Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-661-2025
https://doi.org/10.5194/essd-17-661-2025
Data description paper
 | 
11 Feb 2025
Data description paper |  | 11 Feb 2025

EARice10: a 10 m resolution annual rice distribution map of East Asia for 2023

Mingyang Song, Lu Xu, Ji Ge, Hong Zhang, Lijun Zuo, Jingling Jiang, Yinhaibin Ding, Yazhe Xie, and Fan Wu

Related authors

The 20 m Africa rice distribution map of 2023
Jingling Jiang, Hong Zhang, Ji Ge, Lijun Zuo, Lu Xu, Mingyang Song, Yinhaibin Ding, Yazhe Xie, and Wenjiang Huang
Earth Syst. Sci. Data, 17, 1781–1805, https://doi.org/10.5194/essd-17-1781-2025,https://doi.org/10.5194/essd-17-1781-2025, 2025
Short summary
Twenty-meter annual paddy rice area map for mainland Southeast Asia using Sentinel-1 synthetic-aperture-radar data
Chunling Sun, Hong Zhang, Lu Xu, Ji Ge, Jingling Jiang, Lijun Zuo, and Chao Wang
Earth Syst. Sci. Data, 15, 1501–1520, https://doi.org/10.5194/essd-15-1501-2023,https://doi.org/10.5194/essd-15-1501-2023, 2023
Short summary
ANALYSIS OF MINING-INDUCED SUBSIDENCE PREDICTION BY EXPONENT KNOTHE MODEL COMBINED WITH INSAR AND LEVELING
Lei Chen, Liguo Zhang, Yixian Tang, and Hong Zhang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3, 53–59, https://doi.org/10.5194/isprs-annals-IV-3-53-2018,https://doi.org/10.5194/isprs-annals-IV-3-53-2018, 2018

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Statistical atlas of European agriculture: gridded data from the agricultural census 2020 and the spatial distribution of CAP contextual indicators
Nicolas Lampach, Jon Olav Skøien, Helena Ramos, Julien Gaffuri, Renate Koeble, Linda See, and Marijn van der Velde
Earth Syst. Sci. Data, 17, 3893–3919, https://doi.org/10.5194/essd-17-3893-2025,https://doi.org/10.5194/essd-17-3893-2025, 2025
Short summary
An annual cropland extent dataset for Africa at 30 m spatial resolution from 2000 to 2022
Zihang Lou, Dailiang Peng, Zhou Shi, Hongyan Wang, Ke Liu, Yaqiong Zhang, Xue Yan, Zhongxing Chen, Su Ye, Le Yu, Jinkang Hu, Yulong Lv, Hao Peng, Yizhou Zhang, and Bing Zhang
Earth Syst. Sci. Data, 17, 3777–3796, https://doi.org/10.5194/essd-17-3777-2025,https://doi.org/10.5194/essd-17-3777-2025, 2025
Short summary
Global agricultural lands in the year 2015
Zia Mehrabi, Kaitai Tong, Julie Fortin, Radost Stanimirova, Mark Friedl, and Navin Ramankutty
Earth Syst. Sci. Data, 17, 3473–3496, https://doi.org/10.5194/essd-17-3473-2025,https://doi.org/10.5194/essd-17-3473-2025, 2025
Short summary
The GIEMS-MethaneCentric database: a dynamic and comprehensive global product of methane-emitting aquatic areas
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data, 17, 2985–3008, https://doi.org/10.5194/essd-17-2985-2025,https://doi.org/10.5194/essd-17-2985-2025, 2025
Short summary
An annual 30 m cultivated-pasture dataset of the Tibetan Plateau from 1988 to 2021
Binghong Han, Jian Bi, Shengli Tao, Tong Yang, Yongli Tang, Mengshuai Ge, Hao Wang, Zhenong Jin, Jinwei Dong, Zhibiao Nan, and Jin-Sheng He
Earth Syst. Sci. Data, 17, 2933–2952, https://doi.org/10.5194/essd-17-2933-2025,https://doi.org/10.5194/essd-17-2933-2025, 2025
Short summary

Cited articles

Abdali, E., Valadan Zoej, M. J., Taheri Dehkordi, A., and Ghaderpour, E.: A Parallel-Cascaded Ensemble of Machine Learning Models for Crop Type Classification in Google Earth Engine Using Multi-Temporal Sentinel-1/2 and Landsat-8/9 Remote Sensing Data, Remote Sens., 16, 127, https://doi.org/10.3390/rs16010127, 2023. 
Achanta, R. and Susstrunk, S.: Superpixels and polygons using simple non-iterative clustering, Proceedings of the IEEE conference on computer vision and pattern recognition, 21–26 July 2017, Honolulu, HI, USA, 4651–4660, 2017. 
Carrasco, L., Fujita, G., Kito, K., and Miyashita, T.: Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine, ISPRS J. Photogramm. Remote, 191, 277–289, https://doi.org/10.1016/j.isprsjprs.2022.07.018, 2022. 
Chen, N., Yu, L., Zhang, X., Shen, Y., Zeng, L., Hu, Q., and Niyogi, D.: Mapping Paddy Rice Fields by Combining Multi-Temporal Vegetation Index and Synthetic Aperture Radar Remote Sensing Data Using Google Earth Engine Machine Learning Platform, Remote Sens., 12, 2992, https://doi.org/10.3390/rs12182992, 2020. 
Chen, W. and Zhao, X.: Understanding global rice trade flows: Network evolution and implications, Foods, 12, 3298, https://doi.org/10.3390/foods12173298, 2023. 
Download
Short summary
We created a 10 m resolution rice distribution map for East Asia in 2023 (EARice10), achieving an overall accuracy (OA) of 90.48 % on validation samples. EARice10 shows strong consistency with statistical data (coefficient of determination, R2: 0.94–0.98) and existing datasets (R2: 0.79–0.98). It is the most up-to-date map, covering the four major rice-producing countries in East Asia at 10 m resolution.
Share
Altmetrics
Final-revised paper
Preprint