Articles | Volume 11, issue 4
https://doi.org/10.5194/essd-11-1531-2019
https://doi.org/10.5194/essd-11-1531-2019
Data description paper
 | 
14 Oct 2019
Data description paper |  | 14 Oct 2019

seNorge_2018, daily precipitation, and temperature datasets over Norway

Cristian Lussana, Ole Einar Tveito, Andreas Dobler, and Ketil Tunheim

Related authors

Event-based analysis of extreme precipitation trends in Italy using hourly convection-permitting reanalyses
Francesco Cavalleri, Cristian Lussana, Francesca Viterbo, Michele Brunetti, Riccardo Bonanno, Veronica Manara, Matteo Lacavalla, and Maurizio Maugeri
EGUsphere, https://doi.org/10.5194/egusphere-2025-3455,https://doi.org/10.5194/egusphere-2025-3455, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Exploratory analysis of citizen observations of hourly precipitation over Scandinavia
Cristian Lussana, Emma Baietti, Line Båserud, Thomas Nils Nipen, and Ivar Ambjørn Seierstad
Adv. Sci. Res., 20, 35–48, https://doi.org/10.5194/asr-20-35-2023,https://doi.org/10.5194/asr-20-35-2023, 2023
Short summary
Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys., 28, 61–91, https://doi.org/10.5194/npg-28-61-2021,https://doi.org/10.5194/npg-28-61-2021, 2021
Short summary
TITAN automatic spatial quality control of meteorological in-situ observations
Line Båserud, Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, Louise Oram, and Trygve Aspelien
Adv. Sci. Res., 17, 153–163, https://doi.org/10.5194/asr-17-153-2020,https://doi.org/10.5194/asr-17-153-2020, 2020
Short summary
seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day
Cristian Lussana, Tuomo Saloranta, Thomas Skaugen, Jan Magnusson, Ole Einar Tveito, and Jess Andersen
Earth Syst. Sci. Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018,https://doi.org/10.5194/essd-10-235-2018, 2018
Short summary

Related subject area

Meteorology
A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data, 17, 3721–3740, https://doi.org/10.5194/essd-17-3721-2025,https://doi.org/10.5194/essd-17-3721-2025, 2025
Short summary
An updated reconstruction of Antarctic near-surface air temperatures at monthly intervals since 1958
David Bromwich, Sheng-Hung Wang, Xun Zou, and Alexandra Ensign
Earth Syst. Sci. Data, 17, 2953–2962, https://doi.org/10.5194/essd-17-2953-2025,https://doi.org/10.5194/essd-17-2953-2025, 2025
Short summary
HighResClimNevada: a high-resolution climatological dataset for a high-altitude region in southern Spain (Sierra Nevada)
Matilde García-Valdecasas Ojeda, Feliciano Solano-Farias, David Donaire-Montaño, Emilio Romero-Jiménez, Juan José Rosa-Cánovas, Yolanda Castro-Díez, Sonia R. Gámiz-Fortis, and María Jesús Esteban-Parra
Earth Syst. Sci. Data, 17, 2809–2829, https://doi.org/10.5194/essd-17-2809-2025,https://doi.org/10.5194/essd-17-2809-2025, 2025
Short summary
Estimation of long-term gridded cloud radiative kernel and radiative effects based on cloud fraction
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data, 17, 2405–2435, https://doi.org/10.5194/essd-17-2405-2025,https://doi.org/10.5194/essd-17-2405-2025, 2025
Short summary
Two sets of bias-corrected regional UK Climate Projections 2018 (UKCP18) of temperature, precipitation and potential evapotranspiration for Great Britain
Nele Reyniers, Qianyu Zha, Nans Addor, Timothy J. Osborn, Nicole Forstenhäusler, and Yi He
Earth Syst. Sci. Data, 17, 2113–2133, https://doi.org/10.5194/essd-17-2113-2025,https://doi.org/10.5194/essd-17-2113-2025, 2025
Short summary

Cited articles

Bremnes, J. B.: Probabilistic wind power forecasts using local quantile regression, Wind Energy, 7, 47–54, https://doi.org/10.1002/we.107, 2004. a
Cardinali, C., Pezzulli, S., and Andersson, E.: Influence-matrix diagnostic of a data assimilation system, Q. J. Roy. Meteorological Society, 130, 2767–2786, https://doi.org/10.1256/qj.03.205, available at: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.03.205 (last access: 7 October 2019), 2004. a
Casati, B.: New Developments of the Intensity-Scale Technique within the Spatial Verification Methods Intercomparison Project, Weather Forecast., 25, 113–143, https://doi.org/10.1175/2009WAF2222257.1, 2010. a
Casati, B., Ross, G., and Stephenson, D. B.: A new intensity-scale approach for the verification of spatial precipitation forecasts, Meteorol. Appl., 11, 141–154, https://doi.org/10.1017/S1350482704001239, 2004. a
Crespi, A., Lussana, C., Brunetti, M., Dobler, A., Maugeri, M., and Tveito, O. E.: High-resolution monthly precipitation climatologies over Norway (1981–2010): Joining numerical model data sets and in situ observations, Int. J. Climatol., 39, 2057–2070, https://doi.org/10.1002/joc.5933, 2019. a
Download
Short summary
seNorge_2018 is a collection of observational gridded datasets for daily total precipitation and daily mean, minimum, and maximum temperature for the Norwegian mainland covering the time period from 1957 to the present day. The fields have 1 km of grid spacing. The data are used for applications in climatology, hydrology, and meteorology. seNorge_2018 provides a "gridded truth", especially in data-dense regions. The uncertainty increases with decreasing data density.
Share
Altmetrics
Final-revised paper
Preprint