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S1. The hyperparameter selections for each model 1 

S1.1 Random forecast 2 

When optimizing the random forecast model for regression tasks, we utilize Randomized Search Cross-Validation 3 

(RandomizedSearchCV) to systematically explore a wide range of hyperparameters.  4 

Specifically, we define hyperparameter distributions that encompass a range of values for the number of trees in the forest 5 

(100 to 300), maximum depth of the tree (10 to 30), maximum number of features (1 to 7), minimum number of samples (2 to 6 

10), minimum number of samples (2 to 20), and maximum number of leaf nodes (800 to 1200).  7 

With 500 iterations and 5-fold cross-validation, we search for the optimal hyperparameter combination that minimized 8 

the mean squared error (MSE), which is a common choice for regression problems due to its ability to penalize large errors. 9 

Leveraging parallel computing, we efficiently fit the model to the training data and obtain the best-performing estimator.  10 

S1.2 Support vector machine 11 

Similarly, we utilize RandomizedSearchCV with an extensive hyperparameter grid to optimize a support vector machine (SVM) 12 

regression model.  13 

This grid comprises key parameters such as the regularization parameter C, ranging from 1.0 to 1000, to strike a balance 14 

between training error and margin. We explore the kernel, encompassing radial basis function, polynomial, and sigmoid 15 

options, with each option influencing the model's decision function. Further, we adjust the influence of each training sample 16 

on the decision function through the gamma parameter, which varies from 0.001 to 1. The epsilon parameter (0.01 to 0.1) 17 

defines the epsilon-insensitive zone, thereby controlling the margin width.  18 

Leveraging 500 iterations and 5-fold cross-validation, we systematically search for the optimal hyperparameter 19 

combination that minimized the MSE, thereby refining the SVM regression model for enhanced performance. 20 

S1.3 Artificial neural network 21 

We also optimize the artificial neural network model by RandomizedSearchCV in our research to tackle the regression task, 22 

featuring a series of densely interconnected layers.  23 



For the number of hidden layers, we explore between 1 and 4 layers to find the optimal layer depth that could capture the 24 

complexity of the data without causing overfitting. We adjust the size of each layer (number of neurons) between 1 and 500 25 

to optimize the model's expressive power and generalization ability. The Adam optimization algorithm initializes with a 26 

learning rate through random search using reciprocal distribution within a wide range (from 0.0001 to 0.01). Across all layers, 27 

we employ the rectified linear unit activation function to introduce non-linearity.  28 

To optimize the model's performance, we opt for the MSE as the loss function. During the training phase, the model 29 

undergoes rigorous training leveraging 500 iterations and 5-fold cross-validation, ensuring optimal performance and 30 

robustness. 31 

S1.4 Convolutional neural network 32 

For performance evaluation of the convolutional neural network, we adopt the MSE loss function. We also optimize the model 33 

by RandomizedSearchCV. 34 

 Leveraging 500 iterations and 5-fold cross-validation, the model undergoes rigorous training on the designated training 35 

dataset. Specifically, we define a range of values for each hyperparameter (e.g., dropout rate between 0.001 and 0.5, learning 36 

rate between 0.0001 and 0.01, filter size between 2 and 5, number of filters between 32 and 128, and number of dense units 37 

between 64 and 256). The Adam optimizer dynamically adjusts the learning rate throughout training, further enhancing the 38 

optimization process. 39 

S1.5 Multivariate linear regression 40 

We also apply a multivariate linear regression model to investigate the relationship between the predictor variables and the 41 

response variable. We train the multiple linear regression model on the training set to estimate the coefficients of the linear 42 

relationship, which is subsequently used to predict the response variable on the test set. 43 

S2. Typical cyclone radial wind profile models 44 

We utilize six widely used wind field models (Holland, 1980; DeMaria, 1987; Willoughby et al., 2006; Emanuel and Rotunno, 45 

2011; Frisius and Scgönemann, 2013; Chavas et al., 2015) to estimate the reconstructed the radial distances from the cyclone 46 



center to locations where sustained wind speeds of 34, 50 and 64 knots (~17, 26, and 33 m/s). In the models, 𝑟𝑟, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 and 47 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  represent the distance from the cyclone center, radius of maximum wind and maximum sustained wind speed, 48 

respectively. 49 

The wind profile model proposed by Holland (1980) is formulated as follows: 50 

𝑉𝑉(𝑟𝑟) = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚��
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where 𝑉𝑉 is the wind speed at distance 𝑟𝑟 from the TC center, and 𝑏𝑏 = 2, according to Kowaleski and Evans (2016). 52 

The model developed by DeMaria (1987) is formulated as follows: 53 
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where c = 0.63 and d = 1, following Kowaleski and Evans (2016). 55 

The model proposed by Willoughby et al. (2006; hereinafter, W06) is formulated as follows: 56 
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where 𝑉𝑉𝑖𝑖 and 𝑉𝑉0 are the tangential wind components in the eye and beyond the transition zone, which lies between 𝑟𝑟 = 𝑅𝑅1 58 

and 𝑟𝑟 = 𝑅𝑅2, respectively. The transition zone is defined as the radius of maximum wind from the cyclone inner to outer 59 

profiles. 𝑤𝑤, 𝑋𝑋1, and n are the weight function, exponential decay length in the outer vortex, and power law exponent within 60 

the eye, respectively. 𝑅𝑅2 is the location of the transition zone, and determined by requiring the radial derivative of (S3c) to 61 

vanish at 𝑟𝑟 = 𝑅𝑅m𝑎𝑎𝑎𝑎. 𝑅𝑅1 is the location of the eye, and can be solved as follows: 62 

𝑤𝑤(𝜉𝜉) = 126𝜉𝜉5 − 420𝜉𝜉6 + 540𝜉𝜉7 − 315𝜉𝜉8 + 70𝜉𝜉9                                                (S3d) 63 
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The model proposed by Emanuel and Rotunno (2011) is formulated as follows: 65 

𝑉𝑉(𝑟𝑟) = 2𝑟𝑟(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚+0.5𝑓𝑓𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
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where 𝑓𝑓 is the Coriolis parameter. 67 



The model developed by Frisius and Scgönemann (2013) is formulated as follows: 68 

𝑉𝑉(𝑟𝑟) = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
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where 𝐶𝐶𝐻𝐻 and 𝐶𝐶𝐷𝐷 are the surface enthalpy transfer and drag coefficients, respectively, and 𝐶𝐶𝐻𝐻
𝐶𝐶𝑑𝑑

 = 1, according to Frisius and 70 

Scgönemann (2013). 71 

The model proposed by Chavas et al. (2015; hereinafter, CLE15) is formulated as follows: 72 
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   74 

where 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , and 𝑀𝑀𝑚𝑚 are the angular moment of the inner and outer wind regimes and at 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, respectively; and 75 

𝐶𝐶𝑘𝑘 and 𝐶𝐶𝑑𝑑 are the exchange surface enthalpy and momentum coefficients, respectively. 76 

  77 



 78 

 79 

Figure S1: Histogram comparison of ERA5 𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎 for tropical cyclones from 1959-1979 (red) and from 1979-1999 (blue). 80 

  81 



 82 
Figure S2: Comparison between value-averaged maximum wind speeds (𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎) from ERA5-derived and reconstructed (ERA5 + 83 
Random forest) data and IBTrACS maximum wind speeds for tropical cyclones during El Niño years in (a) Western Pacific, (b) 84 
North Atlantic, (c) North Indian, (d) South Indian, (e) South Pacific and (f) Eastern Pacific basins. Grey lines represent the error 85 
bar, given as one standard deviation from the mean.  86 
  87 



 88 

Figure S3: Similar to Figure S2, but during La Niña years. 89 

  90 



Table S1. Basic information on the comparison of the reconstructed with the observed 𝑹𝑹𝟑𝟑𝟑𝟑, 𝑹𝑹𝟓𝟓𝟓𝟓 and 𝑹𝑹𝟔𝟔𝟔𝟔 in Western Pacific. ME, 91 
mean errors; MAE, mean absolute error; RMSE, root mean square error; CE, correlation coefficients. H80, D87, W06, E11, F13 92 
and CLE15 refer to the wind field models proposed by Holland (1980), DeMaria (1987), Willoughby et al. (2006), Emanuel and 93 
Rotunno (2011), Frisius and Scgönemann (2013) and Chavas et al. (2015) 94 

 ME (km) MAE (km) RMSE (km) CE 

H80R34 -80.39 89.34  110.54  0.68  

D87R34 -66.36 82.35  103.63  0.60  

W06R34 -24.79 46.75  64.54  0.89  

E11R34 -60.24 73.72  93.24  0.71  

F13R34 -106.04 110.49  132.57  0.68  

CLE15R34 -60.60 74.80  93.53  0.72  

H80R50 -50.42 54.66  64.76  0.54  

D87R50 -39.40 47.11  56.91  0.52  

W06R50 -14.60 26.00  33.27  0.82  

E11R50 -28.29 46.90  56.26  0.25  

F13R50 -65.31 67.30  77.81  0.50  

CLE15R50 -39.87 46.93  56.52  0.56  

H80R64 -32.13 33.66  39.06  0.60  

D87R64 -23.97 26.75  32.27  0.62  

W06R64 -14.14 18.28  22.71  0.78  

E11R64 -26.36 28.71  34.01  0.62  

F13R64 -41.06 41.86  47.22  0.56  

CLE15R64 -24.32 27.25  32.73  0.61  
Table S2. Similar to Table S1, but in North Atlantic. 95 

 ME (km) MAE (km) RMSE (km) CE  

H80R34 -50.20  63.41  89.89  0.87  

D87R34 -22.85  58.87  82.83  0.85  

W06R34 -41.75  67.06  112.55  0.81  

E11R34 -19.90  54.17  80.59  0.85  

F13R34 -91.60  94.33  122.41  0.87  

CLE15R34 -25.19  53.00  78.77  0.87  

H80R50 -25.33  43.75  62.34  0.82  

D87R50 -6.81  45.40  66.86  0.79  

W06R50 -11.58  32.71  57.39  0.84  

E11R50 25.41  61.73  89.89  0.82  

F13R50 -50.70  54.88  72.66  0.83  

CLE15R50 -10.75  41.50  60.52  0.82  

H80R64 -15.35  27.55  39.46  0.82  

D87R64 -6.39  26.98  39.04  0.81  

W06R64 2.67  18.52  30.37  0.87  

E11R64 -8.73  26.15  37.58  0.83  

F13R64 -27.81  31.47  42.17  0.85  

CLE15R64 -5.52  26.38  37.92  0.83  



Table S3. Similar to Table S1, but in North Indian. 96 

 ME (km) MAE (km) RMSE (km) CE  

H80R34 -71.01  72.12  87.65  0.17  

D87R34 -62.28  64.64  81.20  0.18  

W06R34 -23.19  31.19  41.59  0.74  

E11R34 -59.22  61.89  77.41  0.27  

F13R34 -88.25  88.42  102.12  0.12  

CLE15R34 -59.04  61.77  78.04  0.22  

H80R50 -40.23  41.11  49.98  -0.17  

D87R50 -32.57  35.01  45.31  -0.24  

W06R50 -14.66  20.49  25.69  0.63  

E11R50 -20.03  37.42  43.99  -0.57  

F13R50 -49.46  50.07  57.74  -0.29  

CLE15R50 -32.77  34.95  44.63  -0.18  

H80R64 -24.54  27.28  33.41  -0.18  

D87R64 -19.30  24.63  30.47  -0.23  

W06R64 -11.63  16.62  21.17  0.62  

E11R64 -22.20  25.82  31.92  -0.19  

F13R64 -29.87  31.81  38.26  -0.47  

CLE15R64 -18.94  24.54  30.71  -0.33  

Table S4. Similar to Table S1, but in South Indian. 97 

 ME (km) MAE (km) RMSE (km) CE  

H80R34 -52.37  66.93  86.54  0.40  

D87R34 -39.35  65.36  83.62  0.24  

W06R34 3.57  45.71  56.68  0.74  

E11R34 -32.10  58.83  75.18  0.42  

F13R34 -77.33  82.86  103.96  0.40  

CLE15R34 -34.01  58.82  75.05  0.46  

H80R50 -16.33  33.34  42.84  0.06  

D87R50 -4.94  33.45  41.81  -0.01  

W06R50 14.35  29.69  36.18  0.46  

E11R50 10.50  40.17  49.96  -0.13  

F13R50 -31.74  39.51  50.65  -0.01  

CLE15R50 -6.01  33.58  41.64  0.02  

H80R64 -6.23  18.45  23.88  -0.01  

D87R64 2.01  18.92  23.27  0.05  

W06R64 9.68  18.54  21.57  0.43  

E11R64 -0.55  18.31  22.70  0.12  

F13R64 -17.11  21.82  28.37  -0.06  

CLE15R64 0.36  18.21  22.42  0.13  

 98 



Table S5. Similar to Table S1, but in South Pacific. 99 

 ME (km) MAE (km) RMSE (km) CE  

H80R34 -59.42  67.85  82.65  0.66  

D87R34 -46.49  61.37  77.34  0.57  

W06R34 -5.00  33.51  46.25  0.83  

E11R34 -39.66  53.81  67.68  0.69  

F13R34 -85.65  88.49  104.22  0.68  

CLE15R34 -40.36  53.51  67.32  0.71  

H80R50 -21.77  30.51  36.71  0.64  

D87R50 -11.07  26.03  32.12  0.63  

W06R50 11.75  21.53  27.25  0.77  

E11R50 2.86  29.22  38.00  0.42  

F13R50 -38.11  41.99  49.05  0.62  

CLE15R50 -10.19  24.78  31.18  0.65  

H80R64 -2.51  13.33  16.38  0.64  

D87R64 5.80  14.17  17.05  0.66  

W06R64 12.75  15.60  18.56  0.77  

E11R64 4.97  14.14  17.02  0.68  

F13R64 -13.60  16.42  20.91  0.66  

CLE15R64 7.00  14.58  17.05  0.69  

Table S6. Similar to Table S1, but in Eastern Pacific. 100 

 ME (km) MAE (km) RMSE (km) CE 

H80R34 -18.13 48.97 62.66 0.52 

D87R34 -7.32 55.07 69.07 0.41 

W06R34 32.25 44.43 51.31 0.81 

E11R34 4.02 50.50 64.00 0.53 

F13R34 -43.59 55.90 70.91 0.54 

CLE15R34 5.97 48.36 61.56 0.57 

H80R50 -9.60 27.55 36.73 0.32 

D87R50 -2.51 28.81 38.34 0.27 

W06R50 27.19 31.77 36.61 0.68 

E11R50 10.68 35.00 47.12 0.12 

F13R50 -23.54 31.68 40.92 0.31 

CLE15R50 1.73 27.70 37.00 0.34 

H80R64 -5.67 17.90 23.18 0.14 

D87R64 -0.32 18.69 23.92 0.11 

W06R64 18.74 21.66 25.24 0.51 

E11R64 0.59 17.86 22.98 0.19 

F13R64 -14.41 19.89 25.70 0.12 

CLE15R64 1.31 18.27 23.54 0.15 
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