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Abstract. Timely and accurate high-resolution annual mapping of rice distribution is essential for food security,
greenhouse gas emissions assessment, and support of sustainable development goals. East Asia (EA), a major
global rice-producing region, accounts for approximately 29.3 % of the world’s rice production. Therefore, to ac-
quire the latest rice distribution of the EA, this study proposed a novel rice distribution mapping method based on
the Google Earth Engine (GEE) platform, producing a 10 m resolution annual rice distribution map (EARice10)
of EA for 2023. A new synthetic aperture radar (SAR)-based rice distribution mapping index (SRMI) was firstly
proposed and combined with optical indices to generate representative rice samples. In addition, a stacking-based
optical–SAR adaptive fusion model was designed to fully integrate the features of Sentinel-1 and Sentinel-2 data
for high-precision rice mapping in EA. The accuracy of EARice10 was evaluated using more than 90 000 valida-
tion samples and achieved an overall accuracy of 90.48 %, with both the user accuracy and the producer accuracy
exceeding 90 %. The reliability of the product was verified by R2 values ranging between 0.94 and 0.98 with
respect to official statistics and between 0.79 and 0.98 with respect to previous rice mapping products. EARice10
is accessible at https://doi.org/10.5281/zenodo.13118409 (Song et al., 2024).

1 Introduction

Rice is a primary global food source, occupying approxi-
mately 11.21 % of the world’s agricultural land and feeding
over half of the global population, according to recent Food
and Agriculture Organization (FAO) data (Zhang et al., 2018;
Xu et al., 2023; FAO, 2024). As the global population con-
tinues to increase, so does the demand for rice in human so-
cieties. In 2022, the total rice production in East Asia (EA)
reached 227 494 000 t, which accounted for about 29.3 % of
the total global rice production (Chen and Zhao, 2023; FAO,
2024). Therefore, timely and accurate mapping of rice distri-
bution in EA is critical for realizing the United Nations Sus-
tainable Development Goal 2 (SDG 2) (Zhang et al., 2018).

Traditional methods of rice area mapping rely heavily on
manual surveys, which are often labor-intensive and time-

consuming (Pan et al., 2021; Abdali et al., 2023). With the
open access to data from remote sensing satellites such as
MODIS, the Landsat series, and the Sentinel series, remote
sensing has become an effective tool for mapping the spa-
tial distribution of rice on a large scale (Dong and Xiao,
2016; Abdali et al., 2023; Gao et al., 2023; Zhang et al.,
2023b). Currently, studies have been conducted to produce
rice distribution maps in EA using various remote sensing
data. For example, Xiao et al. (2005a) and Han et al. (2022)
used MODIS data to create 500 m resolution rice area maps
covering south China and the Asian monsoon region, respec-
tively; Carrasco et al. (2022) created 30 m resolution rice area
maps for Japan from 1985 to 2019 using phenological al-
gorithms and Landsat data; Jo et al. (2023) used recurrent
U-Net and Sentinel-1 data to map rice distribution in the Re-
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public of Korea at 10 m resolution from 2017 to 2021; Han et
al. (2021b) combined MODIS and Sentinel-1 data to release
a 10 m resolution rice distribution dataset, NESEA-Rice10,
covering northeast and southeast Asia; Pan et al. (2021) used
Sentinel-1 data and the TWDTW algorithm to map the distri-
bution of double-cropping rice in nine southern provinces of
China; and Shen et al. (2023) used the TWDTW algorithm
and Sentinel-1 and Sentinel-2 data to map the distribution
of single-cropping rice across 21 provinces in China. Exist-
ing rice distribution datasets with complete coverage of EA
are mainly produced using 500 m resolution MODIS data,
while 10 m resolution rice distribution datasets mapped us-
ing Sentinel-1 and Sentinel-2 data cover only part of EA and
still do not fully cover the whole region.

The Google Earth Engine (GEE) cloud platform integrates
remote sensing images with varying temporal and spatial
resolutions and provides professional image processing and
classification algorithms, which has become the main plat-
form for national- and subcontinental-scale rice area map-
ping (Gorelick et al., 2017; Yu et al., 2023). Approaches
to map rice area on the GEE platform can be summarized
as phenology-based and machine-learning-based approaches
(Dong et al., 2016; Ni et al., 2021). Phenology-based meth-
ods are relatively easy to understand and to practice; they
usually determine rice-planting areas with specific spectral
bands or vegetation indices that are sensitive to the water–
soil–vegetation characteristics of rice paddies during specific
phenological stages (Xiao et al., 2005b, 2006; Han et al.,
2021b; Zhan et al., 2021; Carrasco et al., 2022; Gao et al.,
2023; Xu et al., 2023). Machine-learning-based approaches
depend less on the rice phenological stages by exploring the
relationship between specific bands or indices and the label
information, and to achieve high rice recognition accuracies,
a large number of training data is demanded to train the su-
pervised model, through the use of random forest (RF) (He
et al., 2021; You et al., 2021) and support vector machine
(SVM) (Ni et al., 2021; Huang et al., 2023) methods, for ex-
ample.

The robustness of machine learning models relies on ex-
tensive high-quality training samples. Obtaining samples
through manual labeling is often costly and time-consuming,
especially in large-scale land cover mapping tasks. Some
studies proposed to generate sample sets with existing public
datasets to support the fine classification of crops (Song et al.,
2017; Hao et al., 2020; Xu et al., 2020; Johnson and Mueller,
2021; Wen et al., 2022; Yang et al., 2023; Pandžić et al.,
2024), such as the United States Department of Agriculture’s
(USDA) Cropland Data Layer (CDL) (Johnson and Mueller,
2010) and the Agriculture and Agri-Food Canada (AAFC)
Crop Inventory (CI) dataset (Fisette et al., 2013). However,
the limited availability of moderate- to high-resolution (10–
250 m) rice distribution maps in EA does not allow the use
of historical data to generate reliable training samples for
the entire region (Lin et al., 2022; Zhi et al., 2022; Sun et
al., 2024). Some efforts have been made to generate train-

ing samples automatically using current-season remote sens-
ing data. Zhang et al. (2023a) generated training sample sets
using optical remote sensing indices during multiple spe-
cific phenological stages of rice, while Gao et al. (2023)
combined synthetic aperture radar (SAR) data and object-
oriented methods to generate training samples. However,
when mapping rice distribution in EA, the vast differences in
climate conditions and landscape complexity across different
areas make it insufficient to rely on a single data source to ob-
tain high-quality training datasets for various regions. There-
fore, a new sample generation strategy is urgently needed to
fully utilize both optical and SAR data.

Currently, studies have been conducted to combine opti-
cal and SAR data for rice distribution mapping and demon-
strated that the classification accuracy of the combined data
sources is superior to that of a single data source (Chen et
al., 2020; Xiao et al., 2021; Gao et al., 2023; Wang et al.,
2024). However, existing studies have mainly used SAR fea-
tures as complementary features to optical data, and optical
and SAR are fed into the same model (Chen et al., 2020; He
et al., 2021), which does not take into account the respec-
tive characteristics of SAR and optical data. Therefore, it is
necessary to design a new rice classification strategy that can
uncover the intrinsic features of optical and SAR data inde-
pendently and effectively integrate their advantages to obtain
better classification results.

To address these challenges, this study designs a high-
precision rice distribution mapping framework applicable to
different regions in EA. The framework takes the advantages
of both the phenology-based and machine-learning-based ap-
proaches: (1) a novel SAR-based rice mapping index (SRMI)
is proposed and combined with optical indices to generate
representative training samples and (2) an optical–SAR adap-
tive fusion model that considers the impacts of cloud cover
on the rice recognition is designed, which makes full use of
the features of Sentinel-1 and Sentinel-2 data with a stacked
model and can achieve accurate rice mapping results. Based
on the proposed method, a 10 m resolution rice area map for
EA in 2023 (EARice10) is produced, providing essential data
for monitoring the growth and estimating the yield of rice in
EA.

2 Materials

2.1 Study area

The EA region includes five countries: China, Japan, the
Democratic People’s Republic of Korea, the Republic of Ko-
rea, and Mongolia. Rice is cultivated in all these countries
except Mongolia, as shown in Fig. 1a.

Japan, the Democratic People’s Republic of Korea, the Re-
public of Korea, and China encompass diverse climatic con-
ditions, landscape features, and agricultural practices, lead-
ing to significant regional variations in rice-planting areas
and cropping systems (Luo et al., 2020; Hu et al., 2023).

Earth Syst. Sci. Data, 17, 661–683, 2025 https://doi.org/10.5194/essd-17-661-2025



M. Song et al.: EARice10 663

Based on cropping systems, the entire EA can be categorized
into single-season, double-season, and mixed-season areas,
where the mixed-season area includes a mixture of single-
season and double-season rice (see Fig. 1b).

Single-season rice is the dominant system in the Demo-
cratic People’s Republic of Korea, the Republic of Korea,
and Japan due to thermal limitations, with transplanting typ-
ically occurring from May to June. As the world’s largest
rice producer, the situation of rice cultivation in China is
more complex. There are 31 provincial-level administrative
regions in China where rice can be grown (except for Qing-
hai Province, Hong Kong SAR, and Macao SAR). Eight
of these provinces, Beijing, Tianjin, Hebei, Shanxi, Tibet,
Gansu, Ningxia, and Xinjiang, have less than 100 000 ha un-
der rice cultivation. Single-season rice is grown in north-
ern China, while double-season rice is prevalent in southern
China, with early rice transplanting from March to April and
late rice transplanting from July to August (Pan et al., 2021;
You et al., 2021; Shen et al., 2023).

2.2 Satellite imagery

In this study, Sentinel-1 and Sentinel-2 data were used for
rice mapping at 10 m resolution. In 2023, a total of more than
202 000 scenes of Sentinel-2 images and over 13 000 scenes
of Sentinel-1 images covered the study area.

2.2.1 Sentinel-2 data

The Sentinel-2 (S2) mission comprises two twin satellites,
S2A and S2B, providing wide-swath, high-resolution, multi-
spectral imagery with a global revisit time of 5 d (Zhao et
al., 2021), with the Multi-Spectral Instrument (MSI) acquir-
ing data in 13 spectral bands, including visible and near-
infrared (NIR) bands at 10 m resolution, red-edge and short-
wave infrared (SWIR) bands at 20 m resolution, and atmo-
spheric bands at 60 m resolution. The red-edge bands of S2
have proven particularly valuable for vegetation and agricul-
tural monitoring applications (Griffiths et al., 2019; You et
al., 2021; Zhang et al., 2022b). This study used S2 surface
reflectance (SR) data (Level-2A), which more accurately
reflects ground object information compared to S2 top-of-
atmosphere (TOA) data (Level-1C), making it more suitable
for rice extraction (Shelestov et al., 2017; Ni et al., 2021).

To leverage the rich spectral information of S2 data, we
utilized the 10 original bands and several commonly used
spectral indices as input features for the classification model.
The original bands include blue, green, red, near-infrared
(NIR), red-edge (RE) 1–4, and SWIR 1–2. All bands were
resampled to a 10 m spatial resolution. The selected spectral
indices, commonly employed for rice mapping, include the
Normalized Difference Vegetation Index (NDVI), Land Sur-
face Water Index (LSWI), Enhanced Vegetation Index (EVI),
Bare Soil Index (BSI), Plant Senescence Reflectance Index
(PSRI), and Green Chlorophyll Vegetation Index (GCVI)

(Table 1) (Ni et al., 2021; Gao et al., 2024; Zhu et al.,
2024). To maximize data availability while minimizing cloud
contamination, we applied the Cloud Score+ algorithm to
all S2 SR images acquired during the rice-growing sea-
son (Pasquarella et al., 2023). Subsequently, we generated
semi-monthly cloud-free composites by averaging the cloud-
masked pixel values within each composite period. All the
pre-processing and the feature extraction were accomplished
on the GEE platform.

2.2.2 Sentinel-1 data

The Sentinel-1 (S1) mission provides C-band (5.405 GHz)
SAR data at 10 m spatial resolution with a 12 d revisit time,
making it a valuable data source for agricultural monitoring
(Wei et al., 2019; Xu et al., 2021; Tian et al., 2023; Xu et
al., 2023). This study utilized S1 Interferometric Wide (IW)
swath mode Ground Range Detected (GRD) data, compris-
ing VH and VV polarization channels.

The S1 data on the GEE platform undergo basic pre-
processing (e.g., thermal noise removal, radiometric calibra-
tion, terrain correction). To obtain higher-quality SAR fea-
tures, we further processed the S1 data on GEE using the
S1 Analysis Ready Data (ARD) framework described in
Mullissa et al. (2021). This additional processing involved
border noise removal, speckle filtering using the Refined
Lee filter, and radiometric terrain normalization. To gener-
ate spatially and temporally consistent S1 composites, mean
compositing was performed on all available data within the
rice-growing season at a 12 d interval. In addition to the
original VH and VV backscattering coefficients, the cross-
polarization ratio (CR) defined as VH /VV was calculated,
which has proven valuable for crop classification (Veloso et
al., 2017; d’Andrimont et al., 2021).

2.3 Auxiliary data

Several auxiliary datasets were incorporated, including land
cover products, digital elevation models (DEMs), rice phe-
nology data, existing rice distribution maps, statistical year-
book data, and validation samples (Table 2).

To minimize classification errors associated with non-
cropland areas and account for potential inter-annual crop-
land changes, we applied a cropland mask generated by
merging the cropland classes from the ESA WorldCover
2020 and 2021 products (Gao et al., 2023; Wang et al., 2024).

The Shuttle Radar Topography Mission (SRTM) Version 3
digital elevation model (DEM) at 1 arcsec resolution (ap-
proximately 30 m) was used for S1 data pre-processing and
analysis of rice spatial distribution patterns (Farr et al., 2007).

The phenology information for this study was sourced
from the RiceAtlas rice calendar and yield database (Laborte
et al., 2017a). RiceAtlas records data on rice-planting and
harvest dates by growing season and yield estimates for all
rice-producing countries. It contains detailed information on
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Figure 1. Overview of the study area: (a) rice-planting areas and (b) rice cropping systems.

Table 1. The spectral indices used in this study.

Spectral index Formula Reference

NDVI NDVI= ρNIR−ρRed
ρNIR+ρRed

Tucker (1979)

LSWI LSWI= ρNIR−ρSWIR1
ρNIR+ρSWIR1

Xiao et al. (2004)

EVI EVI= 2.5× ρNIR−ρRed
ρNIR+6×ρRed−7.5×ρBlue+1 Huete et al. (1997)

BSI BSI= (ρSWIR1+ρRed)−(ρNIR+ρBlue)
(ρSWIR1+ρRed)+(ρNIR+ρBlue) Huete et al. (1994)

PSRI PSRI= ρRed−ρBlue
ρRE2

Merzlyak et al. (1999)

GCVI GCVI= ρNIR
ρGreen

− 1 Gitelson et al. (2003)

rice phenology for all seasons in the provincial regions of
EA countries. These phenological metrics include the start,
peak, and end dates of sowing, transplanting, and harvesting
for each rice-growing season.

To assess the accuracy of the generated rice map, an in-
dependent validation sample set containing 91 320 samples
(46 908 rice and 44 412 non-rice) was constructed through
field surveys and visual interpretation, with field survey sam-
ples accounting for 11.56 % of the total samples, as shown
in Fig. 2. In addition, both official statistical yearbook data
as well as existing rice data products were collected. An-
nual rice area statistics were collected from national statisti-
cal yearbooks at the city level in China and at the provincial
level in Japan, the Democratic People’s Republic of Korea,
and the Republic of Korea. All area values were converted
to hectares. Five existing publicly available datasets were
acquired, including APRA500 (Han et al., 2022), NESEA-
Rice10 (Han et al., 2021b), Rice-TWDTW (Pan et al.,

2021; Shen et al., 2023), RU-NetRice-SouthKorea1 (Jo et al.,
2023), and HistoricalRice-Japan2 (Carrasco et al., 2022).

3 Method

To produce the annual rice distribution map for EA in 2023,
this study designed a high-precision overall rice mapping
framework that consists of two key components: (1) an
indices-based sample set generation method and (2) an
optical–SAR adaptive fusion model, as illustrated in Fig. 3.

1Recurrent U-Net based dynamic paddy rice mapping in South
Korea with enhanced data compatibility to support agricultural de-
cision making

2Historical mapping of rice fields in Japan using phenology and
temporally aggregated Landsat images in Google Earth Engine
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Figure 2. The distribution of the validation sample set: (a, c, e) Sentinel-2 false-color images (R: SWIR1, G: NIR, B: red) and (b, d,
f) enlarged local views of (a), (c), and (e), respectively. (g) The distribution of rice and non-rice validation sample set. (h, i, j) Ground truth
photos of rice fields. Basemap sources for (g) are Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS
User Community.

3.1 Indices-based sample set generation method

Due to the different cultivation conditions and phenological
patterns in the EA, relying only on a single data source to
identify rice candidate areas may result in misclassification
or omission. In this study, we designed a robust sample set
generation method that employs indices from both SAR and
optical data to identify rice candidate areas and combines the
results to refine the sample set.

3.1.1 SAR-based rice candidate area extraction

Existing studies have demonstrated that SAR VH polariza-
tion is more effective in capturing the unique characteristics
of rice growth compared to VV polarization (Zhan et al.,
2021; Xu et al., 2023). However, current phenology-based
methods for rice mapping using SAR often rely on multi-
ple rice phenological stages, making large-scale application
challenging. Therefore, we proposed SRMI, a new rice in-
dex based on the temporal characteristics of the entire rice
phenological period of the time-series S1 VH data.

As illustrated in our previous work (Xu et al., 2021; Sun
et al., 2023), the minimum backscatter coefficient (σ 0

min)
identifies the flooding stage, distinguishing rice from other
crops. The maximum backscatter coefficient (σ 0

max) reduces
misclassification due to water bodies. The mean backscat-
ter coefficient (σ 0

mean) helps differentiate rice from other ob-
jects such as water bodies and buildings. The variance of
the backscatter coefficient (σ 0

var) indicates the variability of
the backscatter coefficient over time, distinguishing farmland
from other land cover types. Thus, four temporal statistical
parameters (σ 0

min, σ 0
max, σ 0

mean, and σ 0
var) that effectively dis-

tinguish rice from other land cover types during the pheno-

logical period were calculated with the following equations.

σ 0
min =min

{
σ 0

1 ,σ
0
2 ,σ

0
3 , . . .,σ

0
n

}
(1)

σ 0
max =max

{
σ 0

1 ,σ
0
2 ,σ

0
3 , . . .,σ

0
n

}
(2)

σ 0
mean =

1
n

∑n

1
σ 0
i (3)

σ 0
var =

1
n

∑n

1

(
σ 0
i − σ

0
mean

)
, (4)

where σ 0
i is the backscatter coefficient at the ith observation.

Next, the four features (σ 0
min, σ 0

max, σ 0
mean, and σ 0

var) were
normalized to eliminate outlier values according to Eq. (5):

F (x)=


1, x > B
x−A
B−A

, A≤ x ≤ B

0, x < A

, (5)

where x represents the statistical parameters, A and B are
preset parameters for normalization, and F (x) is the nor-
malized value ranging from 0 to 1. Based on experience and
extensive comparative experiments, we set the thresholds of
A=−25 and B =−10 for σ 0

min and σ 0
max; A=−20 and

B =−10 for σ 0
mean; and A= 0 and B = 10 for σ 0

var. Through
Eq. (5), the normalized values of the four features (F

(
σ 0

min
)
,

F
(
σ 0

max
)
, F
(
σ 0

mean
)
, F
(
σ 0

var
)
) were obtained.

Subsequently, to mitigate the impact of SAR data speckle
noise, the Simple Non-Iterative Clustering (SNIC) (Achanta
and Susstrunk, 2017) superpixel segmentation was applied
to divide the image into different objects. The input features
for SNIC included the normalized values of the four fea-
tures (F

(
σ 0

min
)
, F
(
σ 0

max
)
, F
(
σ 0

mean
)
, F
(
σ 0

var
)
). In this study,

the SNIC algorithm was configured with a size parameter
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Figure 3. The overall workflow of the proposed rice distribution mapping framework.
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Figure 4. The box plot of the SRMI value of land cover types.

of 15, a compactness value of 0.8, and a connectivity of
8. Consequently, the mean feature values within different
objects (Fsnic

(
σ 0

min
)
, Fsnic

(
σ 0

max
)
, Fsnic

(
σ 0

mean
)
, Fsnic

(
σ 0

var
)
)

were obtained.
Then, the object-based SRMI was defined as follows:

SRMI=
(

1−Fsnic

(
σ 0

min

))
×

(
1−Fsnic

(
σ 0

mean

))
×Fsnic

(
σ 0

max

)
×Fsnic

(
σ 0

var

)
. (6)

Finally, the SAR-based rice candidate area RiceSAR was es-
tablished using SRMI:

RiceSAR =

{
1, SRMI≥ β
0, otherwise , (7)

where β is the SRMI threshold for extract candidate rice ar-
eas.

The range of SRMI values for common land cover types,
as shown in Fig. 4, demonstrates that setting the threshold β
to 0.5 can effectively distinguishes rice from non-rice fields.
Figure 5 displays some examples of potential rice candi-
date areas identified by SRMI. Located in different coun-
tries and with various cultivation backgrounds, these patches
maintained good consistencies with manual interpretations,
demonstrating the effectiveness of SRMI.

3.1.2 Optical-based rice candidate area extraction

During the seeding and transplanting period of rice, the
paddy field has a unique flood inundation period. The flood
signal of the paddy field can be determined by the rela-
tionship between LSWI and EVI to determine the optical-
based rice candidate area (RiceOptical), as shown in Fig. 6.
RiceOptical was defined as

RiceOptical =

{
1, LSWI+α ≥ EV I
0, otherwise , (8)

where α is the threshold set to 0.05 (Xiao et al., 2005a). The
entire seeding and transplanting period for rice spans approx-
imately 30 to 50 d (approximately 6–10 S2 scenes). Due to
the variations in the rice-planting cycle and cloud interfer-
ence, the number of available images might not be guaran-
teed for each pixel. To maximize the number of usable rice
samples in cloudy regions, if a pixel satisfied Eq. (8) in at
least one image, it was initially marked as a potential rice
area. Unlike Sentinel-1 data, the operations for Sentinel-2
data were conducted at the pixel level.

3.1.3 Sample selection based on combined candidate
area

To improve the accuracy of rice samples, the RiceOptical and
RiceSAR candidate areas were intersected to obtain the com-
prehensive rice/non-rice candidate area (RiceBoth), which
was defined as

RiceBoth =

{
1, if RiceOptical = 1 and RiceSAR = 1
0, if RiceOptical = 0 and RiceSAR = 0
none, otherwise

.

(9)

Finally, considering spatial heterogeneity, a fishnet covering
the study area with 1° intervals in longitude and latitude was
created with GEEMAP (Wu, 2020). Within each grid, 2000
sample points were selected from RiceBoth using stratified
random sampling, maintaining a 1 : 1 ratio of rice to non-rice
sample points.

3.2 Optical–SAR adaptive fusion model

After completing the training sample preparation in Sect. 3.1,
an optical–SAR adaptive fusion model was designed by
stacking multiple RF classifiers to fully leverage the advan-
tages of SAR and optical data in the rice classification task,
as shown in Fig. 7.

The RF model integrates multiple decision trees to reduce
the bias and variance of individual trees, thus providing more
accurate classification performance. RF is robust to noise,
less prone to overfitting, and highly generalizable and trans-
ferable, which has been proven effective by previous remote
sensing rice mapping research studies (He et al., 2021; Ab-
dali et al., 2023; Zhang et al., 2023b). In contrast to the com-
monly utilized strategy of directly feeding original SAR and
optical features into the same RF model for classification, we
proposed a hierarchical integration strategy. First, a parallel
structure was designed to exploit the time-series features of
S1 and S2 data with independent RF models. Afterwards,
another RF model was trained to adaptively fuse the clas-
sification probabilities of both data sources. In this process,
the data availability of S2 was confirmed by introducing the
cloud-free indicator as the input feature.

Given that S2 data have a revisit period of 5 d but are af-
fected by clouds, a separate RF model was trained for the
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Figure 5. Demonstrations of rice candidate areas in different regions based on SRMI.

Figure 6. Temporal variations of EVI and LSWI for single-season and double-season rice based on field sample points: (a) single-season
rice and (b) double-season rice.
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Figure 7. Structure of the optical–SAR adaptive fusion model using optical and SAR data.

mean features of each semi-monthly period during the entire
rice phenological period. The classification results of each
model were output as probability values (Pi). The mean of
all RF classification results generated the optical-based rice
classification probability (POptical):

POptical =
1

NCloud-free

N∑
i=1

Pi, (10)

where NCloud-free represents the number of cloud-free pix-
els in all semi-monthly images during the rice phenological
period, and N is the total number of semi-monthly images
during the rice phenological period. For instance, for a 150 d
rice growth cycle, N = 10, NCloud-free ≤N , i = 1, 2, . . . , N .
In general, the closer the NCloud-free value is to N , the more
reliable the POptical result is. Conversely, the greater the dis-
tance between NCloud-free and N , the higher the uncertainty
of POptical.

For S1 data, the RF model was trained with VH, VV, and
CR as inputs, using the 12 d mean composite of all S1 im-
ages.

The RF classification result was represented as the SAR-
based rice classification probability (PSAR).

With all the independent RF models trained by both op-
tical and SAR data, the probabilities were further combined
through another RF model, which intended to uncover the
hidden relationship between the rice recognition results de-
rived by two data sources. The cloud-free frequency was
taken as the input feature as well, which could modulate the
POptical with optical data availability to generate the final rice
classification result (PRice).

In this study, the ntrees parameter of the RF was set to 100,
and other parameters were set to default values.

3.3 Accuracy evaluation

To assess the reliability and accuracy of the EA rice distri-
bution map, we used three metrics, overall accuracy (OA),
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user accuracy (UA), and producer accuracy (PA). These met-
rics were calculated based on the confusion matrix, using the
following formulas:

OA=
TP+TN

TP+TN+FP+FN
(11)

UA=
TP

TP+FN
(12)

PA=
TP

TP+FP
, (13)

where TP is the number of pixels correctly classified as rice,
FP is the number of non-rice pixels misclassified as rice, TN
is the number of pixels correctly classified as non-rice, and
FN is the number of rice pixels misclassified as non-rice.

Additionally, we used the coefficient of determination
(R2) to evaluate the correlation between the rice area map
we produced and the government statistics or existing rice
distribution maps. The formula for R2 is as follows:

R2
=

(
n∑
i=1

(xi − xi)×
(
ki − ki

))2

n∑
i=1

(xi − xi)2
×

n∑
i=1

(
ki − ki

)2 , (14)

where n is the total number of administrative units, xi repre-
sents the rice area of our rice map in the administrative unit,
xi is the average rice area of our rice map across all admin-
istrative unit, ki is the rice area from government statistics or
existing products in the administrative unit, and ki is the aver-
age rice area from government statistics or existing products
across all administrative units.

4 Results

4.1 2023 East Asia 10 m resolution rice distribution map

The 2023 10 m resolution rice distribution map for East Asia,
referred to as EARice10, is illustrated in Fig. 8, along with
statistical information on its distribution analyzed in con-
junction with DEM and other data. The rice distribution maps
of each country are shown in Figs. 9–12, respectively.

As indicated by Fig. 8, rice cultivation in EA was mainly
distributed between 20–50° N and 98–142° E, with the high-
est density of rice cultivation near 34.18° N, 112.58° E. Fig-
ure 8j showed a bimodal distribution pattern in latitude,
with the peaks corresponding to central China and north-
east Asia, which have hydrologic and soil conditions suit-
able for rice growth. Figure 8k showed that rice cultivation
areas were mainly concentrated at low altitudes, with about
95.5 % of the rice cultivated in areas below 1000 m, 3.8 %
cultivated between 1000 and 2000 m, and only 0.7 % of the
rice cultivated in areas above 2000 m. Most of the rice in
EA was grown in low-slope areas, as shown in Fig. 8l, be-
cause these areas are more suitable for irrigation and man-
agement. Specifically, about 87.8 % of it was grown in areas

with slopes of less than 5°. About 12.2 % of the rice-growing
areas have slopes greater than 5°, mainly in the hilly areas of
southern China, where single-season rice is common (He et
al., 2021).

In 2023, China’s annual rice cultivation area was
24 716 000 ha. The top three provinces with largest annual
rice cultivation area were Heilongjiang (14.54 %), Hunan
(10.98 %), and Anhui (9.46 %). This rice distribution map
aligns well with the spatial distribution patterns identified in
previous studies (Xiao et al., 2005a; Dong et al., 2016; Car-
rasco et al., 2022; Wei et al., 2022). Furthermore, EARice10
includes provinces in China where the area under rice culti-
vation is less than 100 000 ha, which were not considered in
other datasets (Pan et al., 2021; Shen et al., 2023).

In Japan, the annual rice cultivation area was 1 251 464 ha.
Specifically, rice cultivation was primarily concentrated on
coastal alluvial plains, with the most extensive areas found in
western Hokkaido, the northwest and central coastal regions
of Honshu, the Kantō Plain, areas surrounding Lake Biwa
in central Honshu, and western Kyushu island. Significant
rice cultivation regions included Tohoku (29.76 %), Chūbu
(20.97 %), Kantō (16.83 %), and Hokkaido (8.08 %), and the
top three prefectures for rice cultivation in 2023 were Niigata
(9.17 %), Hokkaido (8.08 %), and Akita (6.48 %).

On the Korean Peninsula, rice cultivation was primarily
concentrated on the western and southern coastal plains, as
these regions offer favorable conditions for large-scale rice
cultivation due to the abundance of plains, rivers, and reser-
voirs, which provide ample irrigation. Some rice paddies are
also found in the eastern mountainous areas.

In the Republic of Korea, the annual rice cultiva-
tion area was 626 830 ha. Specifically, rice cultivation
was mainly concentrated in the provinces of Jeollanam-
do, Chungcheongnam-do, Jeollabuk-do, Gyeongsangbuk-do,
Gyeonggi-do, and Gyeongsangnam-do, which together rep-
resent 88 % of the total rice cultivation area in the Repub-
lic of Korea. The top three provinces for rice cultivation
in 2023 were Jeollanam-do (21.62 %), Chungcheongnam-do
(19.47 %), and Jeollabuk-do (15.90 %).

In the Democratic People’s Republic of Korea, the an-
nual rice cultivation area was 504 692 ha. Specifically, rice
cultivation was predominantly concentrated in the western
provinces, specifically Hwanghae-namdo, Pyongan-bukdo,
Pyongan-namdo, Hamgyŏng-namdo, and Hwanghae-bukdo.
These regions account for 82.49 % of the nation’s total rice
cultivation area. The top three provinces for rice cultivation
in 2023 were Hwanghae-namdo (25.35 %), Pyongan-bukdo
(20.33 %), and Pyongan-namdo (18.27 %).

4.2 Accuracy evaluation results of EARice10

The accuracy of EARice10 was evaluated using the valida-
tion sample set and statistical yearbook data, as shown in Ta-
ble 3 and Fig. 13.
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Figure 8. 2023 East Asia 10 m resolution rice distribution map (EARice10) and statistical analysis of rice area in different geographical
regions: (a) full coverage of EARice10 and (b–h) zoomed-in views of rice distribution in selected regions – (b) Xinjiang, China (provincial
rice-planting area less than 100 000 ha); (c) Heilongjiang, China (single-season rice region); (d) Hunan, China (mixed-season rice region);
(e) Guangdong, China (double-season rice region); (f) the Democratic People’s Republic of Korea (single-season rice region); (g) the Re-
public of Korea (single-season rice region); and (h) Japan (single-season rice region). (i–l) Statistical analysis of rice area in different
geographical regions: (i) longitude, (j) latitude, (k) DEM, and (l) slope.

In Table 3, EARice10 achieved the OA of 90.48 %, UA
of 90.93 %, and PA of 90.49 %, indicating high consistency
between the extracted rice areas and the validation sample
set. Specifically, the Democratic People’s Republic of Ko-

rea and the Republic of Korea exhibited the highest classifi-
cation accuracy, with OAs of 95.20 % and 95.03 %, respec-
tively. Japan had an OA of 90.02 %, while China’s OA was
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Figure 9. The 10 m rice distribution map in China and provincial rice area statistics (2023).

Figure 10. The 10 m rice distribution map in Japan and provincial rice area statistics (2023).

slightly lower at 89.16 %. This discrepancy may be due to its
larger geographical area and diverse rice cropping systems.

As shown in Fig. 13, the accuracy assessment results at the
provincial scale indicated that most provinces in the Demo-
cratic People’s Republic of Korea, the Republic of Korea,
and northern provinces of China (such as Heilongjiang, Jilin,
and Liaoning) performed excellently, with OAs above 92 %.
These rice areas belonged to the single-season region and
were characterized by vast plains and abundant water re-
sources, making them highly suitable for large-scale rice cul-
tivation, which was consistent with previous studies (Dong et
al., 2016; Ni et al., 2021; Zhang et al., 2022a; Zhang et al.,
2023b). Conversely, the classification accuracy of rice pad-
dies in southwestern China (such as Tibet and Chongqing)

exhibited marginally lower performance due to the com-
plex topography and fragmented distribution of land fields.
Nonetheless, it is noteworthy that the OAs in these areas all
exceeded 74 %.

In addition, we compared the rice area derived from
EARice10 with the rice area reported in official statistical
yearbooks, using municipal-level statistical yearbook data
for China and provincial-level statistical yearbook data for
Japan, the Republic of Korea, and the Democratic People’s
Republic of Korea. Notably, the EARice10 reflects the an-
nual distribution of rice, whereas the statistical yearbooks
report the planted areas for early, middle, and late rice,
with middle rice being single-season rice and early and late
rice classified as double-season rice systems. Therefore, for
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Figure 11. The 10 m rice distribution map in the Republic of Korea and provincial rice area statistics (2023).

Figure 12. The 10 m rice distribution map in the Democratic People’s Republic of Korea and provincial rice area statistics (2023).

double-season rice areas, we used the maximum value be-
tween early and late rice as the official statistical data to
ensure a reasonable comparison. As illustrated in Fig. 14,
the R2 of EARice10 at the municipal level in China was
0.94. For the Democratic People’s Republic of Korea, the
Republic of Korea, and Japan, the R2 values at the provin-
cial level were 0.97, 0.98, and 0.95, respectively. All correla-
tions were statistically significant (p < 0.01). These results
demonstrated robust agreement between EARice10-derived
rice area and government-reported rice area statistics.

4.3 Comparison of the EARice10 with existing rice
distribution maps

Seven representative sites were selected for comparison with
five existing EA rice distribution products, as shown in
Fig. 15. These sites cover a wide range of countries and crop-
ping patterns, with Sites 1 and 2 in the single-season region
of China; Site 3 in the mixed-season region of China; Site 4
in the double-season region of China; and Sites 5–7 in the
Democratic People’s Republic of Korea, the Republic of Ko-
rea, and Japan, respectively.

The comparison results, as shown in Fig. 16, indicated that
EARice10 can show more detail relative to the 500 m res-
olution rice distribution map of APRA500. The EARice10
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Table 3. National-level confusion matrix for the EARice10 against validation sample set.

Region Class where Rice* and Non-rice* represent the validation sample points.

Rice* Non-rice* UA (%) PA (%) OA (%)

China Rice 26 736 2979 89.97 % 89.15 %
89.16 %

Non-rice 3255 24 516 88.28 % 89.17 %

Japan Rice 7152 816 89.76 % 90.34 %
90.02 %

Non-rice 765 7101 90.27 % 89.69 %

The Republic of Korea Rice 4269 216 95.18 % 94.87 %
95.03 %

Non-rice 231 4284 94.88 % 95.20 %

The Democratic People’s Republic of Korea Rice 4290 222 95.08 % 95.33 %
95.20 %

Non-rice 210 4278 95.32 % 95.07 %

East Asia Rice 42 447 4233 90.93 % 90.49 %
90.48 %

Non-rice 4461 40 179 90.01 % 90.47 %

Figure 13. Provincial-level confusion matrix metrics for the EARice10 based on validation sample set.

dataset also showed a high degree of spatial consistency with
rice distribution maps from different countries at either 30 or
10 m resolution. Some localized differences could be found
at Sites 1, 2, 5, 6, and 7, where EARice10 depicted more

complete paddy plots and clearer road networks reflecting
finer spatial details than the existing products. At Sites 3 and
4, EARice10 showed higher spatial completeness and lower
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Figure 14. Comparison of the extracted rice area from the EARice10 with the rice area from statistical yearbooks at the administrative
division scale: (a) municipal-level comparison in China and (b, c, d) provincial-level comparisons in Japan, the Republic of Korea, and the
Democratic People’s Republic of Korea, respectively.

noise levels than the existing products. Overall, the compari-
son results demonstrated the satisfying quality of EARice10.

Figure 17 compares rice area estimates derived from
EARice10 and existing rice distribution maps at the ad-
ministrative unit level for each country. Strong correlations
were observed between rice area estimates by EARice10
and existing products. In China, EARice10 rice area esti-
mates were significantly correlated with those from Rice-
TWDTW (R2

= 0.91, p < 0.01) and NESEA-Rice10 (R2
=

0.98, p < 0.01). Similarly, strong correlations were ob-
served in the Democratic People’s Republic of Korea with
NESEA-Rice10 (R2

= 0.91, p < 0.01), in the Republic of
Korea with RU-NetRice-SouthKorea (R2

= 0.97, p < 0.01),
and in Japan with NESEA-Rice10 (R2

= 0.91, p < 0.01)
and HistoricalRice-Japan (R2

= 0.79, p < 0.01). Notably,
in Japan, rice area estimates from EARice10 were con-
sistently lower than those from the HistoricalRice-Japan
(slope= 0.72). This discrepancy was likely attributable to
differences in mapping periods: HistoricalRice-Japan repre-
sented a 5-year aggregate (2015–2019), whereas EARice10
reflected the year 2023. Despite the temporal differences in

Figure 15. The sites for comparison.
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Figure 16. Detailed comparison of the EARice10 with five existing rice distribution maps. Site 1 and Site 2 are single-season rice-planting
areas in China (Heilongjiang and Liaoning Province); Site 3 is a mixed-season rice-planting area in China (Hubei Province); Site 4 is a double-
season rice-planting area in China (Guangdong Province); and Sites 5–7 are single-season rice-planting areas located in the Democratic
People’s Republic of Korea, the Republic of Korea, and Japan, respectively.

map products, our comparisons with existing products vali-
dated the reliability of EARice10 in accurately representing
the spatial distribution of rice cultivation in EA for 2023.

5 Discussion

With its vast expanse, EA is a significant global rice pro-
duction area that encompasses multiple climate zones. How-
ever, cloud cover presents challenges for high-precision rice

area mapping in the region. Figure 18 illustrates the number
of cloud-free S2 semi-monthly images in different regions
of EA from 2020 to 2023, revealing significant differences
due to the uneven temporal and spatial distribution of clouds.
Southern China and parts of Japan are particularly affected,
with 9.39 % and 11.38 % of areas in China and Japan, re-
spectively, having fewer than 15 cloud-free pixels. Therefore,
relying solely on optical remote sensing data is insufficient,
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Figure 17. Comparison between EARice10 and existing datasets from different countries’ administrative regions.

and a combination of optical and SAR data is required for
accurate mapping of rice distribution.

Using in-season remote sensing data and phenological
methods to generate training samples offers a feasible solu-
tion for large areas (Gao et al., 2023; Zhang et al., 2023a).
However, cloud cover and variations in rice-planting cycles
in different regions mean optical data alone cannot accu-
rately determine rice distribution. To address this, we pro-
pose SRMI, a novel SAR-based index for rice mapping,
which identifies SAR-based rice candidate areas through a
single threshold during one rice phenological period. The
rice candidate area extracted by SAR is combined with the
optical-derived area by the intersection operation, which in-
tends to filter the rice candidates to increase the quality of
samples. This combination avoids misclassification or omis-
sion due to the limitations of a single data source, enhancing
sample representativeness.

In subcontinental rice mapping, phenological methods
alone are insufficient for high-precision rice distribution
maps. Therefore, to achieve high-precision rice mapping and
leverage the advantages of both optical and SAR data, this
study designs an optical–SAR adaptive fusion model based
on a stacking approach. This model utilizes a parallel struc-
ture to fully exploit the features of both optical and SAR data

and incorporates the number of cloud-free S2 pixels as a fea-
ture in the final decision model, thereby achieving accurate
rice classification by considering the uncertainty impact of
clouds on rice mapping results.

Using this method, we obtain a 10 m rice distribution map
of EA for 2023 (EARice10). The product is comprehensively
evaluated using validation sample sets, statistical yearbook
data, and existing rice distribution maps. The results indicate
that EARice10 is highly consistent with statistical informa-
tion and existing products and is able to reflect precise rice
distribution information of EA in 2023.

Despite the promising results of EARice10, there is room
for improvement. To obtain high-precision rice distribution
maps of EA, the optical–SAR adaptive fusion model de-
signed in this study is based on a stacking model approach.
This method improves classification accuracy by combining
the strengths of multiple models, but it sacrifices computa-
tional efficiency to some extent compared to single machine
learning models. While the high-performance computing ca-
pabilities of the GEE platform facilitate the implementation
of such computationally intensive models at a subcontinen-
tal scale, future research could explore more lightweight and
robust classification models to enhance computational effi-
ciency without significantly compromising classification ac-
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Figure 18. Number of cloud-free semi-monthly pixels from 2020 to 2023 and proportion of cloud-free semi-monthly pixel counts in different
countries: (a–d) number of cloud-free semi-monthly pixels from 2020 to 2023, where (a), (b), (c), and (d) represent 2020, 2021, 2022, and
2023, respectively. (e–h) Mean proportion of cloud-free semi-monthly pixel counts from 2020 to 2023 in different countries: (e) China,
(f) Japan, (g) Republic of Korea, and (h) Democratic People’s Republic of Korea.

curacy. This would enable the method to be more effectively
applied in global rice mapping studies.

6 Data availability

The 2023 East Asia 10 m annual rice distri-
bution map can be accessed on Zenodo at
https://doi.org/10.5281/zenodo.13118409 (Song et al.,

2024). The spatial reference system for this dataset is
EPSG:4326 (WGS84).

7 Conclusion

Addressing the sample generation challenges inherent in
subcontinental-scale rice classification, in this paper, a novel
large-scale rice mapping framework was designed to gener-
ate a 10 m resolution rice distribution map of EA in 2023
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(EARice10). The framework involves an indices-based sam-
ple set generation method and an optical–SAR adaptive fu-
sion model, to take full advantage of S1 and S2 data. The
generated EARice10 has an OA of 90.48 % on the validation
samples, showing good consistency with statistical data and
existing datasets, with R2 values ranging between 0.94 and
0.98 with statistical data and between 0.79 and 0.98 with ex-
isting datasets. Moreover, EARice10 is the most up-to-date
rice distribution map that comprehensively covers four rice
production countries of EA in 10 m resolution. And for the
first time, it covers rice areas of less than 100 000 ha in China,
filling the data gaps of eight provincial administrative regions
of China in previous studies.

Author contributions. Conceptualization, methodology, soft-
ware: MS and HZ. Validation, formal analysis: JG. Investigation:
MS and HZ. Resources, data curation: LX and FW. Writing
(original draft preparation): MS, HZ, and LX. Writing (review and
editing): HZ, LX, JG, and LZ. Visualization: JJ, YD, and YX.
Supervision, project administration: HZ and LZ. All authors have
read and agreed to the published version of the paper.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors. Regarding the maps used in this paper, please
note that Figs. 1, 2, 3, 8, 9, 15, and 18 contain disputed territories.

Acknowledgements. The authors acknowledge the support of
data and computational power provided by the Google Earth En-
gine platform.

Financial support. The research was supported by the Interna-
tional Research Center of Big Data for Sustainable Development
Goals (CBAS) (grant no. CBASYX0906).

Review statement. This paper was edited by Hanqin Tian and re-
viewed by Jinwei Dong and three anonymous referees.

References

Abdali, E., Valadan Zoej, M. J., Taheri Dehkordi, A., and
Ghaderpour, E.: A Parallel-Cascaded Ensemble of Ma-
chine Learning Models for Crop Type Classification in
Google Earth Engine Using Multi-Temporal Sentinel-1/2 and

Landsat-8/9 Remote Sensing Data, Remote Sens., 16, 127,
https://doi.org/10.3390/rs16010127, 2023.

Achanta, R. and Susstrunk, S.: Superpixels and polygons using sim-
ple non-iterative clustering, Proceedings of the IEEE conference
on computer vision and pattern recognition, 21–26 July 2017,
Honolulu, HI, USA, 4651–4660, 2017.

Carrasco, L., Fujita, G., Kito, K., and Miyashita, T.: His-
torical mapping of rice fields in Japan using phenology
and temporally aggregated Landsat images in Google Earth
Engine, ISPRS J. Photogramm. Remote, 191, 277–289,
https://doi.org/10.1016/j.isprsjprs.2022.07.018, 2022.

Chen, N., Yu, L., Zhang, X., Shen, Y., Zeng, L., Hu, Q., and Niyogi,
D.: Mapping Paddy Rice Fields by Combining Multi-Temporal
Vegetation Index and Synthetic Aperture Radar Remote Sensing
Data Using Google Earth Engine Machine Learning Platform,
Remote Sens., 12, 2992, https://doi.org/10.3390/rs12182992,
2020.

Chen, W. and Zhao, X.: Understanding global rice trade
flows: Network evolution and implications, Foods, 12, 3298,
https://doi.org/10.3390/foods12173298, 2023.

d’Andrimont, R., Verhegghen, A., Lemoine, G., Kempeneers, P.,
Meroni, M., and Van Der Velde, M.: From parcel to continen-
tal scale–A first European crop type map based on Sentinel-1 and
LUCAS Copernicus in-situ observations, Remote Sens. Environ.,
266, 112708, https://doi.org/10.1016/j.rse.2021.112708, 2021.

Dong, J. and Xiao, X.: Evolution of regional to global paddy rice
mapping methods: A review, ISPRS J. Photogramm. Remote,
119, 214–227, https://doi.org/10.1016/j.isprsjprs.2016.05.010,
2016.

Dong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau, D.,
Biradar, C., and Moore 3rd, B.: Mapping paddy rice planting area
in northeastern Asia with Landsat 8 images, phenology-based al-
gorithm and Google Earth Engine, Remote Sens. Environ., 185,
142–154, https://doi.org/10.1016/j.rse.2016.02.016, 2016.

FAO: World rice production (Crops > Items > Rice, paddy), https:
//www.fao.org/faostat/en/#data/QCL, last access: 17 June 2024.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R.,
Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., and Roth,
L.: The shuttle radar topography mission, Rev. Geophys., 45,
https://doi.org/10.1029/2005RG000183, 2007.

Fisette, T., Rollin, P., Aly, Z., Campbell, L., Daneshfar, B., Filyer,
P., Smith, A., Davidson, A., Shang, J., and Jarvis, I.: AAFC
annual crop inventory, 2013 Second International Conference
on Agro-Geoinformatics (Agro-Geoinformatics), 12–16 August
2013, Fairfax, VA, USA, 270–274, 2013.

Gao, X., Chi, H., Huang, J., Han, Y., Li, Y., and Ling,
F.: Comparison of Cloud-Mask Algorithms and Machine-
Learning Methods Using Sentinel-2 Imagery for Mapping
Paddy Rice in Jianghan Plain, Remote Sens., 16, 1305,
https://doi.org/10.3390/rs16071305, 2024.

Gao, Y., Pan, Y., Zhu, X., Li, L., Ren, S., Zhao, C., and
Zheng, X.: FARM: A fully automated rice mapping framework
combining Sentinel-1 SAR and Sentinel-2 multi-temporal im-
agery, Computers and Electronics in Agriculture, 213, 108262,
https://doi.org/10.1016/j.compag.2023.108262, 2023.

Gitelson, A. A., Gritz, Y., and Merzlyak, M. N.: Relationships be-
tween leaf chlorophyll content and spectral reflectance and algo-
rithms for non-destructive chlorophyll assessment in higher plant
leaves, J. Plant Physiol„ 160, 271–282, 2003.

Earth Syst. Sci. Data, 17, 661–683, 2025 https://doi.org/10.5194/essd-17-661-2025

https://doi.org/10.3390/rs16010127
https://doi.org/10.1016/j.isprsjprs.2022.07.018
https://doi.org/10.3390/rs12182992
https://doi.org/10.3390/foods12173298
https://doi.org/10.1016/j.rse.2021.112708
https://doi.org/10.1016/j.isprsjprs.2016.05.010
https://doi.org/10.1016/j.rse.2016.02.016
https://www.fao.org/faostat/en/#data/QCL
https://www.fao.org/faostat/en/#data/QCL
https://doi.org/10.1029/2005RG000183
https://doi.org/10.3390/rs16071305
https://doi.org/10.1016/j.compag.2023.108262


M. Song et al.: EARice10 681

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D.,
and Moore, R.: Google Earth Engine: Planetary-scale geospatial
analysis for everyone, Remote Sens. Environ., 202, 18–27, 2017.

Griffiths, P., Nendel, C., and Hostert, P.: Intra-annual reflectance
composites from Sentinel-2 and Landsat for national-scale crop
and land cover mapping, Remote Sens. Environ., 220, 135–151,
2019.

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Cheng, F., Zhuang,
H., and Zhang, J.: APRA500: a 500 m annual paddy rice dataset
for monsoon Asia using multisource remote sensing data, Zen-
odo [data set], https://doi.org/10.5281/zenodo.5555721, 2021a.

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Cheng, F.,
Zhuang, H., Zhang, J., and Tao, F.: NESEA-Rice10: high-
resolution annual paddy rice maps for Northeast and Southeast
Asia from 2017 to 2019, Earth Syst. Sci. Data, 13, 5969–5986,
https://doi.org/10.5194/essd-13-5969-2021, 2021b.

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Cheng,
F., Zhuang, H., Zhang, J., and Tao, F.: NESEA-Rice10:
high-resolution annual paddy rice maps for Northeast and
Southeast Asia from 2017 to 2019, Zenodo [data set],
https://doi.org/10.5281/zenodo.5645344, 2021c.

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng,
F., Zhang, J., and Tao, F.: Annual paddy rice planting area
and cropping intensity datasets and their dynamics in the Asian
monsoon region from 2000 to 2020, Agric. Syst., 200, 103437,
https://doi.org/10.1016/j.agsy.2022.103437, 2022.

Hao, P., Di, L., Zhang, C., and Guo, L.: Transfer Learn-
ing for Crop classification with Cropland Data Layer data
(CDL) as training samples, Sci. Total Environ., 733, 138869,
https://doi.org/10.1016/j.scitotenv.2020.138869, 2020.

He, Y., Dong, J., Liao, X., Sun, L., Wang, Z., You, N., Li, Z., and
Fu, P.: Examining rice distribution and cropping intensity in a
mixed single-and double-cropping region in South China using
all available Sentinel 1/2 images, Int. J. Appl. Earth Obs., 101,
102351, https://doi.org/10.1016/j.jag.2021.102351, 2021.

Hu, J., Chen, Y., Cai, Z., Wei, H., Zhang, X., Zhou, W.,
Wang, C., You, L., and Xu, B.: Mapping Diverse Paddy
Rice Cropping Patterns in South China Using Harmonized
Landsat and Sentinel-2 Data, Remote Sens., 15, 1034,
https://doi.org/10.3390/rs15041034, 2023.

Huang, C., You, S., Liu, A., Li, P., Zhang, J., and Deng,
J.: High-Resolution National-Scale Mapping of Paddy Rice
Based on Sentinel-1/2 Data, Remote Sens., 15, 4055,
https://doi.org/10.3390/rs15164055, 2023.

Huete, A., Justice, C., and Liu, H.: Development of vegetation and
soil indices for MODIS-EOS, Remote Sens. Environ., 49, 224–
234, 1994.

Huete, A., Liu, H., Batchily, K., and Van Leeuwen, W.: A compar-
ison of vegetation indices over a global set of TM images for
EOS-MODIS, Remote Sens. Environ., 59, 440–451, 1997.

Jo, H.-W. and Lee, W.-K.: Paddy Rice Maps
South Korea (2017–2021), Zenodo [data set],
https://doi.org/10.5281/zenodo.5845896, 2022.

Jo, H.-W., Park, E., Sitokonstantinou, V., Kim, J., Lee, S., Koukos,
A., and Lee, W.-K.: Recurrent U-Net based dynamic paddy rice
mapping in South Korea with enhanced data compatibility to
support agricultural decision making, GIScience Remote Sens.,
60, 2206539, https://doi.org/10.1080/15481603.2023.2206539,
2023.

Johnson, D. M. and Mueller, R.: The 2009 cropland data layer, Pho-
togramm. Eng. Remote Sens, 76, 1201–1205, 2010.

Johnson, D. M. and Mueller, R.: Pre-and within-season
crop type classification trained with archival land cover
information, Remote Sens. Environ., 264, 112576,
https://doi.org/10.1016/j.rse.2021.112576, 2021.

Laborte, A. G., Gutierrez, M. A., Balanza, J. G., Saito, K., Zwart,
S. J., Boschetti, M., Murty, M. V. R., Villano, L., Aunario, J. K.,
Reinke, R., Koo, J., Hijmans, R. J., and Nelson, A.: RiceAtlas,
a spatial database of global rice calendars and production, Sci.
Data, 4, 170074, https://doi.org/10.1038/sdata.2017.74, 2017a.

Laborte, A. G., Gutierrez, M. A., Balanza, J. G., Saito, K., Zwart,
S. J., Boschetti, M., Murty, M. V. R., Villano, L., Aunario, J. K.,
Reinke, R., Koo, J., Hijmans, R. J., and Nelson, A.: RiceAtlas, a
spatial database of global rice calendars and production, Harvard
Dataverse, V4 [data set], https://doi.org/10.7910/DVN/JE6R2R,
2017b.

Lin, C., Zhong, L., Song, X.-P., Dong, J., Lobell, D. B., and Jin,
Z.: Early-and in-season crop type mapping without current-year
ground truth: Generating labels from historical information via a
topology-based approach, Remote Sens. Environ., 274, 112994,
https://doi.org/10.1016/j.rse.2022.112994, 2022.

Luo, Y., Zhang, Z., Li, Z., Chen, Y., Zhang, L., Cao, J.,
and Tao, F.: Identifying the spatiotemporal changes of an-
nual harvesting areas for three staple crops in China by in-
tegrating multi-data sources, Environ. Res. Lett., 15, 074003,
https://doi.org/10.1088/1748-9326/ab80f0, 2020.

Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., and Rak-
itin, V. Y.: Non-destructive optical detection of pigment changes
during leaf senescence and fruit ripening, Physiol. Plant., 106,
135–141, 1999.

Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling,
J., Gou, Y., Gorelick, N., and Reiche, J.: Sentinel-1 sar backscat-
ter analysis ready data preparation in google earth engine, Re-
mote Sens., 13, 1954, https://doi.org/10.3390/rs13101954, 2021.

Ni, R., Tian, J., Li, X., Yin, D., Li, J., Gong, H., Zhang, J., Zhu, L.,
and Wu, D.: An enhanced pixel-based phenological feature for
accurate paddy rice mapping with Sentinel-2 imagery in Google
Earth Engine, ISPRS J. Photogramm. Remote, 178, 282–296,
https://doi.org/10.1016/j.isprsjprs.2021.06.018, 2021.

Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma,
H., and Yuan, W.: High Resolution Distribution Dataset of
Double-Season Paddy Rice in China, Remote Sens., 13, 4609,
https://doi.org/10.3390/rs13224609, 2021.
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