Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-661-2025
https://doi.org/10.5194/essd-17-661-2025
Data description paper
 | 
11 Feb 2025
Data description paper |  | 11 Feb 2025

EARice10: a 10 m resolution annual rice distribution map of East Asia for 2023

Mingyang Song, Lu Xu, Ji Ge, Hong Zhang, Lijun Zuo, Jingling Jiang, Yinhaibin Ding, Yazhe Xie, and Fan Wu

Related authors

20 m Africa Rice Distribution Map of 2023
Jingling Jiang, Hong Zhang, Ji Ge, Lijun Zuo, Lu Xu, Minyang Song, Yinhaibin Ding, Yazhe Xie, and Wenjiang Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-402,https://doi.org/10.5194/essd-2024-402, 2024
Revised manuscript accepted for ESSD
Short summary
Twenty-meter annual paddy rice area map for mainland Southeast Asia using Sentinel-1 synthetic-aperture-radar data
Chunling Sun, Hong Zhang, Lu Xu, Ji Ge, Jingling Jiang, Lijun Zuo, and Chao Wang
Earth Syst. Sci. Data, 15, 1501–1520, https://doi.org/10.5194/essd-15-1501-2023,https://doi.org/10.5194/essd-15-1501-2023, 2023
Short summary
ANALYSIS OF MINING-INDUCED SUBSIDENCE PREDICTION BY EXPONENT KNOTHE MODEL COMBINED WITH INSAR AND LEVELING
Lei Chen, Liguo Zhang, Yixian Tang, and Hong Zhang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3, 53–59, https://doi.org/10.5194/isprs-annals-IV-3-53-2018,https://doi.org/10.5194/isprs-annals-IV-3-53-2018, 2018

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
A Sentinel-2 machine learning dataset for tree species classification in Germany
Maximilian Freudenberg, Sebastian Schnell, and Paul Magdon
Earth Syst. Sci. Data, 17, 351–367, https://doi.org/10.5194/essd-17-351-2025,https://doi.org/10.5194/essd-17-351-2025, 2025
Short summary
High-resolution mapping of global winter-triticeae crops using a sample-free identification method
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025,https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
A flux tower site attribute dataset intended for land surface modeling
Jiahao Shi, Hua Yuan, Wanyi Lin, Wenzong Dong, Hongbin Liang, Zhuo Liu, Jianxin Zeng, Haolin Zhang, Nan Wei, Zhongwang Wei, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 117–134, https://doi.org/10.5194/essd-17-117-2025,https://doi.org/10.5194/essd-17-117-2025, 2025
Short summary
Advances in LUCAS Copernicus 2022: enhancing Earth observations with comprehensive in situ data on EU land cover and use
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024,https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary
Global 30 m seamless data cube (2000–2022) of land surface reflectance generated from Landsat 5, 7, 8, and 9 and MODIS Terra constellations
Shuang Chen, Jie Wang, Qiang Liu, Xiangan Liang, Rui Liu, Peng Qin, Jincheng Yuan, Junbo Wei, Shuai Yuan, Huabing Huang, and Peng Gong
Earth Syst. Sci. Data, 16, 5449–5475, https://doi.org/10.5194/essd-16-5449-2024,https://doi.org/10.5194/essd-16-5449-2024, 2024
Short summary

Cited articles

Abdali, E., Valadan Zoej, M. J., Taheri Dehkordi, A., and Ghaderpour, E.: A Parallel-Cascaded Ensemble of Machine Learning Models for Crop Type Classification in Google Earth Engine Using Multi-Temporal Sentinel-1/2 and Landsat-8/9 Remote Sensing Data, Remote Sens., 16, 127, https://doi.org/10.3390/rs16010127, 2023. 
Achanta, R. and Susstrunk, S.: Superpixels and polygons using simple non-iterative clustering, Proceedings of the IEEE conference on computer vision and pattern recognition, 21–26 July 2017, Honolulu, HI, USA, 4651–4660, 2017. 
Carrasco, L., Fujita, G., Kito, K., and Miyashita, T.: Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine, ISPRS J. Photogramm. Remote, 191, 277–289, https://doi.org/10.1016/j.isprsjprs.2022.07.018, 2022. 
Chen, N., Yu, L., Zhang, X., Shen, Y., Zeng, L., Hu, Q., and Niyogi, D.: Mapping Paddy Rice Fields by Combining Multi-Temporal Vegetation Index and Synthetic Aperture Radar Remote Sensing Data Using Google Earth Engine Machine Learning Platform, Remote Sens., 12, 2992, https://doi.org/10.3390/rs12182992, 2020. 
Chen, W. and Zhao, X.: Understanding global rice trade flows: Network evolution and implications, Foods, 12, 3298, https://doi.org/10.3390/foods12173298, 2023. 
Download
Short summary
We created a 10 m resolution rice distribution map for East Asia in 2023 (EARice10), achieving an overall accuracy (OA) of 90.48 % on validation samples. EARice10 shows strong consistency with statistical data (coefficient of determination, R2: 0.94–0.98) and existing datasets (R2: 0.79–0.98). It is the most up-to-date map, covering the four major rice-producing countries in East Asia at 10 m resolution.
Share
Altmetrics
Final-revised paper
Preprint