Articles | Volume 10, issue 2
Earth Syst. Sci. Data, 10, 941–950, 2018
https://doi.org/10.5194/essd-10-941-2018
Earth Syst. Sci. Data, 10, 941–950, 2018
https://doi.org/10.5194/essd-10-941-2018
 
24 May 2018
24 May 2018

Two months of disdrometer data in the Paris area

Auguste Gires et al.

Related authors

Three months of combined high resolution rainfall and wind data collected on a wind farm
Auguste Gires, Jerry Jose, Ioulia Tchiguirinskaia, and Daniel Schertzer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-463,https://doi.org/10.5194/essd-2021-463, 2022
Revised manuscript accepted for ESSD
Short summary
3D trajectories and velocities of rainfall drops in a multifractal turbulent wind field
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-434,https://doi.org/10.5194/amt-2021-434, 2022
Revised manuscript under review for AMT
Short summary
Measurements of the water balance components of a large green roof in the greater Paris area
Pierre-Antoine Versini, Filip Stanic, Auguste Gires, Daniel Schertzer, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 12, 1025–1035, https://doi.org/10.5194/essd-12-1025-2020,https://doi.org/10.5194/essd-12-1025-2020, 2020
Short summary
Disdrometer measurements under Sense-City rainfall simulator
Auguste Gires, Philippe Bruley, Anne Ruas, Daniel Schertzer, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 12, 835–845, https://doi.org/10.5194/essd-12-835-2020,https://doi.org/10.5194/essd-12-835-2020, 2020
Short summary
Approximate multifractal correlation and products of universal multifractal fields, with application to rainfall data
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys., 27, 133–145, https://doi.org/10.5194/npg-27-133-2020,https://doi.org/10.5194/npg-27-133-2020, 2020
Short summary

Related subject area

Meteorology
EMO-5: a high-resolution multi-variable gridded meteorological dataset for Europe
Vera Thiemig, Goncalo N. Gomes, Jon O. Skøien, Markus Ziese, Armin Rauthe-Schöch, Elke Rustemeier, Kira Rehfeldt, Jakub P. Walawender, Christine Kolbe, Damien Pichon, Christoph Schweim, and Peter Salamon
Earth Syst. Sci. Data, 14, 3249–3272, https://doi.org/10.5194/essd-14-3249-2022,https://doi.org/10.5194/essd-14-3249-2022, 2022
Short summary
GPRChinaTemp1km: a high-resolution monthly air temperature data set for China (1951–2020) based on machine learning
Qian He, Ming Wang, Kai Liu, Kaiwen Li, and Ziyu Jiang
Earth Syst. Sci. Data, 14, 3273–3292, https://doi.org/10.5194/essd-14-3273-2022,https://doi.org/10.5194/essd-14-3273-2022, 2022
Short summary
STAR NDSI collection: a cloud-free MODIS NDSI dataset (2001–2020) for China
Yinghong Jing, Xinghua Li, and Huanfeng Shen
Earth Syst. Sci. Data, 14, 3137–3156, https://doi.org/10.5194/essd-14-3137-2022,https://doi.org/10.5194/essd-14-3137-2022, 2022
Short summary
A global dataset of spatiotemporally seamless daily mean land surface temperatures: generation, validation, and analysis
Falu Hong, Wenfeng Zhan, Frank-M. Göttsche, Zihan Liu, Pan Dong, Huyan Fu, Fan Huang, and Xiaodong Zhang
Earth Syst. Sci. Data, 14, 3091–3113, https://doi.org/10.5194/essd-14-3091-2022,https://doi.org/10.5194/essd-14-3091-2022, 2022
Short summary
Historical and future weather data for dynamic building simulations in Belgium using the regional climate model MAR: typical and extreme meteorological year and heatwaves
Sébastien​​​​​​​ Doutreloup, Xavier Fettweis, Ramin Rahif, Essam Elnagar, Mohsen S. Pourkiaei, Deepak Amaripadath, and Shady Attia
Earth Syst. Sci. Data, 14, 3039–3051, https://doi.org/10.5194/essd-14-3039-2022,https://doi.org/10.5194/essd-14-3039-2022, 2022
Short summary

Cited articles

Angulo-Martínez, M. and Barros, A.: Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Appalachian Mountains, Geomorphology, 228, 28–40, https://doi.org/10.1016/j.geomorph.2014.07.036, 2015.
Angulo-Martínez, M., Beguería, S., and Kyselý, J.: Use of disdrometer data to evaluate the relationship of rainfall kinetic energy and intensity (KE-I), Sci. Total Environ., 568, 83–94, https://doi.org/10.1016/j.scitotenv.2016.05.223, 2016.
Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL Snow Observations: A Critical Assessment, J. Atmos. Ocean. Tech., 27, 333–344, 2010.
Beard, K. V.: Terminal velocity adjustment for cloud and precipitation aloft, J. Atmos. Sci., 34, 1293–1298, 1977.
Campbell-Scientific-Ltd: PWS100 Present Weather Sensor, User Guide, 2012.
Download
Short summary
The Hydrology, Meteorology, and Complexity laboratory of École des Ponts ParisTech (hmco.enpc.fr) has made a data set of optical disdrometer measurements available that come from a campaign involving three collocated devices from two different manufacturers, relying on different underlying technologies (one Campbell Scientific PWS100 and two OTT Parsivel2 instruments). The campaign took place in January–February 2016 in the Paris area (France).