Articles | Volume 16, issue 12
https://doi.org/10.5194/essd-16-5753-2024
https://doi.org/10.5194/essd-16-5753-2024
Data description paper
 | 
18 Dec 2024
Data description paper |  | 18 Dec 2024

Global tropical cyclone size and intensity reconstruction dataset for 1959–2022 based on IBTrACS and ERA5 data

Zhiqi Xu, Jianping Guo, Guwei Zhang, Yuchen Ye, Haikun Zhao, and Haishan Chen

Related authors

Low-level atmospheric turbulence dataset in China generated by combining radar wind profiler and radiosonde observations
Deli Meng, Jianping Guo, Juan Chen, Xiaoran Guo, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Hui Xu, Tianmeng Chen, Rongfang Yang, and Jiajia Hua
Earth Syst. Sci. Data, 17, 4023–4037, https://doi.org/10.5194/essd-17-4023-2025,https://doi.org/10.5194/essd-17-4023-2025, 2025
Short summary
Global Climate Modeling with Improved Precipitation Characteristics by Learning Physics (GRIST-MPS v1.0) from Global Storm-Resolving Modeling
Yiming Wang, Yi Zhang, Yilun Han, Wei Xue, Yihui Zhou, Xiaohan Li, and Haishan Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2790,https://doi.org/10.5194/egusphere-2025-2790, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A high-resolution divergence and vorticity dataset in Beijing derived from radar wind profiler mesonet measurements
Xiaoran Guo, Jianping Guo, Deli Meng, Yuping Sun, Zhen Zhang, Hui Xu, Liping Zeng, Juan Chen, Ning Li, and Tianmeng Chen
Earth Syst. Sci. Data, 17, 3541–3552, https://doi.org/10.5194/essd-17-3541-2025,https://doi.org/10.5194/essd-17-3541-2025, 2025
Short summary
Impact of multiple radar wind profiler data assimilation on convective-scale short-term rainfall forecasts: OSSE studies over the Beijing–Tianjin–Hebei region
Juan Zhao, Jianping Guo, and Xiaohui Zheng
Geosci. Model Dev., 18, 4075–4101, https://doi.org/10.5194/gmd-18-4075-2025,https://doi.org/10.5194/gmd-18-4075-2025, 2025
Short summary
Development and application of the Round-trip Drifting Sounding System (RDSS)
Xiaozhong Cao, Qiyun Guo, Haowen Luo, Rongkang Yang, Peng Zhang, Jianping Guo, Jincheng Wang, Die Xiao, Jianping Du, Zhongliang Sun, Shijun Liu, Sijie Chen, and Anfan Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2012,https://doi.org/10.5194/egusphere-2025-2012, 2025
Short summary

Cited articles

Atkinson, G. D. and Holliday, C. R.: Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific, Mon. Weather Rev., 105, 421–427, https://doi.org/10.1175/1520-0493(1977)105<0421:TCMSLP>2.0.CO;2, 1977. 
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., and Soci, C.: The ERA5 global reanalysis: Preliminary extension to 1950, Q. J. Roy. Meteor. Soc., 147, 4186–4227, https://doi.org/10.1002/qj.4174, 2021. 
Bian, G. F., Nie, G. Z., and Qiu, X.: How well is outer tropical cyclone size represented in the ERA5 reanalysis dataset?, Atmos. Res., 249, 105339, https://doi.org/10.1016/j.atmosres.2020.105339, 2021. 
Bloemendaal, N., Haigh, I. D., de Moel, H., Muis, S., Haarsma, R. J., and Aerts, J. C.: Generation of a global synthetic tropical cyclone hazard dataset using STORM, Sci. Data, 7, 40, https://doi.org/10.1038/s41597-020-0381-2, 2020. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
Tropical cyclones (TCs) are powerful weather systems that can cause extreme disasters. Here we generate a global long-term TC size and intensity reconstruction dataset, covering a time period from 1959 to 2022, with a 3 h temporal resolution, using machine learning models. These can be valuable for filling observational data gaps and advancing our understanding of TC climatology, thereby facilitating risk assessments and defenses against TC-related disasters.
Share
Altmetrics
Final-revised paper
Preprint