Articles | Volume 11, issue 4
https://doi.org/10.5194/essd-11-1531-2019
https://doi.org/10.5194/essd-11-1531-2019
Data description paper
 | 
14 Oct 2019
Data description paper |  | 14 Oct 2019

seNorge_2018, daily precipitation, and temperature datasets over Norway

Cristian Lussana, Ole Einar Tveito, Andreas Dobler, and Ketil Tunheim

Related authors

Exploratory analysis of citizen observations of hourly precipitation over Scandinavia
Cristian Lussana, Emma Baietti, Line Båserud, Thomas Nils Nipen, and Ivar Ambjørn Seierstad
Adv. Sci. Res., 20, 35–48, https://doi.org/10.5194/asr-20-35-2023,https://doi.org/10.5194/asr-20-35-2023, 2023
Short summary
Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys., 28, 61–91, https://doi.org/10.5194/npg-28-61-2021,https://doi.org/10.5194/npg-28-61-2021, 2021
Short summary
TITAN automatic spatial quality control of meteorological in-situ observations
Line Båserud, Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, Louise Oram, and Trygve Aspelien
Adv. Sci. Res., 17, 153–163, https://doi.org/10.5194/asr-17-153-2020,https://doi.org/10.5194/asr-17-153-2020, 2020
Short summary
seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day
Cristian Lussana, Tuomo Saloranta, Thomas Skaugen, Jan Magnusson, Ole Einar Tveito, and Jess Andersen
Earth Syst. Sci. Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018,https://doi.org/10.5194/essd-10-235-2018, 2018
Short summary
A spatial bootstrap technique for parameter estimation of rainfall annual maxima distribution
F. Uboldi, A. N. Sulis, C. Lussana, M. Cislaghi, and M. Russo
Hydrol. Earth Syst. Sci., 18, 981–995, https://doi.org/10.5194/hess-18-981-2014,https://doi.org/10.5194/hess-18-981-2014, 2014

Related subject area

Meteorology
EURADCLIM: the European climatological high-resolution gauge-adjusted radar precipitation dataset
Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse
Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023,https://doi.org/10.5194/essd-15-1441-2023, 2023
Short summary
Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023,https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
MOPREDAScentury: a long-term monthly precipitation grid for the Spanish mainland
Santiago Beguería, Dhais Peña-Angulo, Víctor Trullenque-Blanco, and Carlos González-Hidalgo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-63,https://doi.org/10.5194/essd-2023-63, 2023
Revised manuscript accepted for ESSD
Short summary
Combined wind lidar and cloud radar for high-resolution wind profiling
José Dias Neto, Louise Nuijens, Christine Unal, and Steven Knoop
Earth Syst. Sci. Data, 15, 769–789, https://doi.org/10.5194/essd-15-769-2023,https://doi.org/10.5194/essd-15-769-2023, 2023
Short summary
An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020
Peng Yuan, Geoffrey Blewitt, Corné Kreemer, William C. Hammond, Donald Argus, Xungang Yin, Roeland Van Malderen, Michael Mayer, Weiping Jiang, Joseph Awange, and Hansjörg Kutterer
Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023,https://doi.org/10.5194/essd-15-723-2023, 2023
Short summary

Cited articles

Bremnes, J. B.: Probabilistic wind power forecasts using local quantile regression, Wind Energy, 7, 47–54, https://doi.org/10.1002/we.107, 2004. a
Cardinali, C., Pezzulli, S., and Andersson, E.: Influence-matrix diagnostic of a data assimilation system, Q. J. Roy. Meteorological Society, 130, 2767–2786, https://doi.org/10.1256/qj.03.205, available at: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.03.205 (last access: 7 October 2019), 2004. a
Casati, B.: New Developments of the Intensity-Scale Technique within the Spatial Verification Methods Intercomparison Project, Weather Forecast., 25, 113–143, https://doi.org/10.1175/2009WAF2222257.1, 2010. a
Casati, B., Ross, G., and Stephenson, D. B.: A new intensity-scale approach for the verification of spatial precipitation forecasts, Meteorol. Appl., 11, 141–154, https://doi.org/10.1017/S1350482704001239, 2004. a
Crespi, A., Lussana, C., Brunetti, M., Dobler, A., Maugeri, M., and Tveito, O. E.: High-resolution monthly precipitation climatologies over Norway (1981–2010): Joining numerical model data sets and in situ observations, Int. J. Climatol., 39, 2057–2070, https://doi.org/10.1002/joc.5933, 2019. a
Download
Short summary
seNorge_2018 is a collection of observational gridded datasets for daily total precipitation and daily mean, minimum, and maximum temperature for the Norwegian mainland covering the time period from 1957 to the present day. The fields have 1 km of grid spacing. The data are used for applications in climatology, hydrology, and meteorology. seNorge_2018 provides a "gridded truth", especially in data-dense regions. The uncertainty increases with decreasing data density.