Articles | Volume 16, issue 10
https://doi.org/10.5194/essd-16-4735-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-4735-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023)
ISRIC – World Soil Information, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
Luis Calisto
ISRIC – World Soil Information, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
Luis M. de Sousa
ISRIC – World Soil Information, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
Related authors
Laura Poggio, Luis M. de Sousa, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Ribeiro, and David Rossiter
SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, https://doi.org/10.5194/soil-7-217-2021, 2021
Short summary
Short summary
This paper focuses on the production of global maps of soil properties with quantified spatial uncertainty, as implemented in the SoilGrids version 2.0 product using DSM practices and adapting them for global digital soil mapping with legacy data. The quantitative evaluation showed metrics in line with previous studies. The qualitative evaluation showed that coarse-scale patterns are well reproduced. The spatial uncertainty at global scale highlighted the need for more soil observations.
Niels H. Batjes, Eloi Ribeiro, and Ad van Oostrum
Earth Syst. Sci. Data, 12, 299–320, https://doi.org/10.5194/essd-12-299-2020, https://doi.org/10.5194/essd-12-299-2020, 2020
Short summary
Short summary
This dataset provides quality-assessed and standardised soil data to support digital soil mapping and environmental applications at broadscale levels. The underpinning soil profiles were shared by a wide range of data providers. Special attention was paid to the standardisation of soil property definitions, analytical method descriptions and property values. We present measures for geographic accuracy and a first approximation for the uncertainty associated with the various analytical methods.
Niels H. Batjes, Eloi Ribeiro, Ad van Oostrum, Johan Leenaars, Tom Hengl, and Jorge Mendes de Jesus
Earth Syst. Sci. Data, 9, 1–14, https://doi.org/10.5194/essd-9-1-2017, https://doi.org/10.5194/essd-9-1-2017, 2017
Short summary
Short summary
Soil is an important provider of ecosystem services. Yet this natural resource is being threatened. Professionals, scientists, and decision makers require quality-assessed soil data to address issues such as food security, land degradation, and climate change. Procedures for safeguarding, standardising, and subsequently serving of consistent soil data to underpin broad-scale mapping and modelling are described. The data are freely accessible at doi:10.17027/isric-wdcsoils.20160003.
Luís Moreira de Sousa, Rául Palma, Bogusz Janiak, and Paul van Genuchten
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 29–34, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-29-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-29-2024, 2024
Laura Poggio, Luis M. de Sousa, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Ribeiro, and David Rossiter
SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, https://doi.org/10.5194/soil-7-217-2021, 2021
Short summary
Short summary
This paper focuses on the production of global maps of soil properties with quantified spatial uncertainty, as implemented in the SoilGrids version 2.0 product using DSM practices and adapting them for global digital soil mapping with legacy data. The quantitative evaluation showed metrics in line with previous studies. The qualitative evaluation showed that coarse-scale patterns are well reproduced. The spatial uncertainty at global scale highlighted the need for more soil observations.
Niels H. Batjes, Eloi Ribeiro, and Ad van Oostrum
Earth Syst. Sci. Data, 12, 299–320, https://doi.org/10.5194/essd-12-299-2020, https://doi.org/10.5194/essd-12-299-2020, 2020
Short summary
Short summary
This dataset provides quality-assessed and standardised soil data to support digital soil mapping and environmental applications at broadscale levels. The underpinning soil profiles were shared by a wide range of data providers. Special attention was paid to the standardisation of soil property definitions, analytical method descriptions and property values. We present measures for geographic accuracy and a first approximation for the uncertainty associated with the various analytical methods.
Niels H. Batjes, Eloi Ribeiro, Ad van Oostrum, Johan Leenaars, Tom Hengl, and Jorge Mendes de Jesus
Earth Syst. Sci. Data, 9, 1–14, https://doi.org/10.5194/essd-9-1-2017, https://doi.org/10.5194/essd-9-1-2017, 2017
Short summary
Short summary
Soil is an important provider of ecosystem services. Yet this natural resource is being threatened. Professionals, scientists, and decision makers require quality-assessed soil data to address issues such as food security, land degradation, and climate change. Procedures for safeguarding, standardising, and subsequently serving of consistent soil data to underpin broad-scale mapping and modelling are described. The data are freely accessible at doi:10.17027/isric-wdcsoils.20160003.
Jáchym Čepický and Luís Moreira de Sousa
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 927–930, https://doi.org/10.5194/isprs-archives-XLI-B7-927-2016, https://doi.org/10.5194/isprs-archives-XLI-B7-927-2016, 2016
Related subject area
Domain: ESSD – Land | Subject: Pedology
BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands
An integrated dataset of ground hydrothermal regimes and soil nutrients monitored during 2016–2022 in some previously burned areas in hemiboreal forests in Northeast China
European topsoil bulk density and organic carbon stock database (0–20 cm) using machine-learning-based pedotransfer functions
Improving the Latin America and Caribbean Soil Information System (SISLAC) database enhances its usability and scalability
The patterns of soil nitrogen stocks and C : N stoichiometry under impervious surfaces in China
Mapping of peatlands in the forested landscape of Sweden using lidar-based terrain indices
Harmonized Soil Database of Ecuador (HESD): data from 2009 to 2015
ChinaCropSM1 km: a fine 1 km daily soil moisture dataset for dryland wheat and maize across China during 1993–2018
Colombian soil texture: building a spatial ensemble model
SGD-SM 2.0: an improved seamless global daily soil moisture long-term dataset from 2002 to 2022
A high spatial resolution soil carbon and nitrogen dataset for the northern permafrost region based on circumpolar land cover upscaling
A repository of measured soil freezing characteristic curves: 1921 to 2021
A compiled soil respiration dataset at different time scales for forest ecosystems across China from 2000 to 2018
Anatol Helfenstein, Vera L. Mulder, Mirjam J. D. Hack-ten Broeke, Maarten van Doorn, Kees Teuling, Dennis J. J. Walvoort, and Gerard B. M. Heuvelink
Earth Syst. Sci. Data, 16, 2941–2970, https://doi.org/10.5194/essd-16-2941-2024, https://doi.org/10.5194/essd-16-2941-2024, 2024
Short summary
Short summary
Earth system models and decision support systems greatly benefit from high-resolution soil information with quantified accuracy. Here we introduce BIS-4D, a statistical modeling platform that predicts nine essential soil properties and their uncertainties at 25 m resolution in surface 2 m across the Netherlands. Using machine learning informed by up to 856 000 soil observations coupled with 366 spatially explicit environmental variables, prediction accuracy was the highest for clay, sand and pH.
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Șerban, and Tao Zhan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-187, https://doi.org/10.5194/essd-2024-187, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In Northeast China, the permafrost is more sensitive to climate warming and fire disturbances than the boreal and Arctic permafrost. Since 2016, a continuous observation system has been gradually established for ground hydrothermal regimes and soil nutrient contents in Northeast China. The integrated dataset includes soil moisture content, soil organic carbon, total nitrogen, total phosphorus, total potassium, ground temperatures at depths of 0–20 m and active layer thickness from 2016 to 2022.
Songchao Chen, Zhongxing Chen, Xianglin Zhang, Zhongkui Luo, Calogero Schillaci, Dominique Arrouays, Anne Christine Richer-de-Forges, and Zhou Shi
Earth Syst. Sci. Data, 16, 2367–2383, https://doi.org/10.5194/essd-16-2367-2024, https://doi.org/10.5194/essd-16-2367-2024, 2024
Short summary
Short summary
A new dataset for topsoil bulk density (BD) and soil organic carbon (SOC) stock (0–20 cm) across Europe using machine learning was generated. The proposed approach performed better in BD prediction and slightly better in SOC stock prediction than earlier-published PTFs. The outcomes present a meaningful advancement in enhancing the accuracy of BD, and the resultant topsoil BD and SOC stock datasets across Europe enable more precise soil hydrological and biological modeling.
Sergio Díaz-Guadarrama, Viviana M. Varón-Ramírez, Iván Lizarazo, Mario Guevara, Marcos Angelini, Gustavo A. Araujo-Carrillo, Jainer Argeñal, Daphne Armas, Rafael A. Balta, Adriana Bolivar, Nelson Bustamante, Ricardo O. Dart, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo, Fernando Fontes, Joan S. Gutiérrez-Díaz, Wilmer Jiménez, Raúl S. Lavado, Jesús F. Mansilla-Baca, Maria de Lourdes Mendonça-Santos, Lucas M. Moretti, Iván D. Muñoz, Carolina Olivera, Guillermo Olmedo, Christian Omuto, Sol Ortiz, Carla Pascale, Marco Pfeiffer, Iván A. Ramos, Danny Ríos, Rafael Rivera, Lady M. Rodriguez, Darío M. Rodríguez, Albán Rosales, Kenset Rosales, Guillermo Schulz, Víctor Sevilla, Leonardo M. Tenti, Ronald Vargas, Gustavo M. Vasques, Yusuf Yigini, and Yolanda Rubiano
Earth Syst. Sci. Data, 16, 1229–1246, https://doi.org/10.5194/essd-16-1229-2024, https://doi.org/10.5194/essd-16-1229-2024, 2024
Short summary
Short summary
In this work, the Latin America and Caribbean Soil Information System (SISLAC) database (https://54.229.242.119/sislac/es) was revised to generate an improved version of the data. Rules for data enhancement were defined. In addition, other datasets available in the region were included. Subsequently, through a principal component analysis (PCA), the main soil characteristics for the region were analyzed. We hope this dataset can help mitigate problems such as food security and global warming.
Qian Ding, Hua Shao, Chi Zhang, and Xia Fang
Earth Syst. Sci. Data, 15, 4599–4612, https://doi.org/10.5194/essd-15-4599-2023, https://doi.org/10.5194/essd-15-4599-2023, 2023
Short summary
Short summary
A soil survey in 41 Chinese cities showed the soil nitrogen (N) in impervious surface areas (ISA; NISA) was 0.59±0.35 kg m−2, lower than in pervious soils. Eastern China had the highest NISA but the lowest natural soil N in China. Soil N decreased linearly with depth in ISA but nonlinearly in natural ecosystems. Temperature was negatively correlated with C : NISA but positively correlated with natural soil C : N. The unique NISA patterns imply intensive disturbance in N cycle by soil sealing.
Lukas Rimondini, Thomas Gumbricht, Anders Ahlström, and Gustaf Hugelius
Earth Syst. Sci. Data, 15, 3473–3482, https://doi.org/10.5194/essd-15-3473-2023, https://doi.org/10.5194/essd-15-3473-2023, 2023
Short summary
Short summary
Peatlands have historically sequestrated large amounts of carbon and contributed to atmospheric cooling. However, human activities and climate change may instead turn them into considerable carbon emitters. In this study, we produced high-quality maps showing the extent of peatlands in the forests of Sweden, one of the most peatland-dense countries in the world. The maps are publicly available and may be used to support work promoting sustainable peatland management and combat their degradation.
Daphne Armas, Mario Guevara, Fernando Bezares, Rodrigo Vargas, Pilar Durante, Víctor Osorio, Wilmer Jiménez, and Cecilio Oyonarte
Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023, https://doi.org/10.5194/essd-15-431-2023, 2023
Short summary
Short summary
The global need for updated soil datasets has increased. Our main objective was to synthesize and harmonize soil profile information collected by two different projects in Ecuador between 2009 and 2015.The main result was the development of the Harmonized Soil Database of Ecuador (HESD) that includes information from 13 542 soil profiles with over 51 713 measured soil horizons, including 92 different edaphic variables, and follows international standards for archiving and sharing soil data.
Fei Cheng, Zhao Zhang, Huimin Zhuang, Jichong Han, Yuchuan Luo, Juan Cao, Liangliang Zhang, Jing Zhang, Jialu Xu, and Fulu Tao
Earth Syst. Sci. Data, 15, 395–409, https://doi.org/10.5194/essd-15-395-2023, https://doi.org/10.5194/essd-15-395-2023, 2023
Short summary
Short summary
We generated a 1 km daily soil moisture dataset for dryland wheat and maize across China (ChinaCropSM1 km) over 1993–2018 through random forest regression, based on in situ observations. Our improved products have a remarkably better quality compared with the public global products in terms of both spatial and time dimensions by integrating an irrigation module (crop type, phenology, soil depth). The dataset may be useful for agriculture drought monitoring and crop yield forecasting studies.
Viviana Marcela Varón-Ramírez, Gustavo Alfonso Araujo-Carrillo, and Mario Antonio Guevara Santamaría
Earth Syst. Sci. Data, 14, 4719–4741, https://doi.org/10.5194/essd-14-4719-2022, https://doi.org/10.5194/essd-14-4719-2022, 2022
Short summary
Short summary
These are the first national soil texture maps obtained via digital soil mapping. We built clay, sand, and silt maps using spatial assembling with the best possible predictions at different depths. Also, we identified the better model for each pixel. This work was done to address the lack of soil texture maps in Colombia, and it can provide soil information for water-related applications, ecosystem services, and agricultural and crop modeling.
Qiang Zhang, Qiangqiang Yuan, Taoyong Jin, Meiping Song, and Fujun Sun
Earth Syst. Sci. Data, 14, 4473–4488, https://doi.org/10.5194/essd-14-4473-2022, https://doi.org/10.5194/essd-14-4473-2022, 2022
Short summary
Short summary
Compared to previous seamless global daily soil moisture (SGD-SM 1.0) products, SGD-SM 2.0 enlarges the temporal scope from 2002 to 2022. By fusing auxiliary precipitation information with the long short-term memory convolutional neural network (LSTM-CNN) model, SGD-SM 2.0 can consider sudden extreme weather conditions for 1 d in global daily soil moisture products and is significant for full-coverage global daily hydrologic monitoring, rather than averaging monthly–quarterly–yearly results.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
Hongru Sun, Zhenzhu Xu, and Bingrui Jia
Earth Syst. Sci. Data, 14, 2951–2961, https://doi.org/10.5194/essd-14-2951-2022, https://doi.org/10.5194/essd-14-2951-2022, 2022
Short summary
Short summary
We compiled a new soil respiration (Rs) database of China's forests from 568 studies published up to 2018. The hourly, monthly, and annual samples were 8317, 5003, and 634, respectively. Most of the Rs data are shown in figures but were seldom exploited. For the first time, these data were digitized, accounting for 82 % of samples. Rs measured with common methods was selected (Li-6400, Li-8100, Li-8150, gas chromatography) and showed small differences of ~10 %. Bamboo had the highest Rs.
Cited articles
Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., and Gates, W.: Soil Bulk Density Estimation Methods: A Review, Pedosphere, 28, 581–596, https://doi.org/10.1016/S1002-0160(18)60034-7, 2018.
ANSIS: Australian National Soil Information System, Australian National Soil Information System, Canberra (AU), https://ansis.net/ (last access: 26 April 2024), 2023.
Armas, D., Guevara, M., Bezares, F., Vargas, R., Durante, P., Osorio, V., Jiménez, W., and Oyonarte, C.: Harmonized Soil Database of Ecuador (HESD): data from 2009 to 2015, Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023, 2023.
Arrouays, D., Leenaars, J. G. B., Richer-de-Forges, A. C., Adhikari, K., Ballabio, C., Greve, M., Grundy, M., Guerrero, E., Hempel, J., Hengl, T., Heuvelink, G., Batjes, N., Carvalho, E., Hartemink, A., Hewitt, A., Hong, S.-Y., Krasilnikov, P., Lagacherie, P., Lelyk, G., Libohova, Z., Lilly, A., McBratney, A., McKenzie, N., Vasquez, G. M., Leatitia Mulder, V., Minasny, B., Luca, M., Odeh, I., Padarian, J., Poggio, L., Roudier, P., Saby, N., Savin, I., Searle, R., Solbovoy, V., Thompson, J., Smith, S., Sulaeman, Y., Vintila, R., Rossel, R. V., Wilson, P., Zhang, G.-L., Swerts, M., Oorts, K., Karklins, A., Feng, L., Ibelles Navarro, A. R., Levin, A., Laktionova, T., Dell'Acqua, M., Suvannang, N., Ruam, W., Prasad, J., Patil, N., Husnjak, S., Pasztor, L., Okx, J., Hallet, S., Keay, C., Farewell, T., Lilja, H., Juilleret, J., Marx, S., Takata, Y., Kazuyuki, Y., Mansuy, N., Panagos, P., Van Liedekerke, M., Skalsky, R., Sobocka, J., Kobza, J., Eftekhari, K., Kacem Alavipanah, S., Moussadek, R., Badraoui, M., Da Silva, M., Paterson, G., da Conceicao Gonsalves, M., Theocharopoulos, S., Yemefack, M., Tedou, S., Vrscaj, B., Grob, U., Kozak, J., Boruvka, L., Dobos, E., Taboada, M., Moretti, L., and Rodriguez, D.: Soil legacy data rescue via GlobalSoilMap and other international and national initiatives, GeoResJ, 14, 1–19, https://doi.org/10.1016/j.grj.2017.06.001, 2017.
Ballabio, C., Panagos, P., and Monatanarella, L.: Mapping topsoil physical properties at European scale using the LUCAS database, Geoderma, 261, 110–123, https://doi.org/10.1016/j.geoderma.2015.07.006, 2016.
Baritz, R., Erdogan, H., Fujii, K., Takata, Y., Nocita, M., Bussian, B., Batjes, N. H., Hempel, J., Wilson, P., and Vargas, R.: Harmonization of methods, measurements and indicators for the sustainable management and protection of soil resources (Providing mechanisms for the collation, analysis and exchange of consistent and comparable global soil data and information), Global Soil Partnership, FAO, 44 pp., http://www.fao.org/3/a-az922e.pdf (last access: 26 April 2024), 2014.
Baritz, R., Erdogan, H., Ahmadov, H., Ghanma, I., Lalljee, V. B., Wongmaneeroj, A., Collins, A., Monger, C., Ribeiro, J. L., Bertsch, F., Lalljee, V. B., with, Montanarella, L., Comerma, J., Khan, A., VandenBygaart, B., Gaistardo, C. C., Constantini, E., Galbraith, J. M., Schad, P., Lame, F., Suvannang, N., Hartmann, C., Medyckyj-Scott, D., Batjes, N. H., van Liedekerke, M., and Ziadat, F.: Implementation Plan for Pillar Five of the Global Soil Partnership: Providing mechanisms for the collation, analysis and exchange of consistent and comparable global soil data and information, ITPS, Rome, 48 pp., http://www.fao.org/3/a-bs756e.pdf (last access: 26 April 2024), 2017.
Baroni, G., Zink, M., Kumar, R., Samaniego, L., and Attinger, S.: Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales, Hydrol. Earth Syst. Sci., 21, 2301–2320, https://doi.org/10.5194/hess-21-2301-2017, 2017.
Batjes, N. H.: A world dataset of derived soil properties by FAO–UNESCO soil unit for global modelling, Soil Use Manage., 13, 9–16, https://doi.org/10.1111/j.1475-2743.1997.tb00550.x, 1997.
Batjes, N. H.: Harmonized soil profile data for applications at global and continental scales: updates to the WISE database, Soil Use Manage., 25, 124–127, https://doi.org/10.1111/j.1475-2743.2009.00202.x, 2009.
Batjes, N. H.: Harmonised soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks, Geoderma, 269, 61–68, https://doi.org/10.1016/j.geoderma.2016.01.034 2016.
Batjes, N. H.: Options for harmonising soil data obtained from different sources ISRIC – World Soil Information, Wageningen, 21 pp., https://doi.org/10.17027/isric-wdc-6ztd-eb19 2023.
Batjes, N. H. and Bridges, E. M.: Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: development of a global database (WISE), J. Geophys. Res., 99, 16479–16489, https://doi.org/10.1029/93JD03278, 1994.
Batjes, N. H., Ribeiro, E., van Oostrum, A., Leenaars, J., Hengl, T., and Mendes de Jesus, J.: WoSIS: providing standardised soil profile data for the world, Earth Syst. Sci. Data, 9, 1–14, https://doi.org/10.5194/essd-9-1-2017, 2017.
Batjes, N. H., Ribeiro, E., and van Oostrum, A.: Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019), Earth Syst. Sci. Data, 12, 299–320, https://doi.org/10.5194/essd-12-299-2020, 2020.
Batjes, N. H. and van Oostrum, A. J. M.: WoSIS Procedures for standardizing soil analytical method descriptions, ISRIC – World Soil Information, Wageningen, 46 pp., https://doi.org/10.17027/isric-1dq0-1m83, 2023.
Batlle-Bayer, L., Batjes, N. H., and Bindraban, P. S.: Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review, Agr. Ecosyst. Environ., 137, 47–58, https://doi.org/10.1016/j.agee.2010.02.003, 2010.
Bispo, A., Arrouays, D., Saby, N., Boulonne, L., and Fantappiè, M.: Proposal of methodological development for the LUCAS programme in accordance with national monitoring programmes. Towards climate-smart sustainable management of agricultural soils (EU H2020-SFS-2018-2020/H2020-SFS-2019) EJP Soil, 135 pp., https://ejpsoil.eu/fileadmin/projects/ejpsoil/WP6/EJP_SOIL_ Deliverable_6.3_Dec_2021_final.pdf (last access: 26 April 2024), 2021.
Blakemore, L. C., Searle, P. L., and Daly, B. K.: Methods for chemical analysis of soils, Department of Scientific and Industrial Research, Lower Hutt, NZ, https://cdm20022.contentdm.oclc.org/digital/collection/p20022coll2/id/139/ (last access: 17 October 2024), 1981.
Bridges, E. M.: Soil horizon designations: past use and future prospects, CATENA, 20, 363–373, https://doi.org/10.1016/S0341-8162(05)80002-5, 1993.
Brus, D. J., Kempen, B., and Heuvelink, G. B. M.: Sampling for validation of digital soil maps, Eur. J. Soil Sci., 62, 394–407, https://doi.org/10.1111/j.1365-2389.2011.01364.x, 2011.
Brus, J.: Spatial sampling with R, Chapman and Hall R/C, New York, 2022.
Calisto, L.: ISRIC GraphQL web services for WoSIS and ISIS data access, ISRIC – World Soil Information, Wageningen, https://graphql.isric.org/ (last access: 26 April 2024), 2023.
Calisto, L., de Souza, L. M., and Batjes, N. H.: Standardised soil profile data for the world (WoSIS, December snapshot), ISRIC – World Soil Information, Wageningen [data set], https://doi.org/10.17027/isric-wdcsoils-20231130, 2023.
Cornu, S., Keesstra, S., Bispo, A., Fantappie, M., van Egmond, F., Smreczak, B., Wawer, R., Pavlù, L., Sobocká, J., Bakacsi, Z., Farkas-Iványi, K., Molnár, S., Møller, A. B., Madenoglu, S., Feiziene, D., Oorts, K., Schneider, F., Gonçalves, M. d. C., Mano, R., Garland, G., Skalský, R., O'Sullivan, L., Kasparinskis, R., and Chenu, C.: National soil data in EU countries, where do we stand?, Eur. J. Soil Sci., e13398, https://doi.org/10.1111/ejss.13398, 2023.
Cox, S. and David, J.: ISO 19156:2011 Geographic information – Observations and measurements International Organization for Standardization, https://www.iso.org/standard/32574.html (last access: 26 April 2024), 2011.
Cramer, M. D., Wootton, L. M., van Mazijk, R., and Verboom, G. A.: New regionally modelled soil layers improve prediction of vegetation type relative to that based on global soil models, Divers. Distrib., 25, 1736–1750, https://doi.org/10.1111/ddi.12973, 2019.
Cressie, N. and Kornak, J.: Spatial statistics in the presence of location error with an application to remote sensing of the environment, Stat. Sci., 18, 436–456, https://doi.org/10.1214/ss/1081443228, 2003.
Dai, Y., Shangguan, W., Wei, N., Xin, Q., Yuan, H., Zhang, S., Liu, S., Lu, X., Wang, D., and Yan, F.: A review of the global soil property maps for Earth system models, SOIL, 5, 137–158, https://doi.org/10.5194/soil-5-137-2019, 2019.
de Sousa, L., Kempen, B., Mendes de Jesus, J., Yigini, Y., Viatkin, K., Medyckyj-Scott, D., Richie, D. A., Wilson, P., van Egmond, F., and Baritz, R.: Conceptual design of the Global Soil Information System infrastructure, Rome, FAO and ISRIC, Wageningen, Netherlands, 30 pp., http://www.fao.org/3/cb4355en/cb4355en.pdf (last access: 26 April 2024), 2021.
de Sousa, L. M.: WoSIS data model 2023. Procedures Manual – Technical documentation, ISRIC – World Soil Information, Wageningen, https://git.wur.nl/isric/databases/wosis-docs (last access: 26 April 2024), 2023.
de Sousa, L. M., Kempen, B., Mendes de Jesus, J., Yigini, Y., Viatkin, K., Medyckyj-Scott, D., Richie, A., Wilson, P., van Egmond, F., and Baritz, R.: Conceptual desing of the Global Soil Information System infrastructure, ISRIC, FAO, Manaaki Whenua (Landcare Research), CSIRO, Wageningen UR, European Environment Agency, 30 pp., http://www.fao.org/3/cb4355en/cb4355en.pdf (last access: 26 April 2024), 2019.
de Sousa, L. M., Calisto, L., van Genuchten, P., Turdukulov, U., and Kempen, B.: Data model for the ISO 28258 domain model, ISRIC – World Soil Informatiom, https://iso28258.isric.org/ (last access: 26 April 2024), 2023.
Dijkshoorn, J. A., Huting, J. R. M., and Tempel, P.: Update of the 1:5 million Soil and Terrain Database for Latin America and the Caribbean (SOTERLAC, ver. 2.0), ISRIC – World Soil Information, Wageningen, Report 2005/01, https://www.isric.org/documents/document-type/isric-report-200501-update-15-million-soil-and-terrain-database-latin (last access: 24 April 2024), 2005.
Fantappie, M., Peruginelli, G., Conti, S., Rennes, S., van Egmond, F. M., and Le Bas, C.: Towards climate-smart sustainable management of agricultural soils: Deliverable 6.2 Report on the national and EU regulations on agricultural soil data sharing and national monitoring activities, 202 pp., https://edepot.wur.nl/642353 (last access: 24 April 2024), 2021.
FAO: Guidelines for the description of soils, 2nd edn., FAO, Rome, 66 pp., 1977.
FAO: Guidelines for soil description, 3rd rev. edn., FAO, Rome, 45 pp., https://edepot.wur.nl/570291 (last access: 24 April 2024), 1990.
FAO: Guidelines for soil description, 4th edn., FAO, Rome, 97 pp., http://www.fao.org/docrep/019/a0541e/a0541e.pdf (last access: 24 April 2024), 2006.
FAO and ISRIC: Soil and Terrain database for Southern Africa (1:2 million scale), ISRIC and FAO, Rome, FAO Land and Water Digital Media Series 25, 2003.
FAO and ITPS: Status of the world's soil resources (SWSR) – Main report, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, 650 pp., http://www.fao.org/3/a-i5199e.pdf (last access: 24 April 2024), 2015.
FAO, ISRIC, UNEP, and CIP: Soil and terrain digital database for Latin America and the Caribbean at 1:5 million scale, Food and Agriculture Organization of the United Nations, Rome, Land and Water Digital Media Series No. 5, 1998.
FAO, ISRIC, and UG: Soil and terrain database for central Africa (Burundi and Rwanda 1:1 million scale; Democratic Republic of the Congo 1:2 million scale), Food and Agricultural Organization of the United Nations, ISRIC – World Soil Information and Universiteit Gent, Rome, Land and Water Digital Media Series 33, https://www.isric.org/sites/default/files/isric_report_2006_07.pdf (last access: 24 April 2024), 2007.
FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), prepared by: Nachtergaele, F. O., van Velthuizen, H., Verelst, L., Wiberg, D., Batjes, N. H., Dijkshoorn, J. A., van Engelen, V. W. P., Fischer, G., Jones, A., Montanarella, L., Petri, M., Prieler, S., Teixeira, E., and Xuezheng, S., Food and Agriculture Organization of the United Nations (FAO), International Institute for Applied Systems Analysis (IIASA), ISRIC – World Soil Information, Institute of Soil Science – Chinese Academy of Sciences (ISSCAS), Joint Research Centre of the European Commission (JRC), Laxenburg, Austria, http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HWSD_Documentation.pdf (last access: 24 April 2024), 2012.
Finke, P.: Quality assessment of digital soil maps: producers and users perspectives, in: Digital soil mapping: An introductory perspective, edited by: Lagacherie, P., McBratney, A., and Voltz, M., Elsevier, Amsterdam, 523–541, 2006.
Folberth, C., Skalsky, R., Moltchanova, E., Balkovic, J., Azevedo, L. B., Obersteiner, M., and van der Velde, M.: Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations, Nat. Commun., 7, 11872, https://doi.org/10.1038/ncomms11872, 2016.
Gerasimova, M. I., Lebedeva, I. I., and Khitrov, N. B.: Soil horizon designation: State of the art, problems, and proposals, Eurasian Soil Sci., 46, 599–609, https://doi.org/10.1134/S1064229313050037, 2013.
Giller, K. E., Rowe, E. C., de Ridder, N., and van Keulen, H.: Resource use dynamics and interactions in the tropics: Scaling up in space and time, Agr. Syst., 88, 8–27, https://doi.org/10.1016/j.agsy.2005.06.016, 2006.
GlobalSoilMap: Specifications Tiered GlobalSoilMap products (Release 2.4), 52 pp., https://www.isric.org/documents/document-type/globalsoilmap-specifications-v24-07122015 (last access: 24 April 2024), 2015.
GLOSOLAN: GLOSOLAN best practice manual (on-line), FAO, GSP, Rome, https://www.fao.org/global-soil-partnership/glosolan-old/soil-analysis/standard-operating-procedures/en/#c763834 (last access: 24 April 2024), 2023.
Gobezie, T. B. and Biswas, A.: Break barriers in soil data stewardship by rewarding data generators, Nat. Rev. Earth Environ., 4, 353–354, https://doi.org/10.1038/s43017-023-00439-4, 2023.
Grimm, R. and Behrens, T.: Uncertainty analysis of sample locations within digital soil mapping approaches, GEODERMA, 155, 154–163, https://doi.org/10.1016/j.geoderma.2009.05.006, 2010.
Guevara, M., Olmedo, G. F., Stell, E., Yigini, Y., Aguilar Duarte, Y., Arellano Hernández, C., Arévalo, G. E., Arroyo-Cruz, C. E., Bolivar, A., Bunning, S., Bustamante Cañas, N., Cruz-Gaistardo, C. O., Davila, F., Dell Acqua, M., Encina, A., Figueredo Tacona, H., Fontes, F., Hernández Herrera, J. A., Ibelles Navarro, A. R., Loayza, V., Manueles, A. M., Mendoza Jara, F., Olivera, C., Osorio Hermosilla, R., Pereira, G., Prieto, P., Ramos, I. A., Rey Brina, J. C., Rivera, R., Rodríguez-Rodríguez, J., Roopnarine, R., Rosales Ibarra, A., Rosales Riveiro, K. A., Schulz, G. A., Spence, A., Vasques, G. M., Vargas, R. R., and Vargas, R.: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America, SOIL, 4, 173–193, https://doi.org/10.5194/soil-4-173-2018, 2018.
Hassani, A., Smith, P., and Shokri, N.: Negative correlation between soil salinity and soil organic carbon variability, P. Natl. Acad. Sci. USA, 121, e2317332121, https://doi.org/10.1073/pnas.2317332121, 2024.
Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotic, A., Shangguan, W., Wright, M. N., Geng, X. Y., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on machine learning, PLoS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Heuvelink, G. B. M.: Uncertainty quantification of GlobalSoilMap products in: GlobalSoilMap. Basis of the Global Spatial Soil Information System, edited by: Arrouays, D., McKenzie, N., Hempel, J., Forges, A. R. D., and McBratney, A., Taylor & Francis Group, London, UK, 335–240, 2014.
Heuvelink, G. B. M., Brown, J. D., and van Loon, E. E.: A probabilistic framework for representing and simulating uncertain environmental variables, Int. J. Geogr. Inf. Sci., 21, 497–513, https://doi.org/10.1080/13658810601063951, 2007.
Heuvelink, G. B. M., Angelini, M. E., Poggio, L., Bai, Z. G., Batjes, N. H., van den Bosch, R., Bossio, D., Estella, S., Lehmann, J., Olmedo, G. F., and Sanderman, J.: Machine learning in space and time for modelling soil organic carbon change, Eur. J. Soil Sci., 72, 1607–1623, https://doi.org/10.1111/ejss.12998, 2021.
Huang, Y., Song, X., Wang, Y.-P., Canadell, J. G., Luo, Y., Ciais, P., Chen, A., Hong, S., Wang, Y., Tao, F., Li, W., Xu, Y., Mirzaeitalarposhti, R., Elbasiouny, H., Savin, I., Shchepashchenko, D., Rossel, R. A. V., Goll, D. S., Chang, J., Houlton, B. Z., Wu, H., Yang, F., Feng, X., Chen, Y., Liu, Y., Niu, S., and Zhang, G.-L.: Size, distribution, and vulnerability of the global soil inorganic carbon, Science, 384, 233–239, https://doi.org/10.1126/science.adi7918, 2024.
ICP Forests: ICP Forests monitoring Manual. Part XVI: Quality assurance and control in laboratories (ver 2020-1), Eberswalde, Germany, 46 pp., https://www.icp-forests.org/pdf/manual/2020/ICP_Manual_part16_2020_QAQC_Labs_version_2020-1.pdf (last access: 26 April 2024), 2020.
ICP Forests: ICP Forests monitoring Manual. Part X: Sampling and analysis of soil, Eberswalde, Germany, https://storage.ning.com/topology/rest/1.0/file/get/9995584862?profile=original (last access: 26 April 2024), 2021a.
ICP Forests: ICP Forests monitoring Manual Eberswalde (Germany), http://icp-forests.net/page/icp-forests-manual (last access: 26 April 2024), 2021b.
ISO-19139: Geographic information XML schema implementation Part 1: Encoding rules, https://www.iso.org/standard/67253.html (last access: 26 April 2024), 2019.
ISRIC: Data and Software Policy, ISRIC – World Soil Information (WDC – Soils) Wageningen, 6 pp., https://www.isric.org/sites/default/files/user/ISRIC_Data_Policy_2016jun21doi.pdf (last access: 26 April 2024), 2016.
IUSS Working Group WRB: World Reference Base for Soil Resources, 2nd edn., FAO, Rome, World Soil Resources Report 103, 145 pp., http://www.fao.org/ag/agl/agll/wrb/doc/wrb2006final.pdf (last access: 26 April 2024), 2006.
IUSS Working Group WRB: World Reference Base for soil resources 2014 – International soil classification system for naming soils and creating legends for soil maps (update 2015), Global Soil Partnership, International Union of Soil Sciences, and Food and Agriculture Organization of the United Nations, Rome, World Soil Resources Reports 106, 182 pp., http://www.fao.org/3/i3794en/I3794en.pdf (last access: 26 April 2024), 2015.
IUSS Working Group WRB: World Reference Base for soil resources 2022 – International soil classification system for naming soils and creating legends for soil maps, International Union of Soil Sciences, Vienna (Austria), 284 pp., https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (last access: 26 April 2024), 2022.
Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Kempen, B., and de Sousa, L.: Global mapping of soil salinity change, Remote Sens. Environ., 231, 111260, https://doi.org/10.1016/j.rse.2019.111260, 2019.
Kalra, Y. P. and Maynard, D. G.: Methods manual for forest soil and plant analysis, Forestry Canada, Edmonton (Alberta), 116 pp., https://cfs.nrcan.gc.ca/publications/download-pdf/11845 (last access: 26 April 2024), 1991.
Leenaars, J. G. B., van Oostrum, A. J. M., and Ruiperez Gonzalez, M.: Africa Soil Profiles Database: A compilation of georeferenced and standardised legacy soil profile data for Sub Saharan Africa (version 1.2), Africa Soil Information Service (AfSIS) and ISRIC – World Soil Information, Wageningen, Report 2014/01, 160 pp., http://www.isric.org/sites/default/files/isric_report_ 2014_01.pdf (last access: 26 April 2024), 2014.
Leenaars, J. G. B., Claessens, L., Heuvelink, G. B. M., Hengl, T., Ruiperez González, M., van Bussel, L. G. J., Guilpart, N., Yang, H., and Cassman, K. G.: Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa, Geoderma, 324, 18–36, https://doi.org/10.1016/j.geoderma.2018.02.046, 2018.
Luo, Z., Viscarra-Rossel, R. A., and Qian, T.: Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world, Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, 2021.
Lutz, F., Stoorvogel, J. J., and Müller, C.: Options to model the effects of tillage on N2O emissions at the global scale, Ecol. Model., 392, 212–225, https://doi.org/10.1016/j.ecolmodel.2018.11.015, 2019.
Magnusson, B. and Örnemark, U.: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics, 2nd edn., Eurachem, https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (last access: 26 April 2024), 2014.
Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M., Cornwell, W. K., Ellsworth, D., Niinemets, U., Ordonez, A., Reich, P. B., and Santiago, L. S.: Global effects of soil and climate on leaf photosynthetic traits and rates, Glob. Ecol. Biogeogr., 24, 706–717, https://doi.org/10.1111/geb.12296, 2015.
Malhotra, A., Todd-Brown, K., Nave, L. E., Batjes, N. H., Holmquist, J. R., Hoyt, A. M., Iversen, C. M., Jackson, R. B., Lajtha, K., Lawrence, C., Vinduskova, O., Wieder, W., Williams, M., Hugelius, G., and Harden, J.: The landscape of soil carbon data: emerging questions, synergies and databases, Prog. Phys. Geogr.-Earth and Environment, 43, 707–719, https://doi.org/10.1177/0309133319873309, 2019.
Meyer, H. and Pebesma, E.: Predicting into unknown space? Estimating the area of applicability of spatial prediction models, Methods Ecol. Evol., 12, 1620–1633, https://doi.org/10.1111/2041-210X.13650, 2021.
Moulatlet, G. M., Zuquim, G., Figueiredo, F. O. G., Lehtonen, S., Emilio, T., Ruokolainen, K., and Tuomisto, H.: Using digital soil maps to infer edaphic affinities of plant species in Amazonia: Problems and prospects, Ecol. Evol., 7, 8463–8477, https://doi.org/10.1002/ece3.3242, 2017.
Munzert, M., Kießling, G., Übelhör, W., Nätscher, L., and Neubert, K.-H.: Expanded measurement uncertainty of soil parameters derived from proficiency-testing data, J. Plant Nutr. Soil Sci., 170, 722–728, https://doi.org/10.1002/jpln.200620701, 2007.
NATP: North American Proficiency Testing (NAPT) Program, http://www.naptprogram.org/ (last access: 26 April 2024), 2015.
Nenkam, A. M., Wadoux, A. M. J. C., Minasny, B., McBratney, A. B., Traore, P. C. S., Falconier, G. N., and Whitbread, A. M.: Using homosoils for quantitative extrapolation of soil mapping models, Eur. J. Soil Sci., 73, e13285, https://doi.org/10.1111/ejss.13285, 2022.
NPDB: National Pedon Database Canada, Agriculture and Agri-food Canada, https://sis.agr.gc.ca/cansis/nsdb/npdb/index.html (last access: 26 April 2024), 2023.
OGC: Soil Data IE (Interoperability Experiment), Open Geospatial Consortium (OGC), https://www.opengeospatial.org/projects/initiatives/soildataie (last access: 26 April 2024), 2019.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity, BioScience, 51, 933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2001.
Olson, R. J., Johnson, K. R., Zheng, D. L., and Scurlock, J. M. O.: Global and regional ecosystem modelling: databases of model drivers and validation measurements, Oak Ridge National Laboratory, Oak Ridge, ORNL/TM-2001/196, 95 pp., http://www-eosdis.ornl.gov/npp/GPPDI/comp/NPP_TM196.pdf (last access: 26 April 2024), 2001.
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., and Fernandez-Ugalde, O.: LUCAS Soil, the largest expandable soil dataset for Europe: a review, Eur. J. Soil Sci., 69, 140–153, https://doi.org/10.1111/ejss.12499, 2018.
Padarian, J. and McBratney, A. B.: A new model for intra- and inter-institutional soil data sharing, SOIL, 6, 89–94, https://doi.org/10.5194/soil-6-89-2020, 2020.
Palma, R., Janiak, B., Sousa, L. M. D., Schleidt, K., Tomáš Rezník, Egmond, F. v., Leenaars, J., Moshou, D., Mouazen, A., Peter Wilson, Medyckyj-Scott, D., Ritchie, A., Yigini, Y., and Vargas, R.: GloSIS: The Global Soil Information System Web Ontology, arXiv [preprint], 2403.16778, https://doi.org/10.48550/arXiv.2403.16778, 2024.
Poeplau, C., Don, A., Flessa, H., Heidkamp, A., Jacobs, A., and Prietz, R.: Erste Bodenzustandserhebung Landwirtschaft – Kerndatensatz, Thünen-Institut, I. f. A., Göttingen, 2020.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Rayment, E. R. and Lyons, D. J.: Soil chemical methods – Australasia, CSIRO Publishing, 495 pp., 2011.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, https://www.R-project.org (last access: 26 April 2024), 2021.
Ribeiro, E., Batjes, N. H., Leenaars, J. G. B., Van Oostrum, A. J. M., and Mendes de Jesus, J.: Towards the standardization and harmonization of world soil data: Procedures Manual ISRIC World Soil Information Service (WoSIS version 2.0) ISRIC – World Soil Information, Wageningen, Report 2015/03, 110 pp., http://www.isric.org/sites/default/files/isric_report_2015_03.pdf (last access: 26 April 2024), 2015.
Ribeiro, E., Batjes, N. H., and Van Oostrum, A. J. M.: World Soil Information Service (WoSIS) – Towards the standardization and harmonization of world soil data. Procedures Manual 2020, ISRIC – World Soil Information, Wageningen, ISRIC Report 2020/01, 153 pp., https://doi.org/10.17027/isric-wdc-2020-01, 2020.
Robinson, N. J., Dahlhaus, P. G., Wong, M., MacLeod, A., Jones, D., and Nicholson, C.: Testing the public–private soil data and information sharing model for sustainable soil management outcomes, Soil Use Manage., 35, 94–104, https://doi.org/10.1111/sum.12472, 2019.
Rossel, R. A. V. and McBratney, A. B.: Soil chemical analytical accuracy and costs: implications from precision agriculture, Australian J. Exp. Agric., 38, 765–775, 1998.
Sanderman, J., Hengl, T., and Fiske, G. J.: Soil carbon debt of 12,000 years of human land use, P. Natl. Acad. Sci. USA, 114, 9575–9580, https://doi.org/10.1073/pnas.1706103114, 2017.
Sayre, R.: World Terrestrial Ecosystems (WTE) 2020, U.S. Geological Survey data release [data set], https://doi.org/10.5066/P9DO61LP, 2022.
Sayre, R., Dangermond, J., Frye, C., Vaughan, R., Aniello, P., Breyer, S., Cribbs, D., Hopkins, D., Nauman, R., Derrenbacher, W., Burton, D., Grosse, A., True, D., Metzger, M., Hartmann, J., Moosdorf, N., Dürr, H., Paganini, M., DeFourny, P., Arino, O., and Maynard, S.: A New Map of Global Ecological Land Units – An Ecophysiographic Stratification Approach, Association of American Geographers, Washington DC, 46 pp., https://www.aag.org/wp-content/uploads/2021/12/AAG_Global_Ecosyst_bklt72.pdf (last access: 26 April 2024), 2014.
Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., and Soil Survey Staff: Field book for describing and sampling soils (ver. 3.0, Reprint 2021), National Soil Survey Center Natural Resources Conservation Service, U.S. Department of Agriculture, Lincoln (NE), 2012.
Shepherd, K. D., Ferguson, R., Hoover, D., van Egmond, F., Sanderman, J., and Ge, Y.: A global soil spectral calibration library and estimation service, Soil Security, 7, 100061, https://doi.org/10.1016/j.soisec.2022.100061, 2022.
Shi, G., Shangguan, W., Zhang, Y., Li, Q., Wang, C., and Li, L.-J.: Reducing Location Error of Legacy Soil Profiles Leads to Significant Improvement in Digital Soil Mapping, SSRN, https://doi.org/10.2139/ssrn.4643055, 2023.
Soil Survey Division Staff: Soil survey manual, Soil Conservation Service, U.S. Department of Agriculture, Washington, 503 pp., 1993.
Soil Survey Staff: Soil Survey Laboratory Information Manual (Ver. 2.0), National Soil Survey Center, Soil Survey Laboratory, USDA-NRCS, Lincoln (NE), Soil Survey Investigation Report No. 45, 506 pp., http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052226.pdf (last access: 26 April 2024), 2011.
Soil Survey Staff: Keys to Soil Taxonomy, 12th ed., USDA-Natural Resources Conservation Service, Washington, DC, 2014.
Soil Survey Staff: Soil Survey Manual (rev. ed.), edited by: Ditzler, C., Scheffe, K., and Monger, H. C., United States Agriculture Handbook 18, USDA, Washington, 2017.
Soil Survey Staff: Soil Survey Laboratory Methods Manual (Version 6.0., Part1: Curren methods), U.S. Department of Agriculture, Natural Resources Conservation Service, Lincoln (Nebraska), 1001 pp., 2022a.
Soil Survey Staff: Keys to Soil Taxonomy, 13th edn., USDA-Natural Resources Conservation Service, Washington, DC., 2022b.
Sothe, C., Gonsamo, A., Arabian, J., and Snider, J.: Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations, Geoderma, 405, 115402, https://doi.org/10.1016/j.geoderma.2021.115402, 2022.
Suvannang, N., Hartmann, C., Yakimenko, O., Solokha, M., Bertsch, F., and Moody, P.: Evaluation of the First Global Soil Laboratory Network (GLOSOLAN) online survey for assessing soil laboratory capacities, Global Soil Partnership (GSP)/Food and Agriculture Organization of the United Nations (FAO), Rome, GLOSOLAN/18/Survey Report, 54 pp., http://www.fao.org/3/CA2852EN/ca2852en.pdf (last access: 26 April 2024), 2018.
Tempel, P., van Kraalingen, D., Mendes de Jesus, J., and Reuter, H. I.: Towards an ISRIC World Soil Information Service (WOSIS ver. 1.0), ISRIC – World Soil Information, Wageningen, ISRIC Report 2013/02, 188 pp., https://www.isric.org/sites/default/files/isric_report_2013_02.pdf (last access: 26 April 2024), 2013.
Turek, M. E., Poggio, L., Batjes, N. H., Armindo, R. A., de Jong van Lier, Q., de Sousa, L., and Heuvelink, G. B. M.: Global mapping of volumetric water retention at 100, 330 and 15 000 cm suction using the WoSIS database, Int. Soil Water Conserv. Res., 11, 225–239, https://doi.org/10.1016/j.iswcr.2022.08.001, 2023.
USDA-NCSS: National Cooperative Soil Survey (NCSS) Soil Characterization Database, United States Department of Agriculture, Natural Resources Conservation Service, Lincoln, https://ncsslabdatamart.sc.egov.usda.gov/database_download.aspx (last access: 26 April 2024), 2021.
van de Ven, T. and Tempel, P.: ISIS 4.0 – ISRIC Soil Information System: User Manual, International Soil Reference and Information Centre, Wageningen, Technical Paper 15 (rev. ed.), https://www.isric.org/sites/default/files/ISRIC_TechPap15b.pdf (last access: 26 April 2024), 1994.
van Engelen, V. W. P., Verdoodt, A., Dijkshoorn, K., and van Ranst, E.: SOTER database for Central Africa – DR Congo, Burundi and Rwanda (SOTERCAF; ver. 1.0), Laboratory of Soil Science (University of Ghent), FAO and ISRIC - World Soil Information, Wageningen, ISRIC REport 2006/07, 28 pp., http://www.isric.org/Isric/Webdocs/Docs/ISRIC_Report_2006_07.pdf (last access: 15 August 2007), 2006.
van Leeuwen, C., Mulder, V. L., Batjes, N. H., and Heuvelink, G. B. M.: Statistical modelling of measurement error in wet chemistry soil data, Eur. J. Soil Sci., 73, 13137, https://doi.org/10.1111/ejss.13137, 2022.
van Leeuwen, C. C. E., Mulder, V. L., Batjes, N. H., and Heuvelink, G. B. M.: Effect of measurement error in wet chemistry soil data on the calibration and model performance of pedotransfer functions, Geoderma, 442, 116762, https://doi.org/10.1016/j.geoderma.2023.116762, 2024.
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y., Padarian, J., Schaap, M., Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M., Weihermüller, L., Zacharias, S., Zhang, Y., and Vereecken, H. C. R. G.: Pedotransfer functions in Earth system science: challenges and perspectives, Rev. Geophys., 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017.
van Reeuwijk, L. P.: On the way to improve international soil classification and correlation: the variability of soil analytical data, ISRIC, Wageningen, Annual Report 1983, 7–13 pp., https://www.isric.org/sites/default/files/isric_annual_report_1983.pdf (last access: 26 April 2024), 1983.
Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J., Demattê, J. A. M., Shepherd, K. D., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V., Aïchi, H., Barthès, B. G., Bartholomeus, H. M., Bayer, A. D., Bernoux, M., Böttcher, K., Brodský, L., Du, C. W., Chappell, A., Fouad, Y., Genot, V., Gomez, C., Grunwald, S., Gubler, A., Guerrero, C., Hedley, C. B., Knadel, M., Morrás, H. J. M., Nocita, M., Ramirez-Lopez, L., Roudier, P., Campos, E. M. R., Sanborn, P., Sellitto, V. M., Sudduth, K. A., Rawlins, B. G., Walter, C., Winowiecki, L. A., Hong, S. Y., and Ji, W.: A global spectral library to characterize the world's soil, Earth-Sci. Rev., 155, 198–230, https://doi.org/10.1016/j.earscirev.2016.01.012, 2016.
von Haden, A. C., Yang, W. H., and DeLucia, E. H.: Soils' dirty little secret: Depth-based comparisons can be inadequate for quantifying changes in soil organic carbon and other mineral soil properties, Global Change Biol., 26, 3759–3770, https://doi.org/10.1111/gcb.15124, 2020.
Wang, M., Guo, X., Zhang, S., Xiao, L., Mishra, U., Yang, Y., Zhu, B., Wang, G., Mao, X., Qian, T., Jiang, T., Shi, Z., and Luo, Z.: Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate, Nat. Commun., 13, 5514, https://doi.org/10.1038/s41467-022-33278-w, 2022.
Wang, M., Zhang, S., Guo, X., Xiao, L., Yang, Y., Luo, Y., Mishra, U., and Luo, Z.: Responses of soil organic carbon to climate extremes under warming across global biomes, Nat. Clim. Change, 14, 98–105, https://doi.org/10.1038/s41558-023-01874-3, 2024.
WEPAL: ISE Reference Material – A list with all available ISE reference material samples, WEPAL (Wageningen Evaluating Programmes for Analytical Laboratories), Wageningen, 110 pp., http://www.wepal.nl/website/products/RefMatISE.htm (last access: 26 April 2024), 2019.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Short summary
Soils are an important provider of ecosystem services. This dataset provides quality-assessed and standardised soil data to support digital soil mapping and environmental applications at a broad scale. The underpinning soil profiles were shared by a wide range of data providers. Special attention was paid to the standardisation of soil property definitions, analytical method descriptions and property values. We present three measures to assess "fitness for intended use" of the standardised data.
Soils are an important provider of ecosystem services. This dataset provides quality-assessed...
Altmetrics
Final-revised paper
Preprint