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Abstract. Tropical cyclones (TCs) are powerful weather systems that can cause extreme disasters. The Inter-
national Best Track Archive for Climate Stewardship (IBTrACS) dataset provides widely used data to estimate
TC climatology. However, it has low data coverage, lacking intensity and outer-size data for more than half of
all recorded storms, and is therefore insufficient as a reference for researchers and decision makers. To fill this
data gap, we reconstruct a long-term TC dataset by integrating IBTrACS and European Centre for Medium-
Range Weather Forecasts Reanalysis 5 (ERA5) data. This reconstructed dataset covers the period 1959–2022,
with 3 h temporal resolution. Compared to the IBTrACS dataset, it contains approximately 3–4 times more data
points per characteristic. We establish machine learning models to estimate the maximum sustained wind speed
(Vmax) and radius of maximum wind (Rmax) in six basins for which TCs are generated, using ERA5-derived
10 m azimuthal mean azimuthal wind profiles as input, with Vmax and Rmax data from the IBTrACS dataset used
as learning target data. Furthermore, we employ an empirical wind–pressure relationship and six wind profile
models to estimate the minimum central pressure (Pmin) and outer size of the TCs, respectively. Overall, this
high-resolution TC reconstruction dataset demonstrates global consistency with observations, exhibiting mean
biases of < 1 % for Vmax and 3 % for Rmax and Pmin in almost all basins. The dataset is publicly available from
https://doi.org/10.5281/zenodo.13919874 (Xu et al., 2024) and substantially advances our understanding of TC
climatology, thereby facilitating risk assessments and defenses against TC-related disasters.

1 Introduction

Tropical cyclones (TCs) are powerful weather systems ac-
companied by gale winds, heavy rainstorms, substantial
waves, and severe storm surges, which cause extensive dam-
age in affected regions (Gray, 1968). During the 2003–2022
period, the global average of TCs is 104 annually, resulting
in estimated annual economic losses of USD 95.6 billion and
affecting more than 3.2 million individuals (CRED, 2023;
Geiger et al., 2018). Given the considerable scale and fre-
quency of TC-related disasters, a comprehensive understand-

ing of TC climatology is essential for effective risk assess-
ment, emergency planning, and community resilience en-
hancement.

TCs are typically characterized according to their inten-
sity, size, location, and translation speed (Weber et al., 2014).
Many studies have reported increasing TC intensity at both
the basin and global scale under global warming (e.g., Web-
ster et al., 2005; Gualdi et al., 2008; Wu et al., 2022). Vincent
et al. (2014) detect a 30 % increase in high-intensity TCs at
the global scale. Mei and Xie (2016) demonstrate a signif-
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icant correlation between TC intensification and increasing
sea surface temperatures (SSTs) in east and southeast Asia.
In addition, Walsh et al. (2016) observe significant increasing
trends in TC intensity in the Atlantic basin over the past few
decades. However, assessments of the response of TC inten-
sity to climate change are subject to uncertainty, partly due
to the challenging and costly process of collecting observa-
tional data (Gualdi et al., 2008; Knutson et al., 2019). Fur-
thermore, the size of TCs may significantly influence their
movement (Liu and Chan, 1999), further contributing to their
destructive potential (Xu et al., 2020). Similarly, a significant
increase in TC size is proportional to surface latent heat flux
under warmer air and ocean temperatures (Hill and Lack-
mann, 2009; Radu et al., 2014). Xu et al. (2020) demonstrate
that TC size increases with ocean warming, based on ideal-
ized experiments. Sun et al. (2013, 2014) discover that TC
size increases significantly as SST increases through a mod-
eling analysis. However, the conclusions of these case stud-
ies are necessarily limited, and the relationships between TC
size and climatology factors remain unclear due to the lack
of historical records (Xu et al., 2020).

The International Best Track Archive for Climate Stew-
ardship (IBTrACS) dataset is one of the most commonly
used sources for TC data; it contains location, intensity, and
size data for all known tropical and subtropical cyclones at
a resolution of 3 h (Knapp et al., 2010). This dataset uti-
lizes maximum sustained wind speed (Vmax) and minimum
central pressure (Pmin) to quantify TC intensity (Simpson,
1974; Chavas et al., 2017; Casas et al., 2023). Among the
several metrics that are defined to measure TC size, one of
the most widely recognized is the radius of maximum wind
(Rmax, Chavas et al., 2015; Ren et al., 2022). Radial dis-
tances from the cyclone center to locations where sustained
wind speeds of 34, 50, and 64 kn (∼ 17, 26, and 33 ms−1)
are observed near the surface, i.e., R34, R50, and R64, are
also widely used metrics to estimate TC size (Pérez-Alarcón
et al., 2021). However, reliable TC size and intensity esti-
mates are available only from 1988 onwards (Demuth et al.,
2006), and post-storm analyses of wind radii, including R34,
R50, and R64, have only commenced since 2004 (Gori et al.,
2023). Furthermore, more than half of all recorded storms
lack intensity and size data, often with only location data
provided, even during periods when post-storm analyses are
conducted. Thus, constructing a TC climatology is an ardu-
ous task due to low data coverage.

Previous studies have extensively used machine learning
to reconstruct TC datasets. Yang et al. (2022) divide hur-
ricane wind fields into symmetric and asymmetric compo-
nents and propose a downscaling model based on the XG-
Boost software library to reconstruct TC structure; however,
Vmax and Rmax are the model input variables. Zhuo and Tan
(2023) apply deep learning algorithms to estimate reliable
TC sizes over the western North Pacific during 1981–2017,
based on a homogeneous satellite database. Li et al. (2024)
propose a transfer-learning-based generative adversarial net-

work framework to derive TC wind fields from synthetic
aperture radar images. Eusebi et al. (2024) demonstrate that
a physics-informed neural network can produce accurate re-
constructions of TC wind and pressure fields by assimilating
observations in a computationally efficient manner. Never-
theless, the datasets used in these studies are generally lim-
ited to several cases or specific regions of interest, and some
are not publicly available.

By contrast, reanalysis datasets such as the fifth-
generation European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis 5 (ERA5) dataset (Hers-
bach et al., 2020), the Japanese 55-year Reanalysis (JRA-55;
Kobayashi et al., 2015), and US National Centers for Envi-
ronmental Prediction and National Centre for Atmospheric
Research Reanalysis products (Kistler et al., 2001), which
combine past observations and model results through data
assimilation, have unique advantages in terms of data avail-
ability and spatiotemporal coverage. Schenkel et al. (2017)
evaluate whether reanalysis datasets can be used to derive a
long-term TC size dataset utilizing QuikSCAT data. Zick and
Matyas (2015) explore the impact of satellite-derived precip-
itation over ocean on TCs in the North American Regional
Reanalysis. Gori et al. (2023) use ERA5 reanalysis data to
estimate the TCs outer size and a wind model to estimate
the radius of maximum wind. Thompson et al. (2024) con-
struct a tropical cyclone (TC) size dataset using the NCEP/N-
CAR Reanalysis I dataset for landfalling TCs along the US
coastline from 1948 to 2022. Previous studies have suggested
that ERA5 products are among the most promising reanalysis
data sources in terms of representing TC outer size and struc-
ture, due to their relatively fine horizontal grid spacing (Bian
et al., 2021; Pérez-Alarcón et al., 2021; Dulac et al., 2024).
Yeasmin et al. (2023) demonstrate that the reconstruction of
TC proxies using ERA5 is a viable approach. Nevertheless,
due to horizontal resolution limits and conservative physics
parameterizations, reanalysis products have exhibited large
underestimation and overestimation of TC Vmax and Rmax
values, respectively (Hatsushika et al., 2006; Schenkel and
Hart, 2012). Thus, despite the substantial body of research re-
constructing the outer sizes and proxies of TCs using ERA5
data (Bian et al., 2021; Gori et al., 2023; Pérez-Alarcón et
al., 2021), studies that have employed it to derive relatively
accurate TC intensity data are lacking.

In this study, we exploit the advantages of the IBTrACS
and ERA5 datasets to generate a reconstructed TC dataset
containing all characteristics of TCs. Given the high degree
of accuracy demonstrated by the ERA5 data in capturing
TC structures, we employ ERA5-derived azimuthal mean az-
imuthal wind profiles in conjunction with a machine learning
model to reduce the bias observed in the Vmax and Rmax of
TCs between the ERA5 and IBTrACS datasets. In addition,
we model six TC radial wind profiles to compute R34, R50,
and R64. The resulting long-term TC reconstruction dataset
covering the period 1959–2022 is anticipated to facilitate fu-
ture TC climatology research. The generated dataset is ap-
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proximately 3–4 times larger than the IBTrACS dataset in
terms of the number of records per characteristic.

In the subsequent sections, we describe the IBTrACS and
ERA5 datasets and the methodology used to create the novel
TC reconstruction dataset. We report and discuss the find-
ings in comparison with IBTrACS data according to a com-
prehensive set of statistical metrics. Finally, we consider the
potential applications of the reconstructed TC dataset.

2 Data

2.1 IBTrACS data

We obtain data on TC tracks, intensity, and size from the
IBTrACS (version 4r01 in netCDF format), which is a uni-
fied dataset containing track estimates for all TC basins with
a 3 h temporal resolution, based on data produced by trop-
ical warning centers. As the TC Rmax data from all main
TC basins are accessible from US agencies (the National
Oceanic and Atmospheric Administration’s National Hurri-
cane Center for the North Atlantic and east Pacific and the
military’s Joint Typhoon Warning Center for the remainder
of the globe), we employ these data and exclude the irreg-
ular time steps. We use all TC events in all basins, except
for those over the South Atlantic, where TC generation is
insufficient. A comprehensive overview of the recorded TC
characteristics is presented in Table 1. The IBTrACS dataset
encompasses a total of 7552 TCs on a global scale, span-
ning the period 1959–2022, corresponding to 423 296 indi-
vidual time points. However, IBTrACS only records 125 477
Vmax, 142 430 Pmin, and 94 415 Rmax values. TC tracks and
Vmax data extracted from the IBTrACS dataset are presented
in Fig. 1.

2.2 ERA5 data

ERA5 is the latest ECMWF reanalysis, following a decade of
developments in model physics, core dynamics, and data as-
similation (Hersbach et al., 2020). We utilize the main ERA5
dataset for the period 1959–2022 to estimate the track, in-
tensity, and size of each TC. The spatial resolution of the
ERA5 dataset is 0.25°× 0.25°, with a temporal resolution
of 3 h, aligning with that of the IBTrACS dataset. We ex-
clude pre-1959 ERA5 back-extension data, as some TCs in
these data exhibit unrealistically high levels of tension (Bell
et al., 2021). Notably, despite the higher uncertainty associ-
ated with TC intensity data derived from ERA5 for the pre-
satellite time period (1959–1978), comparisons of TC inten-
sity pre- and post-1979 reveal similar climatological distri-
butions for both TC groups in all basins (Fig. S1 in the Sup-
plement). We employ 10 m surface meridional and latitudi-
nal wind speeds to obtain 10 m azimuthal–mean azimuthal
wind profiles for TCs. We utilize the sea level pressure (SLP)
to provide environmental pressure data for computing the
TC central pressure. We derive the parameters including the

SLP; relative vorticity at 700, 850, and 925 hPa; and geopo-
tential height at 700 and 850 hPa from the ERA5 data to iden-
tify TC centers.

3 Methodology

3.1 TC center identification and azimuthal wind profile
estimation

We identify TC centers in the ERA5 data, based on the
method of Schenkel et al. (2017). We initially ascertain the
position of each TC within the reanalysis grid utilizing the
IBTrACS position as a first guess. To remove uncertainties
associated with TC centers in the reanalysis data, we obtain
the centers of six reanalysis variables (SLP; relative vortic-
ity at 700, 850, and 925 hPa; and geopotential height at 700
and 850 hPa) by calculating the centroids of positive relative
vorticity values and negative other variables values over the
grid near the first-guess position (±2°) using Python. Subse-
quently, we average the centers to adjust the position of the
estimated reanalysis TC center.

We estimate azimuthal wind profiles based on the ERA5
data, as described by Chavas and Vigh (2014). First, we sub-
tract estimated environment wind fields, which are calcu-
lated as 0.55 of the TC translation vectors rotated 20° coun-
terclockwise (Lin and Chavas, 2012) from the meridional
and latitudinal wind speeds. We determine TC translation
vectors according to the TC positions at the next and cur-
rent time points in the IBTrACS data. Next, we interpolate
the 10 m surface meridional and latitudinal wind fields to a
TC-centered polar coordinate. In contrast to the method of
Chavas and Vigh, we do not exclude grid points over land
to obtain the TC intensity after landfall. Then, we employ
the parameter X , defined as the normalized average mag-
nitude of all vectors from the TC center to each grid point
included at a specified radius (Chavas and Vigh, 2014) to re-
move asymmetrical radial bins by excluding radial bins with
X > 0.5. Finally, we calculate the TC 10 m azimuthal–mean
azimuthal wind profiles as changes in wind speed with dis-
tance from the TC center, with grid points spaced at 10 km
intervals. We obtain the ERA5-derived TC Vmax (Vmax_ERA5)
and Rmax (Rmax_ERA5) from the wind profiles.

3.2 Machine learning model for reconstructing TC Vmax
and Rmax from ERA5 data

As shown in Fig. 2, there are discernible biases in all six
TC basins between the ERA5- and IBTrACS-derived Vmax
and Rmax values. The biases of Vmax are less dependent on
the basin, suggesting the systematic underestimation of Vmax
by the ERA5 data, partly due to the lower Pmin and the un-
derestimation of the TC wind–pressure relation described
in ERA5 (Magnusson et al., 2021). Moreover, convective-
scale processes substantially influence Vmax, which cannot
be adequately represented in global models, leading to an
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Table 1. Basic information on the number of recorded tropical cyclone characteristics from 1959 to 2022 recorded in IBTrACS.

Basin Time point Vmax Pmin Rmax R34 R50 R64

Western Pacific 152 362 26 604 61 018 28 715 19 340 10 641 7149
North Atlantic 55 679 28 310 21 409 18 161 14 961 7630 4212
North Indian 24 101 5481 5476 4281 2354 1029 614
South Indian 86 790 23 935 24 468 16 367 10 697 5108 2977
South Pacific 45 189 12 322 12 467 7169 4827 2577 1521
Eastern Pacific 59 175 28 825 17 592 19 722 12 283 6482 3986

Global 423 296 125 477 142 430 94 415 64 462 33 467 20 459

Figure 1. Overview of the tracks and 10 m maximum wind speeds of tropical cyclones in the IBTrACS dataset. Grey lines represent the
unrecorded wind speeds.

inherent tendency for underestimation. To further demon-
strate the performance of ERA5-derived data, we select the
Saffir–Simpson categories as the uniform scale for all the
basins and analyze the differences between ERA5-derived
and observed data across various wind speed ranges, follow-
ing the methods in previous research (Wright, 2019; Bloe-
mendaal et al., 2020; Mo et al., 2023). In contrast, biases
are more pronounced for larger Vmax values, with underesti-
mation detected for wind speeds exceeding 20 and 30 ms−1

for Saffir–Simpson categories 1–2 and 3–5, respectively, in
all six basins. Notably, this bias even exceeds 40 ms−1 for
Saffir–Simpson categories 3–5 in the east Pacific basin. In ad-
dition, ERA5-derived results overestimate Rmax by > 15 km
in all basins and by > 80 km in the west Pacific (WP) basin.
The large biases produced by ERA5 motivate us to establish
a reconstructed TC dataset that is more consistent with ob-
servations.

Despite the discrepancy in TC intensity, Bian et al. (2021)
demonstrate that ERA-5 accurately depicts TC structural al-
terations. Therefore, we use the TC 10 m azimuthal-mean

wind speed at radial distances from 0 to 1000 km, at 10 km
intervals, as a parameter to estimate Vmax in each basin.
The parameters also include the TC translation speed, given
that the IBTrACS Vmax data (Vmax_IB) represent a combina-
tion of the environmental and TC wind fields. We optimize
the machine learning models by randomized-search cross-
validation, with the mean square error as the loss function,
using Python. The models include a random forest (RF) algo-
rithm, artificial neural network (ANN), convolutional neural
network (CNN), support vector regressor (SVR), and mul-
tivariate linear regression (MLR), as detailed in Table 2. In
the above-mentioned models, we incorporate data for the
entire period (1959–2022) into the model training process.
We randomly divide the dataset, made up of the input array
and learning target, into two subsets, with 75 % allocated for
training and the remaining 25 % for testing, following the
methods of previous studies (e.g., Breiman, 2001; Guo et al.,
2024). For a detailed account of the hyperparameter selec-
tions for each model, please refer to Sect. S1 in the Sup-
plement. We find that RF provided the most robust predic-
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Figure 2. Bar charts for comparing the mean value of the 10 m maximum wind speeds and the radii to maximum winds. Each of the colors
indicates a different basin. Solid and dashed bars represent IBTrACS- and ERA5-derived data.

tions, as evidenced by higher correlations and smaller root
mean square error (RMSE) values in most basins. Accord-
ingly, we develop an RF regressor to predict reconstructed
Vmax (Vmax_RC), as follows:

Vmax_RC = RF(V0,V10,V20, . . .,V1000,VTS), (1)

where RF and VTS are the RF regressor and TC translation
speed, respectively, and V0,V10,V20, . . .,V1000 refer to the
10 m azimuthal mean azimuthal wind speeds at radial dis-
tances from 0 to 1000 km. To further assess the accuracy of
the RF model, we define the error rate of the RF on the train-
ing data as the absolute relative errors between the predicted
and observed Vmax, normalized by the observations. The er-
ror rates are 0.11, 0.16, 0.09, 0.19, 0.16 and 0.20 for the WP,
North Atlantic (NA), north Indian (NI), south Indian (SI),
South Pacific (SP), and eastern Pacific (EP) basins, respec-
tively.

Similarly, we use variation in radial distance with az-
imuthal wind speed to estimate Rmax in the six basins. We
also test several machine learning models (Table 3). Al-
though the ANN-derived Rmax values exhibit stronger cor-
relations with observations, the RMSE values of Rmax de-
rived by RF with observations are considerably smaller than
those derived by other models. Therefore, we also utilize the
RF regressor to predict the reconstructed Rmax (Rmax_RC), as
follows:

Rmax_RC = RF(R0,R0.01,R0.02, . . .,R1), (2)

where R0,R0.01,R0.02, . . .,R1 represent the radial distances
at which normalized wind speeds range from 0 to 1, at an in-
terval of 0.01. In the RF models, the error rates are 0.19, 0.23,

Table 2. Basic information on the comparison of the different
model-derived with observed Vmax in western Pacific (WP), North
Atlantic (NA), north Indian (NI), south Indian (SI), South Pacific
(SP) and eastern Pacific (EP). CE, correlation coefficient; RMSE,
root mean square error. RF, random forecast; ANN, artificial neural
network; CNN, convolutional neural network; SVR, support vector
regressor; MLR, multivariate linear regression.

WP NA NI SP SI EP

RFCE 0.98 0.99 0.99 0.99 0.98 0.99
ANNCE 0.98 0.99 0.99 0.98 0.99 0.97
CNNCE 0.97 0.99 0.98 0.97 0.98 0.97
SVRCE 0.99 0.99 0.98 0.99 0.99 0.99
MLRCE 0.97 0.98 0.98 0.97 0.97 0.96
RFRMSE (ms−1) 2.60 4.09 1.33 3.73 3.25 5.05
ANNRMSE (ms−1) 5.09 5.31 1.65 3.87 4.37 10.05
CNNRMSE (ms−1) 5.92 8.39 2.43 7.18 7.30 11.2
SVRRMSE (ms−1) 3.99 6.70 2.18 4.87 5.03 9.08
MLRRMSE (ms−1) 7.33 9.34 2.28 7.42 7.45 12.49

0.14, 0.19, 0.15, and 0.23 for the WP, NA, NI, SI, SP, and
EP basins, respectively. We further evaluate model perfor-
mance by comparing the model-derived and observed Vmax
and Rmax on the testing dataset in Sect. 4, using a compre-
hensive set of statistical metrics, including mean error, mean
absolute error (MAE), RMSE, and Pearson correlation co-
efficients. We evaluate the statistical significance of Pearson
correlation coefficients through the application of a t test.
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Table 3. Similar to Table 2 but for Rmax.

WP NA NI SP SI EP

RFCE 0.93 0.96 0.96 0.91 0.96 0.93
ANNCE 0.96 0.97 0.93 0.97 0.96 0.94
CNNCE 0.95 0.96 0.95 0.97 0.94 0.96
SVRCE 0.06 0.21 0.26 0.25 0.01 0.07
MLRCE 0.90 0.93 0.98 0.98 0.96 0.84
RFRMSE (km) 20.80 31.47 10.48 15.11 16.51 24.75
ANNRMSE (km) 31.96 46.74 16.62 21.06 23.22 41.14
CNNRMSE (km) 34.93 52.89 22.04 20.97 25.69 44.07
SVRRMSE (km) 43.53 72.43 28.26 29.05 30.99 51.15
MLRRMSE (km) 37.65 57.82 21.93 23.35 27.22 44.16

3.3 Empirical wind speed–pressure relationship for
determining Pmin

We model the conversion between Vmax and Pmin at a given
time point during a TC using the empirical wind–pressure
relationship (Atkinson and Holliday, 1977; Harper, 2002), as
follows:

Vmax = a(Penv−Pmin)b, (3)

where Penv is the environmental pressure obtained from the
mean SLP for the TC center location 1–10 d earlier based on
the ERA5 data, following the method of Bloemendaal et al.
(2020). We estimate a and b in each basin using a nonlinear
least-squares approach, based on Vmax and the corresponding
Pmin of the IBTrACS dataset. Vmax_RC is input into the fitted
equation (Eq. 3) to obtain the reconstructed Pmin (Pmin_RC).

3.4 TC radial wind profile models for computing R34,
R50, and R64

Previous studies have developed TC radial wind profile mod-
els for estimating TC structures (e.g., Pérez-Alarcón et al.,
2021). After obtaining the reconstructed Vmax and Rmax, we
utilize six widely used wind field models (Holland, 1980; De-
Maria, 1987; Willoughby et al., 2006; Emanuel and Rotunno,
2011; Frisius et al., 2013; Chavas et al., 2015) to estimate the
reconstructed TC R34, R50, and R64 (R34_RC, R50_RC, and
R64_RC). For a detailed description of the wind profile mod-
els, please refer to Sect. S2 in the Supplement.

We evaluate the performance of each profile model by
comparing R34, R50, and R64 estimates with those recorded
in the IBTrACS dataset. Subsequently, we select the optimal
model to generate reconstructed R34, R50, and R64, as de-
scribed in detail in Sect. 4.

3.5 Flowchart for optimal wind profile model selection

After identifying the TC center, we use an RF approach to
estimate Vmax and Rmax based on the ERA5-derived TC 10 m
azimuthal mean azimuthal wind profiles. We evaluate model
performance by comparing the model-derived and observed

Table 4. Basic information on the comparison of the ERA5-derived
and reconstructed with observed Vmax. ME, mean error; MAE,
mean absolute error; RMSE, root mean square error; CE, correla-
tion coefficient.

ME MAE RMSE CE
(ms−1) (ms−1) (ms−1)

GlobalERA5 16.73 16.80 21.70 0.92
GlobalReconstructed 2.82 2.83 4.34 0.99
WPERA5 18.93 18.93 20.54 0.97
WPReconstructed 0.56 1.63 2.60 0.98
NAERA5 21.03 21.03 24.46 0.98
NAReconstructed 2.38 2.82 4.09 0.99
NIERA5 7.74 7.74 8.96 0.98
NIReconstructed −0.25 1.11 1.33 0.99
SIERA5 12.39 12.41 15.61 0.93
SIReconstructed 0.71 2.17 3.25 0.98
SPERA5 13.71 13.73 16.67 0.96
SPReconstructed 1.19 2.70 3.73 0.99
EPERA5 23.09 23.09 26.86 0.97
EPReconstructed 2.36 3.47 5.05 0.99

Vmax and Rmax on the testing dataset, using a comprehensive
set of statistical metrics. Next, we estimate the parameters
of the empirical wind–pressure relationship and compute TC
Pmin values. Finally, we derive the TC R34, R50, and R64 by
selecting the optimal wind profile model from among the six
widely used models. The overall methodology is illustrated
in Fig. 3.

4 Results and discussion

We evaluate the accuracy of the Vmax_RC model results ac-
cording to various statistical metrics based on the testing
datasets (Fig. 4), as prescribed by Breiman (2001). The
Vmax_RC data are strongly correlated with observations, with
correlation coefficients exceeding 0.98 for all six basins. The
RMSE values for the WP, NA, NI, SI, SP, and EP basins
are 2.60, 4.09, 1.33, 3.25, 3.73, and 5.05 ms−1, respectively.
Compared to Vmax_ERA5, the reconstruction provides a re-
duction in the MAE of over 10 ms−1 in most basins, with
a further reduction of 19.62 ms−1 in the east Pacific basin, as
described in detail in Table 4. The model is more effective at
reducing biases between ERA5-derived results and observa-
tions for larger Vmax values. Furthermore, given the high in-
fluence of the El Niño–Southern Oscillation (ENSO) on TC
intensity (Chu, 2004), we evaluate the accuracy of Vmax_RC
for moderate to strong El Niño and La Niña years (Figs. S2
and S3 in the Supplement). We also observe a high degree
of correlation coefficients (> 0.97) and low RMSE values
(< 5 ms−1) between Vmax_RC and Vmax in all six basins dur-
ing ENSO years. These metrics demonstrate the better accu-
racy of Vmax_RC and its reduced bias compared to Vmax_ERA5.
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Figure 3. Flowchart with the tropical cyclone center identification and wind profiles extracted from ERA5 (Step 1; in purple), the 10 m
maximum wind speeds and radii to maximum winds estimated by the random forest model (Step 2; in red), the minimum central pressure
estimated by empirical wind–pressure relationship (Step 3; in green), and the out size estimated by wind profile models (Step 4; in grey).

We similarly evaluate the accuracy of Rmax_RC for the six
basins based on the testing datasets (Fig. 5). Correlation co-
efficients between Rmax_RC and Rmax recorded in IBTrACS
(Rmax_IB) exceed 0.9, indicating strong correlation between
the reconstructed results and observations. Moreover, the
RMSEs for the WP, NA, NI, SI, SP, and EP basins are
20.80, 31.47 10.48, 16.51, 15.11, and 24.75 km, respectively.
Importantly, Rmax_ERA5 exhibits a large deviation from ob-
servations, exceeding 300 km at very low Rmax_IB values.
Therefore, for clarity, the Rmax_ERA5 data are not shown
with the reconstructed TC results in Fig. 5. The MAE ex-
hibits a reduction of 39.57 km on a global scale, with a
further reduction of over 59.37 km in the SI basin, as de-
scribed in detail in Table 5. It is noteworthy that the error
bars are larger for the NA and EP basins in comparison to
the other basins. This may be attributed to the low correla-
tions between Rmax in IBTrACS and in ERA5 (NA: 0.37;
EP: −0.02). Although the Rmax_RC data slightly overesti-
mate observations at low Rmax_IB values and underestimate
observations at high Rmax_IB values, they greatly reduce bi-
ases compared to the Rmax_ERA5 data and thus produce better
predictions for all six basins.

Table 5. Similar to Table 4 but for Rmax.

ME MAE RMSE CE
(km) (km) (km)

GlobalERA5 −41.64 55.49 67.66 0.44
GlobalReconstructed 1.37 15.92 22.19 0.94
WPERA5 −56.43 58.31 69.86 0.75
WPReconstructed 1.32 14.93 20.80 0.93
NAERA5 −7.79 54.25 64.59 0.37
NAReconstructed 4.05 21.44 31.47 0.96
NIERA5 −28.95 29.39 33.75 0.96
NIReconstructed −2.30 9.65 10.48 0.96
SIERA5 −73.40 73.48 88.39 0.74
SIReconstructed −1.50 14.11 16.51 0.96
SPERA5 −52.42 52.99 61.95 0.90
SPReconstructed −3.21 12.09 15.11 0.91
EPERA5 −24.31 47.83 56.59 −0.02
EPReconstructed 6.91 18.83 24.75 0.93
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Figure 4. Comparison between value-averaged maximum wind speeds (Vmax) from ERA5-derived and reconstructed (ERA5 + random
forest) data and IBTrACS maximum wind speeds for tropical cyclones in the (a) western Pacific, (b) North Atlantic, (c) north Indian,
(d) south Indian, (e) South Pacific, and (f) eastern Pacific basins. Grey lines represent the error bar, given as 1 standard deviation from the
mean. The values with sample sizes less than 30 in IBTrACS are excluded.

We compute Pmin_RC based on an empirical wind–pressure
relationship. We employ Vmax_IB and the corresponding Pmin
recorded in IBTrACS (Pmin_IB) in the reconstruction, and we
obtain Penv from the ERA5 dataset, following the method of
Bloemendaal et al. (2020). We estimate related parameters
through nonlinear fitting; the results are shown in Fig. 6. For
the WP, NA, NI, SI, SP, and EP basins, we use a values of
0.118, 0.051, 0.259, 0.184, 0.325, and 0.073 and b values of
1.67, 1.692, 1.402, 1.507, 1.371, and 1.651, respectively, in
Eq. (3).

The mean and standard deviation values of various TC
characteristics based on the testing datasets are plotted in
Fig. 7 to compare the overall performance of the model in
reconstructing TCs. Mean biases in Rmax and Pmin between
the reconstructed TC and IBTrACS datasets are both < 3 %
in most basins, providing compelling evidence that the pre-
dictions are in good agreement with observations. In con-
trast to those over the sea, the reconstructed dataset over-
estimate and underestimate landfall TC Vmax and Rmax in
most basins, respectively, likely due to the decay of TC wind
speeds after landfall, which is not considered in the RF-based
models. Despite these differences, biases remain within 5 %
in most basins, indicating that the reconstructed landfall TC

characteristics are closely aligned with those in the IBTrACS
dataset.

After obtaining the reconstructed TC intensity dataset, we
use six widely used models to estimate R34_RC, R50_RC, and
R64_RC. We conduct a comparative analysis of the model-
derived results and observations to determine which radial
wind profile estimate more closely approximated the TC
outer radius, based on various statistical metrics (Tables S1–
S6 in the Supplement). In the WP basin, the W06 model
demonstrates the strongest correlation (R34: 0.89, R50: 0.82,
R64: 0.78), achieving the lowest RMSE and MAE. In the NA
basin, the CLE15 model outperforms others for R34, with
a correlation coefficient of 0.87, RMSE of 78.77 km, and
MAE of 53 km, whereas the W06 model performs better for
R50 and R64. For the NI and SI basins, all models except
W06 show poor correlation with observations, some even ex-
hibiting negative correlations. In the SP and EP basins, W06
substantially surpasses other models in terms of correlation
coefficient. Although other models produce slightly smaller
RMSE and MAE values for R64 in the EP basin compared to
W06, their correlation coefficients, which are < 0.2, justify
our choice of W06. Consequently, we select W06 to forecast
R34_RC, R50_RC, and R64_RC for the WP, NI, SI, SP, and EP
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Figure 5. Similar to Fig. 4 but for radii to maximum winds (Rmax).

basins, whereas for the NA basin, we use CLE15 to predict
R34_RC and W06 to predict R50_RC and R64_RC. The corre-
lation coefficients are > 0.75 for three outer-size metrics in
most basins (Table 6).

We use the ERA5 dataset to derive parameters character-
izing TC intensity and size in creating the TC reconstruc-
tion dataset. Then, we subject these parameters to a machine
learning algorithm to produce more accurate data. Notably,
we acknowledge that the TC intensity and size reconstruc-
tions developed in this study may be influenced by the limi-
tations and uncertainties inherent in the IBTrACS and ERA5
datasets. The RF models are unable to differentiate between
landfall and offshore TCs due to the limited data available
concerning landfall TCs in the IBTrACS dataset, which re-
sults in higher Vmax and lower Rmax values for landfall TCs.
When employing this dataset for the purpose of examining
the characteristics and impacts of TCs during their landfall,
it is possible to overestimate their intensity while underes-
timating the scope of their influence. Additionally, we es-
timate R34, R50, and R64 using wind profile models rather
than RF models due to the paucity of relevant data, which
results in a lower level of accuracy than for these TC char-
acteristics. Moreover, there is some dependency between the
reconstructed and IBTrACS-derived Rmax values, likely due
to the insufficient spatial resolution of the ERA5 dataset. Fi-
nally, TC positions in the IBTrACS data exhibit some degree
of inaccuracy during the pre-satellite time period. Therefore,

when assessing the impacts of TCs using this dataset, e.g.,
TC risk assessment, it is crucial to validate the results through
observations from meteorological stations, buoys, and other
relevant methods. Notwithstanding these limitations, the TC
reconstruction dataset exhibits a markedly high degree of ac-
curacy and extensive spatiotemporal coverage. Basic infor-
mation on the reconstructed TC data is presented in Table 7.

5 Code and data availability

All data have been published in the form of CSV
files and are made publicly available through the Zen-
odo repository at https://doi.org/10.5281/zenodo.13919874
(Xu et al., 2024). ERA5 data are publicly accessible
at https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al.,
2023b) and https://doi.org/10.24381/cds.adbb2d47 (Hers-
bach et al., 2023a). IBTrACS data are accessible at
https://doi.org/10.25921/82ty-9e16 (Gahtan et al., 2024).
The processing codes can be made available upon request
to the corresponding author.
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Figure 6. Similar to Fig. 4 but for nonlinear regression analyses between value-averaged IBTrACS maximum wind speeds and the difference
between environmental pressure and typical cyclone minimum central pressure (sea level pressure difference, SLPD).

Table 6. Basic information on the comparison of the reconstructed data with the observational data for R34, R50, and R64. ME, mean error;
MAE, mean absolute error; RMSE, root mean square error; CE, correlation coefficient. H80, D87, W06, E11, F13, and CLE15 refer to
the wind field models proposed by Holland (1980), DeMaria (1987), Willoughby et al. (2006), Emanuel and Rotunno (2011), Frisius and
Scgönemann (2013), and Chavas et al. (2015).

Optimal profile ME (km) MAE (km) RMSE (km) CE

WPR34 W06 −24.79 46.75 64.54 0.89
WPR50 W06 −14.60 26.00 33.27 0.82
WPR64 W06 −14.14 18.28 22.71 0.78
NAR34 CLE15 −25.19 53.00 78.77 0.87
NAR50 W06 −11.58 32.71 57.39 0.84
NAR64 W06 2.67 18.52 30.37 0.87
NIR34 W06 −23.19 31.19 41.59 0.74
NIR50 W06 −14.66 20.49 25.69 0.63
NIR64 W06 −11.63 16.62 21.17 0.62
SIR34 W06 3.57 45.71 56.68 0.74
SIR50 W06 14.35 29.69 36.18 0.46
SIR64 W06 9.68 18.54 21.57 0.43
SPR34 W06 −5.00 33.51 46.25 0.83
SPR50 W06 11.75 21.53 27.25 0.77
SPR64 W06 12.75 15.60 18.56 0.77
EPR34 W06 32.25 44.43 51.31 0.81
EPR50 W06 27.19 31.77 36.61 0.68
EPR64 W06 18.74 21.66 25.24 0.51
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Figure 7. Bar charts for comparing the mean value of the different tropical cyclone characteristics. Each of the colors indicates a different
basin. Solid and dashed bars represent IBTrACS and reconstructed tropical cyclone data, respectively.

Table 7. Basic information on the number of recorded tropical cyclone characteristics from 1959 to 2022 recorded in reconstructed data.

Basin Vmax Pmin Rmax R34 R50 R64

Western Pacific 152 208 152 208 152 208 127 668 39 659 24 302
North Atlantic 55 608 55 608 55 608 31 829 19 106 11 719
North Indian 24 047 24 047 24 047 4614 1840 1039
South Indian 86 606 86 606 86 606 35 768 18 500 10 395
South Pacific 45 112 45 112 45 112 23 312 10 547 5454
Eastern Pacific 59 112 59 112 59 112 33 772 19 214 13 026

Global 422 693 422 693 422 693 256 963 108 866 65 935

6 Conclusion

The considerable number of unrecorded TC characteristics in
the IBTrACS dataset and large biases inherent in the ERA5
dataset prompt us to generate a long-term TC reconstruction
dataset. We construct the dataset by integrating TC charac-
teristics from the IBTrACS and ERA5 datasets using RF-
based models, an empirical wind–pressure relationship, and
six wind profiles for the period 1959–2022. The TC recon-
struction dataset is approximately 3–4 times larger than the
IBTrACS dataset in terms of data points per characteris-

tic, with much higher data accuracy than shown for ERA5-
derived results.

We examine six TC characteristics to evaluate the recon-
structed dataset. A comparison of maximum sustained wind
speeds between the IBTrACS and reconstructed TC datasets
reveals that the latter underestimated observational data by
approximately 2.82 ms−1, which is a considerably smaller
bias than that shown by the ERA5 dataset (16.73 ms−1) on
a global scale. For the radius of maximum wind (Rmax),
the mean error and RMSE decrease markedly, from −41.64
and 67.66 km (IBTrACS Rmax – ERA5 Rmax) to 1.37 and
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22.19 km (IBTrACS Rmax – reconstructed Rmax), respec-
tively. In addition, the correlation coefficient for Rmax be-
tween the IBTrACS and ERA5 datasets is 0.44, which in-
creased to 0.94 between the IBTrACS and TC reconstruc-
tion datasets. The mean bias in minimum central pressure be-
tween the IBTrACS and reconstructed TC datasets is < 3 %
in most basins. We use six wind profile models to compute
the radii to locations with sustained wind speeds of 34, 50,
and 64 kn (i.e., R34, R50, and R64; ∼ 17, 26, and 33 ms−1),
and the selected wind profile models (CLE15 for R34 in the
North Atlantic, W06 for others) show good estimates for
TC outer sizes, with correlation coefficients > 0.75 for three
outer-size metrics in most basins. Overall, the TC reconstruc-
tion dataset agrees closely with the IBTrACS data in terms of
TC intensity and size.

In conclusion, the TC reconstruction dataset may prove in-
valuable for advancing our understanding of TC climatology,
thereby facilitating risk assessments and defenses against
TC-related disasters. The future availability of reanalysis
data with finer spatial resolution and longer temporal cover-
age, such as the in-progress ERA6, will facilitate the creation
of more accurate TC reconstructions with longer time spans
using the methods presented in this study.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-5753-2024-supplement.
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