Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-493-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-493-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A compilation of surface inherent optical properties and phytoplankton pigment concentrations from the Atlantic Meridional Transect
Plymouth Marine Laboratory, Plymouth, UK
Giorgio Dall'Olmo
CORRESPONDING AUTHOR
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy
Gavin Tilstone
Plymouth Marine Laboratory, Plymouth, UK
Robert J. W. Brewin
Centre for Geography and Environmental Science, University of Exeter, Penryn, UK
Francesco Nencioli
Collecte Localisation Satellites, Toulouse, France
Ruth Airs
Plymouth Marine Laboratory, Plymouth, UK
Crystal S. Thomas
NASA Goddard Space Flight Center, Greenbelt, USA
Louise Schlüter
DHI – Water and Environment, Hørsholm, Denmark
Related authors
No articles found.
Daniel J. Ford, Jamie D. Shutler, Katy L. Sheen, Gavin H. Tilstone, and Vassilis Kitidis
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-463, https://doi.org/10.5194/essd-2025-463, 2025
Preprint under review for ESSD
Short summary
Short summary
Mesoscale eddies are abundant in the global oceans affect the physical, chemical and biological properties of the ocean. These changes can modify the air-sea CO2 fluxes. Here, we present a dataset of air-sea CO2 fluxes for 5996 long lived mesoscale eddies trajectories in the global ocean between 1993 to 2022. These trajectories can be used to understand the processes modifying and controlling the air-sea CO2 fluxes in mesoscale eddies which are supported by a comprehensive uncertainty budget.
Qi Zheng, Johannes J. Viljoen, Xuerong Sun, Žarko Kovač, Shubha Sathyendranath, and Robert J. W. Brewin
Biogeosciences, 22, 3253–3278, https://doi.org/10.5194/bg-22-3253-2025, https://doi.org/10.5194/bg-22-3253-2025, 2025
Short summary
Short summary
Phytoplankton contribute to half of Earth’s primary production, but not a lot is known about subsurface phytoplankton, living at the base of the sunlit ocean. We develop a two-layered box model to simulate phytoplankton seasonal and interannual variations in different depth layers of the ocean. Our model captures seasonal and long-term trends of the two layers, explaining how they respond to a warming ocean, furthering our understanding of how phytoplankton are responding to climate change.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Elise S. Droste, Mario Hoppema, Melchor González-Dávila, Juana Magdalena Santana-Casiano, Bastien Y. Queste, Giorgio Dall'Olmo, Hugh J. Venables, Gerd Rohardt, Sharyn Ossebaar, Daniel Schuller, Sunke Trace-Kleeberg, and Dorothee C. E. Bakker
Ocean Sci., 18, 1293–1320, https://doi.org/10.5194/os-18-1293-2022, https://doi.org/10.5194/os-18-1293-2022, 2022
Short summary
Short summary
Tides affect the marine carbonate chemistry of a coastal polynya neighbouring the Ekström Ice Shelf by movement of seawater with different physical and biogeochemical properties. The result is that the coastal polynya in the summer can switch between being a sink or a source of CO2 multiple times a day. We encourage consideration of tides when collecting in polar coastal regions to account for tide-driven variability and to avoid overestimations or underestimations of air–sea CO2 exchange.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, https://doi.org/10.5194/bg-19-4287-2022, 2022
Short summary
Short summary
This study explores the seasonal, inter-annual, and multi-year drivers of the South Atlantic air–sea CO2 flux. Our analysis showed seasonal sea surface temperatures dominate in the subtropics, and the subpolar regions correlated with biological processes. Inter-annually, the El Niño–Southern Oscillation correlated with the CO2 flux by modifying sea surface temperatures and biological activity. Long-term trends indicated an important biological contribution to changes in the air–sea CO2 flux.
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022, https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Short summary
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that promotes marine primary productivity. In our model study, we disentangle major controls on the seafloor Si cycle to better anticipate the impacts of continued warming and sea ice melt in the Barents Sea. We uncover a coupling of the iron redox and Si cycles, dissolution of lithogenic silicates, and authigenic clay formation, comprising a Si sink that could have implications for the Arctic Ocean Si budget.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 93–115, https://doi.org/10.5194/bg-19-93-2022, https://doi.org/10.5194/bg-19-93-2022, 2022
Short summary
Short summary
This study identifies the most accurate biological proxy for the estimation of seawater pCO2 fields, which are key to assessing the ocean carbon sink. Our analysis shows that the net community production (NCP), the balance between photosynthesis and respiration, was more accurate than chlorophyll a within a neural network scheme. The improved pCO2 estimates, based on NCP, identified the South Atlantic Ocean as a net CO2 source, compared to a CO2 sink using chlorophyll a.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Cited articles
Agagliate, J., Foster, R., Ibrahim, A., and Gilerson, A.: A neural network approach to the estimation of in-water attenuation to absorption ratios from PACE mission measurements, Front. Remote Sens., 4, 1–20, https://doi.org/10.3389/frsen.2023.1060908, 2023. a
Aiken, J., Rees, N., Hooker, S., Holligan, P., Bale, A., Robins, D., Moore, G., Harris, R., and Pilgrim, D.: The Atlantic Meridional Transect: overview and synthesis of data, Prog. Oceanogr., 45, 257–312, https://doi.org/10.1016/S0079-6611(00)00005-7, 2000. a, b, c
Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., Holligan, P., and Hardman-Mountford, N.: Phytoplankton pigments and functional types in the Atlantic Ocean: A decadal assessment, 1995–2005, Deep-Sea Res. Pt. II, 56, 899–917, https://doi.org/10.1016/j.dsr2.2008.09.017, 2009. a, b, c, d
Alikas, K., Vabson, V., Ansko, I., Tilstone, G. H., Dall'Olmo, G., Nencioli, F., Vendt, R., Donlon, C., and Casal, T.: Comparison of Above-Water Seabird and TriOS Radiometers Along an Atlantic Meridional Transect, Remote Sens., 12, 1669, https://doi.org/10.3390/rs12101669, 2020. a
Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., and Stramski, D.: Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration, Limnol. Oceanogr., 48, 843–859, https://doi.org/10.4319/lo.2003.48.2.0843, 2003. a, b
Barlow, R., Lamont, T., Viljoen, J., Airs, R., Brewin, R., Tilstone, G., Aiken, J., Woodward, E., and Harris, C.: Latitudinal variability and adaptation of phytoplankton in the Atlantic Ocean, J. Marine Syst., 239, 103844, https://doi.org/10.1016/j.jmarsys.2022.103844, 2023. a
Barnard, A. H., Pegau, W. S., and Zaneveld, J. R. V.: Global relationships of the inherent optical properties of the oceans, J. Geophys. Res.-Oceans, 103, 24955–24968, https://doi.org/10.1029/98JC01851, 1998. a
BIPM: Evaluation of Measurement Data – Guide to the Expression of BIPMinty in Measurement, Joint Committee for Guides in Metrology, Tech. rep., JCGM, https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf (last access: 27 January 2025), 2008. a
Boss, E., Twardowski, M. S., and Herring, S.: Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution, Appl. Optics, 40, 4885–4893, https://doi.org/10.1364/AO.40.004885, 2001. a, b
Boss, E., Slade, W. H., Behrenfeld, M., and Dall'Olmo, G.: Acceptance angle effects on the beam attenuation in the ocean, Opt. Express, 17, 1535–1550, https://doi.org/10.1364/OE.17.001535, 2009. a
Boss, E., Picheral, M., Leeuw, T., Chase, A., Karsenti, E., Gorsky, G., Taylor, L., Slade, W., Ras, J., and Claustre, H.: The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; Contribution of the Tara Oceans expedition, Methods in Oceanography, 7, 52–62, https://doi.org/10.1016/j.mio.2013.11.002, 2013. a, b, c, d, e, f, g
Boss, E. S., Collier, R., Larson, G., Fennel, K., and Pegau, W.: Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR, Hydrobiologia, 574, 149–159, https://doi.org/10.1007/s10750-006-2609-3, 2007. a, b, c
Braga, F., Fabbretto, A., Vanhellemont, Q., Bresciani, M., Giardino, C., Scarpa, G. M., Manfè, G., Concha, J. A., and Brando, V. E.: Assessment of PRISMA water reflectance using autonomous hyperspectral radiometry, ISPRS J. Photogramm. Remote Sens., 192, 99–114, https://doi.org/10.1016/j.isprsjprs.2022.08.009, 2022. a
Brewin, R. J., Dall'Olmo, G., Pardo, S., van Dongen-Vogels, V., and Boss, E. S.: Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals, Remote Sens. Environ., 183, 82–97, https://doi.org/10.1016/j.rse.2016.05.005, 2016. a, b, c, d, e, f, g, h, i, j
Brewin, R. J. W., Ciavatta, S., Sathyendranath, S., Skákala, J., Bruggeman, J., Ford, D., and Platt, T.: The Influence of Temperature and Community Structure on Light Absorption by Phytoplankton in the North Atlantic, Sensors, 19, 4182, https://doi.org/10.3390/s19194182, 2019. a
Bricaud, A., Babin, M., Morel, A., and Claustre, H.: Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization, J. Geophys. Res.-Oceans, 100, 13321–13332, https://doi.org/10.1029/95JC00463, 1995. a
Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations, J. Geophys. Res.-Oceans, 109, C11010, https://doi.org/10.1029/2004JC002419, 2004. a, b, c, d
Cetinić, I., Rousseaux, C. S., Carroll, I. T., Chase, A. P., Kramer, S. J., Werdell, P. J., Siegel, D. A., Dierssen, H. M., Catlett, D., Neeley, A., Soto Ramos, I. M., Wolny, J. L., Sadoff, N., Urquhart, E., Westberry, T. K., Stramski, D., Pahlevan, N., Seegers, B. N., Sirk, E., Lange, P. K., Vandermeulen, R. A., Graff, J. R., Allen, J. G., Gaube, P., McKinna, L. I., McKibben, S. M., Binding, C. E., Calzado, V. S., and Sayers, M.: Phytoplankton composition from sPACE: Requirements, opportunities, and challenges, Remote Sens. Environ., 302, 113964, https://doi.org/10.1016/j.rse.2023.113964, 2024. a, b
Chase, A. P., Boss, E., Cetinić, I., and Slade, W.: Estimation of Phytoplankton Accessory Pigments From Hyperspectral Reflectance Spectra: Toward a Global Algorithm, J. Geophys. Res.-Oceans, 122, 9725–9743, https://doi.org/10.1002/2017JC012859, 2017. a, b, c
Ciotti, Ã. M., Lewis, M. R., and Cullen, J. J.: Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient, Limnol. Oceanogr., 47, 404–417, https://doi.org/10.4319/lo.2002.47.2.0404, 2002. a
Descy, J.-P., Sarmento, H., and Higgins, H. W.: Variability of phytoplankton pigment ratios across aquatic environments, Eur. J. Phycol., 44, 319–330, https://doi.org/10.1080/09670260802618942, 2009. a, b
Devred, E., Sathyendranath, S., Stuart, V., and Platt, T.: A three component classification of phytoplankton absorption spectra: Application to ocean-color data, Remote Sens. Environ., 115, 2255–2266, https://doi.org/10.1016/j.rse.2011.04.025, 2011. a
Dierssen, H. M., Ackleson, S. G., Joyce, K. E., Hestir, E. L., Castagna, A., Lavender, S., and McManus, M. A.: Living up to the Hype of Hyperspectral Aquatic Remote Sensing: Science, Resources and Outlook, Front. Environ. Sci., 9, 1–26, https://doi.org/10.3389/fenvs.2021.649528, 2021. a
Dierssen, H. M., Gierach, M., Guild, L. S., Mannino, A., Salisbury, J., Schollaert Uz, S., Scott, J., Townsend, P. A., Turpie, K., Tzortziou, M., Urquhart, E., Vandermeulen, R., and Werdell, P. J.: Synergies Between NASA's Hyperspectral Aquatic Missions PACE, GLIMR, and SBG: Opportunities for New Science and Applications, J. Geophys. Res.-Biogeo., 128, e2023JG007574, https://doi.org/10.1029/2023JG007574, 2023. a
Eisner, L. B., Twardowski, M. S., Cowles, T. J., and Perry, M. J.: Resolving phytoplankton photoprotective: photosynthetic carotenoid ratios on fine scales using in situ spectral absorption measurements, Limnol. Oceanogr., 48, 632–646, https://doi.org/10.4319/lo.2003.48.2.0632, 2003. a
Gardner, W., Mishonov, A., and Richardson, M.: Global POC concentrations from in-situ and satellite data, Deep-Sea Res. Pt. II, 53, 718–740, https://doi.org/10.1016/j.dsr2.2006.01.029, 2006. a
Gibb, S., Barlow, R., Cummings, D., Rees, N., Trees, C., Holligan, P., and Suggett, D.: Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of basin scale variability between 50° N and 50° S, Prog. Oceanogr., 45, 339–368, https://doi.org/10.1016/S0079-6611(00)00007-0, 2000. a, b
Goericke, R. and Montoya, J.: Estimating the contribution of microalgal taxa to chlorophyll a in the field–variations of pigment ratios under nutrient- and light-limited growth, Mar. Ecol. Prog. Ser., 169, 97–112, https://doi.org/10.3354/meps169097, 1998. a
Hooker, S., Van Heukelem, L., Thomas, C. S., Claustre, H amd Ras, J., Schlüter, L., Perl, J Trees, C., S Stuart, V., Head, Barlow, R., Sessions, H., Clementson, L., Fishwick, J., Llewellyn, C., and Aiken, J.: The Second SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE2), NASA Tech. Memo, 212785, 2005. a
Ibrahim, A., Gilerson, A., Harmel, T., Tonizzo, A., Chowdhary, J., and Ahmed, S.: The relationship between upwelling underwater polarization and attenuation/absorption ratio, Opt. Express, 20, 25662–25680, https://doi.org/10.1364/OE.20.025662, 2012. a
IOCCG: Phytoplankton Functional Types from Space, edited by: Sathyendranath, S., Dartmouth, NS, Canada, International Ocean-Colour Coordinating Group (IOCCG), Tech. Rep. 15, IOCCG, https://doi.org/10.25607/OBP-106, 2014. a
Jordan, T., Dall'Olmo, G., Tilstone, G., Brewin, R., Nencioli, F., Ruth, A., Crystal, T., and Louise, S.: Surface inherent optical properties and phytoplankton pigment concentrations from the Atlantic Meridional Transect (2009–2019): NetCDF format, Zenodo [data set], https://doi.org/10.5281/zenodo.12527954, 2024. a, b
Jordan, T. M.: tjor/AMT_ACSpaperplots: AMT ESSD paper plots (V1.0), Zenodo [code], https://doi.org/10.5281/zenodo.14750306, 2025. a
Jordan, T. M., Dall’Olmo, G., Tilstone, G., Brewin, R. J. W., Nencioli, F., Airs, R., Thomas, C. S., and Schlüter, L.: Surface inherent optical properties and phytoplankton pigment concentrations from the Atlantic Meridional Transect (2009–2019): SeaBASS format, NASA Earth Data [data set], https://seabass.gsfc.nasa.gov/archive/PML/AMT, last access: 4 February 2025a. a, b
Jordan, T. M., Dall'Olmo, G., Tilstone, G., Brewin, R. J. W., and Nencioli, F.: tjor/AMT19_underway: AMT19_underway (Version V1), Zenodo [code], https://doi.org/10.5281/zenodo.14749878, 2025b. a
Jordan, T. M., Dall'Olmo, G., Tilstone, G., Brewin, R. J. W., and Nencioli, F.: tjor/AMT22_underway: AMT 22 ESSD (Version V1), Zenodo [code], https://doi.org/10.5281/zenodo.14749894, 2025c. a
Jordan, T. M., Dall'Olmo, G., Tilstone, G., Brewin, R. J. W., and Nencioli, F.: tjor/AMT23_Underway: AMT 23 ESSD (Version V1), Zenodo [code], https://doi.org/10.5281/zenodo.14750058, 2025d. a
Jordan, T. M., Dall'Olmo, G., Tilstone, G., Brewin, R. J. W., and Nencioli, F.: tjor/AMT24_underway: AMT 24 ESSD (Version V1), Zenodo [code], https://doi.org/10.5281/zenodo.14750062, 2025e. a
Jordan, T. M., Dall'Olmo, G., Tilstone, G., Brewin, R. J. W., and Nencioli, F.: tjor/AMT25_underway: AMT 25 ESSD (Version V1), Zenodo [code], https://doi.org/10.5281/zenodo.14750065, 2025f. a
Jordan, T. M., Dall'Olmo, G., Tilstone, G., Brewin, R. J. W., and Nencioli, F.: tjor/AMT26_underway: AMT 26 ESSD (Version V1), Zenodo [code], https://doi.org/10.5281/zenodo.14750071, 2025g. a
Jordan, T. M., Dall'Olmo, G., Tilstone, G., Brewin, R. J. W., and Nencioli, F.: tjor/AMT27_underway: AMT 27 ESSD (Version V1), Zenodo [code], https://doi.org/10.5281/zenodo.14750076, 2025h. a
Jordan, T. M., Dall'Olmo, G., Tilstone, G., Brewin, R. J. W., and Nencioli, F.: tjor/AMT28_underway: AMT 28 ESSD (Version V1), Zenodo [code], https://doi.org/10.5281/zenodo.14750089, 2025i. a
Jordan, T. M., Dall'Olmo, G., Tilstone, G., Brewin, R. J. W., and Nencioli, F.: tjor/AMT29_underway: AMT 29 ESSD (Version V1), Zenodo [code], https://doi.org/10.5281/zenodo.14750096, 2025j. a
Kramer, S. J. and Siegel, D. A.: How Can Phytoplankton Pigments Be Best Used to Characterize Surface Ocean Phytoplankton Groups for Ocean Color Remote Sensing Algorithms?, J. Geophys. Res.-Oceans, 124, 7557–7574, https://doi.org/10.1029/2019JC015604, 2019. a, b, c, d
Kramer, S. J., Siegel, D. A., and Graff, J. R.: Phytoplankton Community Composition Determined From Co-variability Among Phytoplankton Pigments From the NAAMES Field Campaign, Front. Marine Sci., 7, 1–15, https://doi.org/10.3389/fmars.2020.00215, 2020. a
Kramer, S. J., Siegel, D. A., Maritorena, S., and Catlett, D.: Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing reflectance on global scales, Remote Sens. Environ., 270, 112879, https://doi.org/10.1016/j.rse.2021.112879, 2022. a
Lin, J., Dall'Olmo, G., Tilstone, G. H., Brewin, R. J. W., Vabson, V., Ansko, I., Evers-King, H., Casal, T., and Donlon, C.: Derivation of uncertainty budgets for continuous above-water radiometric measurements along an Atlantic Meridional Transect, Opt. Express, 30, 45648–45675, https://doi.org/10.1364/OE.470994, 2022. a, b
Liu, Y., Boss, E., Chase, A., Xi, H., Zhang, X., Röttgers, R., Pan, Y., and Bracher, A.: Retrieval of Phytoplankton Pigments from Underway Spectrophotometry in the Fram Strait, Remote Sens., 11, 318, https://doi.org/10.3390/rs11030318, 2019. a, b
Massicotte, P., Babin, M., Fell, F., Fournier-Sicre, V., and Doxaran, D.: The Coastal Surveillance Through Observation of Ocean Color (COASTℓOOC) dataset, Earth Syst. Sci. Data, 15, 3529–3545, https://doi.org/10.5194/essd-15-3529-2023, 2023. a
McClain, C. R., Franz, B. A., and Werdell, P. J.: Genesis and Evolution of NASA's Satellite Ocean Color Program, Front. Remote Sens., 3, 1–19, https://doi.org/10.3389/frsen.2022.938006, 2022. a
Moisan, J., Moisan, T. A., and Linkswiler, M.: An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra, J. Geophys. Res., 116, 19143587, https://doi.org/10.1029/2010JC006786, 2011. a
Morel, A. and Prieur, L.: Analysis of variations in ocean color, Limnol. Oceanogr., 22, 709–722, https://doi.org/10.4319/lo.1977.22.4.0709, 1977. a
Nechad, B., Ruddick, K., Schroeder, T., Oubelkheir, K., Blondeau-Patissier, D., Cherukuru, N., Brando, V., Dekker, A., Clementson, L., Banks, A. C., Maritorena, S., Werdell, P. J., Sá, C., Brotas, V., Caballero de Frutos, I., Ahn, Y.-H., Salama, S., Tilstone, G., Martinez-Vicente, V., Foley, D., McKibben, M., Nahorniak, J., Peterson, T., Siliò-Calzada, A., Röttgers, R., Lee, Z., Peters, M., and Brockmann, C.: CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters, Earth Syst. Sci. Data, 7, 319–348, https://doi.org/10.5194/essd-7-319-2015, 2015. a
Pardo, S., Tilstone, G. H., Brewin, R. J., Dall'Olmo, G., Lin, J., Nencioli, F., Evers-King, H., Casal, T. G., and Donlon, C. J.: Radiometric assessment of OLCI, VIIRS, and MODIS using fiducial reference measurements along the Atlantic Meridional Transect, Remote Sens. Environ., 299, 113844, https://doi.org/10.1016/j.rse.2023.113844, 2023. a
Prieur, L. and Sathyendranath, S.: An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1, Limnol. Oceanogr., 26, 671–689, https://doi.org/10.4319/lo.1981.26.4.0671, 1981. a
Rasse, R., Dall'Olmo, G., Graff, J., Westberry, T. K., van Dongen-Vogels, V., and Behrenfeld, M. J.: Evaluating Optical Proxies of Particulate Organic Carbon across the Surface Atlantic Ocean, Front. Marine Sci., 4, 1–18, https://doi.org/10.3389/fmars.2017.00367, 2017. a, b
Rees, A., Robinson, C., Smyth, T., Aiken, J., Nightingale, P., and Zubkov, M.: 20 Years of the Atlantic Meridional Transect–AMT, Limnol. Oceanogr. Bull., 24, 101–107, https://doi.org/10.1002/lob.10069, 2015. a
Ruivo, M., Amorim, A., and Cartaxana, P.: Effects of growth phase and irradiance on phytoplankton pigment ratios: implications for chemotaxonomy in coastal waters, J. Plankton Res., 33, 1012–1022, https://doi.org/10.1093/plankt/fbr019, 2011. a, b
Röttgers, R., McKee, D., and Woźniak, S. B.: Evaluation of scatter corrections for ac-9 absorption measurements in coastal waters, Methods in Oceanography, 7, 21–39, https://doi.org/10.1016/j.mio.2013.11.001, 2013. a
Schlüter, L., Møhlenberg, F., Havskum, H., and Larsen, S. E.: The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios, Mar. Ecol. Prog. Ser., 192, 49–63, https://doi.org/10.3354/MEPS192049, 2000. a
Schlüter, L., Laurisden, T. L., Krough, G., and Jorgensen, T.: Identification and quantification of phytoplankton groups in lakes using new pigment ratios – a comparison between pigment analysis by HPLC and microscopy, Freshwater Biol., 51, 1474–1485, https://doi.org/10.1111/j.1365-2427.2006.01582.x, 2006. a
Slade, W. H., Boss, E., Dall'Olmo, G., Langner, M. R., Loftin, J., Behrenfeld, M. J., Roesler, C., and Westberry, T. K.: Underway and Moored Methods for Improving Accuracy in Measurement of Spectral Particulate Absorption and Attenuation, J. Atmos. Ocean. Tech., 27, 1733–1746, https://doi.org/10.1175/2010JTECHO755.1, 2010. a, b, c, d, e, f, g
Smyth, T. J., Tarran, G. A., and Sathyendranath, S.: Marine picoplankton size distribution and optical property contrasts throughout the Atlantic Ocean revealed using flow cytometry, Appl. Optics, 58, 8802–8815, https://doi.org/10.1364/AO.58.008802, 2019. a
Sun, D., Li, Z., Wang, S., Zhang, H., Huan, Y., Zhang, Y., and He, Y.: Two-decadal estimation of sixteen phytoplankton pigments from satellite observations in coastal waters, Int. J. Appl. Earth Obs., 108, 102715, https://doi.org/10.1016/j.jag.2022.102715, 2022. a, b, c, d
Teng, J., Zhang, T., Sun, K., and Gao, H.: Retrieving Pigment Concentrations Based on Hyperspectral Measurements of the Phytoplankton Absorption Coefficient in Global Oceans, Remote Sens., 14, 3516, https://doi.org/10.3390/rs14153516, 2022. a, b, c, d
Tilstone, G. H., Peters, S. W., van der Woerd, H. J., Eleveld, M. A., Ruddick, K., Schönfeld, W., Krasemann, H., Martinez-Vicente, V., Blondeau-Patissier, D., Röttgers, R., Sørensen, K., Jørgensen, P. V., and Shutler, J. D.: Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel Coastal Waters, Remote Sens. Environ., 118, 320–338, https://doi.org/10.1016/j.rse.2011.11.019, 2012. a
Tilstone, G. H., Pardo, S., Dall'Olmo, G., Brewin, R. J., Nencioli, F., Dessailly, D., Kwiatkowska, E., Casal, T., and Donlon, C.: Performance of Ocean Colour Chlorophyll a algorithms for Sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic, Remote Sens. Environ., 260, 112444, https://doi.org/10.1016/j.rse.2021.112444, 2021. a, b, c, d, e
Vabson, V., Ansko, I., Duong, K., Vendt, R., Kuusk, J., Ruddick, K., Bialek, A., Tilstone, G. H., Gossn, J. I., and Kwiatkowska, E.: Complete characterization of ocean color radiometers, Front. Remote Sens., 5, 1–15, https://doi.org/10.3389/frsen.2024.1320454, 2024. a
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Jackson, T., Chuprin, A., Taberner, M., Airs, R., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Borsheim, Y., Bracher, A., Brando, V., Brewin, R. J. W., Canuti, E., Chavez, F. P., Cianca, A., Claustre, H., Clementson, L., Crout, R., Ferreira, A., Freeman, S., Frouin, R., García-Soto, C., Gibb, S. W., Goericke, R., Gould, R., Guillocheau, N., Hooker, S. B., Hu, C., Kahru, M., Kampel, M., Klein, H., Kratzer, S., Kudela, R., Ledesma, J., Lohrenz, S., Loisel, H., Mannino, A., Martinez-Vicente, V., Matrai, P., McKee, D., Mitchell, B. G., Moisan, T., Montes, E., Muller-Karger, F., Neeley, A., Novak, M., O'Dowd, L., Ondrusek, M., Platt, T., Poulton, A. J., Repecaud, M., Röttgers, R., Schroeder, T., Smyth, T., Smythe-Wright, D., Sosik, H. M., Thomas, C., Thomas, R., Tilstone, G., Tracana, A., Twardowski, M., Vellucci, V., Voss, K., Werdell, J., Wernand, M., Wojtasiewicz, B., Wright, S., and Zibordi, G.: A compilation of global bio-optical in situ data for ocean colour satellite applications – version three, Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, 2022. a
Van Heukelem, L. and Thomas, C. S.: Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments., J. Chromatogr. A, 910, 31–49, https://doi.org/10.1016/S0378-4347(00)00603-4, 2001. a, b, c
Werdell, P. J., Proctor, C. W., Boss, E., Leeuw, T., and Ouhssain, M.: Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation, Methods in Oceanography, 7, 40–51, https://doi.org/10.1016/j.mio.2013.09.001, 2013. a
Werdell, P. J., McKinna, L. I., Boss, E., Ackleson, S. G., Craig, S. E., Gregg, W. W., Lee, Z., Maritorena, S., Roesler, C. S., Rousseaux, C. S., Stramski, D., Sullivan, J. M., Twardowski, M. S., Tzortziou, M., and Zhang, X.: An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing, Prog. Oceanogr., 160, 186–212, https://doi.org/10.1016/j.pocean.2018.01.001, 2018. a
Werdell, P. J., Behrenfeld, M. J., Bontempi, P. S., Boss, E. S., Cairns, B., Davis, G. T., Franz, B. A., Gliese, U. B., Gorman, E. T., Hasekamp, O. P., Knobelspiesse, K. D., Mannino, A., Martins, J. V., McClain, C. R., Meister, G., and Remer, L. A.: The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances, B. Am. Meteorol. Soc., 100, 1775–1794, https://doi.org/10.1175/BAMS-D-18-0056.1, 2019. a
Zaneveld, J. R. V. and Pegau, W. S.: Robust underwater visibility parameter, Opt. Express, 11, 2997–3009, https://doi.org/10.1364/OE.11.002997, 2003. a, b
Zapata, M., Rodríguez, F., and Garrido, J. L.: Separation of chlorophylls and carotenoids from marine phytoplankton: A new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases, Mar. Ecol. Prog. Ser., 195, 29–45, https://doi.org/10.3354/meps195029, 2000. a, b, c
Short summary
We present a compilation of water optical properties and phytoplankton pigments from the surface of the Atlantic Ocean collected during nine cruises between 2009 and 2019. We derive continuous Chlorophyll a concentrations (a biomass proxy) from water absorption. We then illustrate geographical variations and relationships for water optical properties, Chlorophyll a, and other pigments. The dataset will be useful to researchers in ocean optics, remote sensing, ecology, and biogeochemistry.
We present a compilation of water optical properties and phytoplankton pigments from the surface...
Altmetrics
Final-revised paper
Preprint