., Ross, G., and Stephenson, D. B.: A new intensity-scale approach for the verification of spatial precipitation forecasts, Meteorol. Appl., 11, 141–154, https://doi.org/10.1017/S1350482704001239, 2004. a
Crespi, A., Lussana, C., Brunetti, M., Dobler, A., Maugeri, M., and Tveito, O. E.: High-resolution monthly precipitation climatologies over Norway (1981–2010): Joining numerical model data sets and in situ observations, Int. J. Climatol., 39, 2057–2070, https://doi.org/10.1002/joc.5933, 2019. a
Download
Short summary
seNorge_2018 is a collection of observational gridded datasets for daily total precipitation and daily mean, minimum, and maximum temperature for the Norwegian mainland covering the time period from 1957 to the present day. The fields have 1 km of grid spacing. The data are used for applications in climatology, hydrology, and meteorology. seNorge_2018 provides a "gridded truth", especially in data-dense regions. The uncertainty increases with decreasing data density.
Altmetrics
Final-revised paper
Preprint