Articles | Volume 16, issue 10
https://doi.org/10.5194/essd-16-4619-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-4619-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images
College of Grassland Science and Technology, China Agricultural University, Beijing 100093, China
Xiangming Xiao
CORRESPONDING AUTHOR
School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK 73019, USA
Yuanwei Qin
School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK 73019, USA
Jinwei Dong
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Geli Zhang
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Xuebin Yang
School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK 73019, USA
Xiaocui Wu
Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Chandrashekhar Biradar
Center for International Forestry Research (CIFOR) and World Agroforestry Center (ICRAF), Asia Continental Program, New Delhi, India
Yang Hu
School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
Related authors
No articles found.
Jiaying He, Xin Zou, Weihan Zhang, Quan Duan, Ronggao Liu, Yang Liu, Jinwei Dong, Chaoyang Wu, Wei Li, and Chao Wu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-733, https://doi.org/10.5194/essd-2025-733, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a 30 m global product individual forest fires from 1984–2022, derived from the full Landsat archive on Google Earth Engine. This product maps a total of 11.97 million fire patches burning 7.3 Mha yr−1 on average. This dataset provides a valuable resource for characterizing the long-term impacts and evolving regimes of global forest fires, which is essential for effective forest management and climate policy.
Binghong Han, Jian Bi, Shengli Tao, Tong Yang, Yongli Tang, Mengshuai Ge, Hao Wang, Zhenong Jin, Jinwei Dong, Zhibiao Nan, and Jin-Sheng He
Earth Syst. Sci. Data, 17, 2933–2952, https://doi.org/10.5194/essd-17-2933-2025, https://doi.org/10.5194/essd-17-2933-2025, 2025
Short summary
Short summary
The Tibetan Plateau is an important pastoral area where cultivated pastures play an increasingly important role. However, little is known about the spatial distribution of the cultivated pastures due to the difficulty in distinguishing them from natural grasslands with remote sensing. For the first time, we have mapped the cultivated pastures on the plateau at a resolution of 30 m with decent accuracy. This dataset is valuable to scientists, policymakers, conservationists, and pastoralists.
Qinghang Mei, Zhao Zhang, Jichong Han, Jie Song, Jinwei Dong, Huaqing Wu, Jialu Xu, and Fulu Tao
Earth Syst. Sci. Data, 16, 3213–3231, https://doi.org/10.5194/essd-16-3213-2024, https://doi.org/10.5194/essd-16-3213-2024, 2024
Short summary
Short summary
In order to make up for the lack of long-term soybean planting area maps in China, we firstly generated a dataset of soybean planting area with a spatial resolution of 10 m for major producing areas in China from 2017 to 2021 (ChinaSoyArea10m). Compared with existing datasets, ChinaSoyArea10m has higher consistency with census data and further improvement in spatial details. The dataset can provide reliable support for subsequent studies on yield monitoring and food security.
Russell Doughty, Yujie Wang, Jennifer Johnson, Nicholas Parazoo, Troy Magney, Zoe Pierrat, Xiangming Xiao, Luis Guanter, Philipp Köhler, Christian Frankenberg, Peter Somkuti, Shuang Ma, Yuanwei Qin, Sean Crowell, and Berrien Moore III
EGUsphere, https://doi.org/10.22541/essoar.168167172.20799710/v1, https://doi.org/10.22541/essoar.168167172.20799710/v1, 2024
Preprint archived
Short summary
Short summary
Here we present a novel model of global photosynthesis, ChloFluo, which uses spaceborne chlorophyll fluorescence to estimate the amount of photosynthetically active radiation absorbed by chlorophyll. Potential uses of our model are to advance our understanding of the timing and magnitude of photosynthesis, its effect on atmospheric carbon dioxide fluxes, and vegetation response to climate events and change.
Kai Yan, Jingrui Wang, Rui Peng, Kai Yang, Xiuzhi Chen, Gaofei Yin, Jinwei Dong, Marie Weiss, Jiabin Pu, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 1601–1622, https://doi.org/10.5194/essd-16-1601-2024, https://doi.org/10.5194/essd-16-1601-2024, 2024
Short summary
Short summary
Variations in observational conditions have led to poor spatiotemporal consistency in leaf area index (LAI) time series. Using prior knowledge, we leveraged high-quality observations and spatiotemporal correlation to reprocess MODIS LAI, thereby generating HiQ-LAI, a product that exhibits fewer abnormal fluctuations in time series. Reprocessing was done on Google Earth Engine, providing users with convenient access to this value-added data and facilitating large-scale research and applications.
Yuanwei Qin, Xiangming Xiao, Hao Tang, Ralph Dubayah, Russell Doughty, Diyou Liu, Fang Liu, Yosio Shimabukuro, Egidio Arai, Xinxin Wang, and Berrien Moore III
Earth Syst. Sci. Data, 16, 321–336, https://doi.org/10.5194/essd-16-321-2024, https://doi.org/10.5194/essd-16-321-2024, 2024
Short summary
Short summary
Forest definition has two major biophysical parameters, i.e., canopy height and canopy coverage. However, few studies have assessed forest cover maps in terms of these two parameters at a large scale. Here, we assessed the annual forest cover maps in the Brazilian Amazon using 1.1 million footprints of canopy height and canopy coverage. Over 93 % of our forest cover maps are consistent with the FAO forest definition, showing the high accuracy of these forest cover maps in the Brazilian Amazon.
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022, https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
Short summary
We generated China’s surface water bodies, Large Dams, Reservoirs, and Lakes (China-LDRL) dataset by analyzing all available Landsat imagery in 2019 (19\,338 images) in Google Earth Engine. The dataset provides accurate information on the geographical locations and sizes of surface water bodies, large dams, reservoirs, and lakes in China. The China-LDRL dataset will contribute to the understanding of water security and water resources management in China.
Cited articles
Achard, F., Eva, H., and Mayaux, P.: Tropical forest mapping from coarse spatial resolution satellite data: production and accuracy assessment issues, Int. J. Remote Sens., 22, 2741–2762, 2001.
Betts, M. G., Wolf, C., Ripple, W. J., Phalan, B., Millers, K. A., Duarte, A., Butchart, S. H., and Levi, T.: Global forest loss disproportionately erodes biodiversity in intact landscapes, Nature, 547, 441–444, 2017.
Bonan, G. B.: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, 2008.
Burrill, E. A., DiTommaso, A. M., Turner, J. A., Pugh, S. A., Menlove, J., Christiansen, G., Perry, C. J., and Conkling, B. L.: The Forest Inventory and Analysis Database: database description and user guide version 9.0.1 for Phase 2, U. S. Department of Agriculture, Forest Service, http://www.fia.fs.fed.us/library/database-documentation/ (last access: 21 October 2021), 1026 p, 2021.
CEC (Commission for Environmental Cooperation): Ecological regions of North America: Toward a common perspective, Commission for Environmental Cooperation, Montreal, Canada, https://gaftp.epa.gov/EPADataCommons/ORD/Ecoregions/cec_na/CEC_NAeco.pdf (last access: 1 October 2024), 1997.
Chen, B. Q., Xiao, X. M., Ye, H. C., Ma, J., Doughty, R., Li, X. P., Zhao, B., Wu, Z. X., Sun, R., Dong, J. W., Qin, Y. W., and Xie, G. S.: Mapping Forest and Their Spatial-Temporal Changes From 2007 to 2015 in Tropical Hainan Island by Integrating ALOS/ALOS-2 L-Band SAR and Landsat Optical Images, IEEE J. Sel. Top. Appl., 11, 852–867, https://doi.org/10.1109/Jstars.2018.2795595, 2018.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., and Lu, M.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm., 103, 7–27, 2015.
D'Almeida, C., Vörösmarty, C. J., Hurtt, G. C., Marengo, J. A., Dingman, S. L., and Keim, B. D.: The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution, Int. J. Climatol., 27, 633–647, 2007.
Deb Burman, P. K., Launiainen, S., Mukherjee, S., Chakraborty, S., Gogoi, N., Murkute, C., Lohani, P., Sarma, D., and Kumar, K.: Ecosystem-atmosphere carbon and water exchanges of subtropical evergreen and deciduous forests in India, Forest Ecol. Manag., 495, 119371, https://doi.org/10.1016/j.foreco.2021.119371, 2021.
DiMiceli, C., Carroll, M., Sohlberg, R., Huang, C., Hansen, M., and Townshend, J.: Annual global automated MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000–2010, collection 5 percent tree cover, University of Maryland, College Park, MD, USA, 2017.
Domke, G. M., Walters, B. F., Nowak, D. J., Smith, J., Nichols, M. C., Ogle, S. M., Coulston, J., and Wirth, T. C.: Greenhouse gas emissions and removals from forest land, woodlands, and urban trees in the United States, 1990–2019, US Department of Agriculture, Forest Service, Northern Research Station, https://doi.org/10.2737/FS-RU-307, 2021.
FAO: Global Forest Resources Assessment 2010: Main report, Rome, Italy, 2012. FAO: Global Forest Resources Assessment 2020: Main report, https://doi.org/10.4060/ca9825en, 2020.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global consequences of land use, Science, 309, 570–574, 2005.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X. M.: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, 2010.
Gong, P., Wang, J., Yu, L., Zhao, Y. C., Zhao, Y. Y., Liang, L., Niu, Z. G., Huang, X. M., Fu, H. H., Liu, S., Li, C. C., Li, X. Y., Fu, W., Liu, C. X., Xu, Y., Wang, X. Y., Cheng, Q., Hu, L. Y., Yao, W. B., Zhang, H., Zhu, P., Zhao, Z. Y., Zhang, H. Y., Zheng, Y. M., Ji, L. Y., Zhang, Y. W., Chen, H., Yan, A., Guo, J. H., Yu, L., Wang, L., Liu, X. J., Shi, T. T., Zhu, M. H., Chen, Y. L., Yang, G. W., Tang, P., Xu, B., Giri, C., Clinton, N., Zhu, Z. L., Chen, J., and Chen, J.: Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data, Int. J. Remote Sens., 34, 2607–2654, 2013.
Grogan, K., Pflugmacher, D., Hostert, P., Verbesselt, J., and Fensholt, R.: Mapping Clearances in Tropical Dry Forests Using Breakpoints, Trend, and Seasonal Components from MODIS Time Series: Does Forest Type Matter?, Remote Sens.-Basel, 8, 657, https://doi.org/10.3390/rs8080657, 2016.
Hansen, M., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A., Thau, D., Stehman, S., Goetz, S., and Loveland, T.: High-resolution global maps of 21st-century forest cover change, Science, 342, 850–853, 2013.
Hansen, M. C. and DeFries, R. S.: Detecting long-term global forest change using continuous fields of tree-cover maps from 8-km advanced very high resolution radiometer (AVHRR) data for the years 1982–99, Ecosystems, 7, 695–716, https://doi.org/10.1007/s10021-004-0243-3, 2004.
Hansen, M. C., DeFries, R. S., Townshend, J. R. G., Carroll, M., Dimiceli, C., and Sohlberg, R. A.: Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm, Earth Interact., 7, 1–15, https://doi.org/10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2, 2003.
Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas, W., Hansen, M. C., Potapov, P. V., and Lotsch, A.: Baseline map of carbon emissions from deforestation in tropical regions, Science, 336, 1573–1576, 2012.
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R., and Riitters, K.: Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database, ISPRS J. Photogramm., 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020.
Hoover, C. M., Bush, R., Palmer, M., and Treasure, E.: Using Forest Inventory and Analysis Data to Support National Forest Management: Regional Case Studies, J. Forest., 118, 313–323, https://doi.org/10.1093/jofore/fvz073, 2020.
Huang, K. and Xia, J.: High ecosystem stability of evergreen broadleaf forests under severe droughts, Glob. Change Biol., 25, 3494–3503, https://doi.org/10.1111/gcb.14748, 2019.
Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., and Xian, G.: A comprehensive change detection method for updating the National Land Cover Database to circa 2011, Remote Sens. Environ., 132, 159–175, 2013.
Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., and Howard, D.: Overall Methodology Design for the United States National Land Cover Database 2016 Products, Remote Sens.-Basel, 11, 2971, https://doi.org/10.3390/rs11242971, 2019.
Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., and Lindquist, E.: Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015, For. Ecol. Manag., 352, 9–20, https://doi.org/10.1016/j.foreco.2015.06.014, 2015.
Knott, J. A., Desprez, J. M., Oswalt, C. M., and Fei, S. L.: Shifts in forest composition in the eastern United States, Forest Ecol. Manag., 433, 176–183, https://doi.org/10.1016/j.foreco.2018.10.061, 2019.
Kushwaha, S. P. S.: Forest-Type Mapping and Change Detection from Satellite Imagery, ISPRS J. Photogramm., 45, 175–181, 1990.
Laurin, G. V., Puletti, N., Hawthorne, W., Liesenberg, V., Corona, P., Papale, D., Chen, Q., and Valentini, R.: Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data, Remote Sens. Environ., 176, 163–176, https://doi.org/10.1016/j.rse.2016.01.017, 2016.
Lehmann, E. A., Caccetta, P., Lowell, K., Mitchell, A., Zhou, Z.-S., Held, A., Milne, T., and Tapley, I.: SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system, Remote Sens. Environ., 156, 335–348, 2015.
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F., and Rogers, B. M.: Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire, Nat. Plants, 5, 952–958, https://doi.org/10.1038/s41477-019-0495-8, 2019.
Næsset, E., Ørka, H. O., Solberg, S., Bollandsås, O. M., Hansen, E. H., Mauya, E., Zahabu, E., Malimbwi, R., Chamuya, N., Olsson, H., and Gobakken, T.: Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision, Remote Sens. Environ., 175, 282–300, https://doi.org/10.1016/j.rse.2016.01.006, 2016.
Oswalt, S. N., Smith, W. B., Miles, P. D., and Pugh, S. A.: Assessment of the influence of disturbance, management activities, and environmental factors on carbon stocks of U. S. national forests, Gen. Tech. Rep. WO-97, U. S. Department of Agriculture, Forest Service, Washington Office, Washington, DC, 2019.
Peng, S. S., Piao, S. L., Zeng, Z. Z., Ciais, P., Zhou, L. M., Li, L. Z. X., Myneni, R. B., Yin, Y., and Zeng, H.: Afforestation in China cools local land surface temperature, P. Natl. Acad. Sci. USA, 111, 2915–2919, 2014.
Prabakaran, C., Singh, C., Panigrahy, S., and Parihar, J. J. C. S.: Retrieval of forest phenological parameters from remote sensing-based NDVI time-series data, Current Sci., 105, 795–802, 2013.
Qin, Y. W., Xiao, X. M., Dong, J. W., Zhang, G. L., Roy, P. S., Joshi, P. K., Gilani, H., Murthy, M. S. R., Jin, C., Wang, J., Zhang, Y., Chen, B. Q., Menarguez, M. A., Biradar, C. M., Bajgain, R., Li, X. P., Dai, S. Q., Hou, Y., Xin, F. F., and Moore, B.: Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010, Sci. Rep.-UK, 6, 20880, https://doi.org/10.1038/srep20880, 2016a.
Qin, Y. W., Xiao, X. M., Wang, J., Dong, J. W., Ewing, K., Hoagland, B., Hough, D. J., Fagin, T. D., Zou, Z. H., Geissler, G. L., Xian, G. Z., and Loveland, T. R.: Mapping Annual Forest Cover in Sub-Humid and Semi-Arid Regions through Analysis of Landsat and PALSAR Imagery, Remote Sens.-Basel, 8, 933, https://doi.org/10.3390/rs8110933, 2016b.
Qin, Y. W., Xiao, X. M., Dong, J. W., Zhou, Y. T., Wang, J., Doughty, R. B., Chen, Y., Zou, Z. H., and Moore, B.: Annual dynamics of forest areas in South America during 2007–2010 at 50 m spatial resolution, Remote Sens. Environ., 201, 73–87, 2017.
Qin, Y. W., Xiao, X. M., Dong, J. W., Zhang, Y., Wu, X. C., Shimabukuro, Y., Arai, E., Biradar, C., Wang, J., Zou, Z. H., Liu, F., Shi, Z., Doughty, R., and Moore, B.: Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017, Nat. Sustain., 2, 764–772, https://doi.org/10.1038/s41893-019-0336-9, 2019.
Qin, Y. W., Xiao, X. X., Wigneron, J.-P., Ciais, P., Canadell, J. G., Brandt, M., Li, X. J., Fan, L., Wu, X. C., Tang, H., Dubayah, R., Doughty, R., Chang, Q., Crowell, S., Zheng, B., Neal, K., Celis, J. A., and Moore III, B.: Annual Maps of Forests in Australia from Analyses of Microwave and Optical Images with FAO Forest Definition, J. Remote Sens., 2021, 9784657, https://doi.org/10.34133/2021/9784657, 2021.
Qin, Y. W., Xiao, X. M., Tang, H., Dubayah, R., Doughty, R., Liu, D. Y., Liu, F., Shimabukuro, Y., Arai, E., Wang, X. X., and Moore III, B.: : Annual maps of forest cover in the Brazilian Amazon from analyses of PALSAR and MODIS images, Earth Syst. Sci. Data, 16, 321–336, https://doi.org/10.5194/essd-16-321-2024, 2024.
Reiche, J., Verbesselt, J., Hoekman, D., and Herold, M.: Fusing Landsat and SAR time series to detect deforestation in the tropics, Remote Sens. Environ., 156, 276–293, 2015.
Reiche, J., Hamunyela, E., Verbesselt, J., Hoekman, D., and Herold, M.: Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2, Remote Sens. Environ., 204, 147–161, 2018.
Ruefenacht, B., Finco, M., Nelson, M., Czaplewski, R., Helmer, E., Blackard, J., Holden, G., Lister, A., Salajanu, D., and Weyermann, D.: Conterminous US and Alaska forest type mapping using forest inventory and analysis data, Photogramm. Eng. Rem. S., 74, 1379–1388, 2008.
Saintilan, N. and Rogers, K.: Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings, New Phytol., 205, 1062–1070, https://doi.org/10.1111/nph.13147, 2015.
Selkowitz, D. J. and Stehman, S. V.: Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska, Remote Sens. Environ., 115, 1401–1407, https://doi.org/10.1016/j.rse.2011.01.020, 2011.
Seto, K. C., Guneralp, B., and Hutyra, L. R.: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools, P. Natl. Acad. Sci. USA, 109, 16083–16088, https://doi.org/10.1073/pnas.1211658109, 2012.
Sexton, J. O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim, D.-H., Collins, K. M., Channan, S., DiMiceli, C., and Townshend, J. R.: Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error, Int. J. Digit. Earth, 6, 427–448, https://doi.org/10.1080/17538947.2013.786146, 2013.
Sexton, J. O., Noojipady, P., Song, X.-P., Feng, M., Song, D.-X., Kim, D.-H., Anand, A., Huang, C., Channan, S., Pimm, S. L., and Townshend, J. R.: Conservation policy and the measurement of forests, Nat. Clim. Change, 6, 192–196, https://doi.org/10.1038/nclimate2816, 2015.
Sexton, J. O., Noojipady, P., Song, X.-P., Feng, M., Song, D.-X., Kim, D.-H., Anand, A., Huang, C., Channan, S., and Pimm, S. L.: Conservation policy and the measurement of forests, Nat. Clim. Change, 6, 192–196, 2016.
Shimada, M., Isoguchi, O., Tadono, T., and Isono, K.: PALSAR Radiometric and Geometric Calibration, IEEE T. Geosci. Remote, 47, 3915–3932, 2009.
Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., and Lucas, R.: New global forest/non-forest maps from ALOS PALSAR data (2007–2010), Remote Sens. Environ., 155, 13–31, 2014.
Smith, W. B., Lara, R. A. C., Caballero, C. E. D., Valdivia, C. I. G., Kapron, J. S., Reyes, J. C. L., Tovar, C. L. M., Miles, P. D., Oswalt, S. N., and Salgado, M. R.: The North American Forest Database: going beyond national-level forest resource assessment statistics, Environ. Monit. Assess., 190, 350, https://doi.org/10.1007/s10661-018-6649-8, 2018.
Soh, W. K., Yiotis, C., Murray, M., Parnell, A., Wright, I. J., Spicer, R. A., Lawson, T., Caballero, R., and McElwain, J. C.: Rising CO2 drives divergence in water use efficiency of evergreen and deciduous plants, Sci. Adv., 5, eaax7906, https://doi.org/10.1126/sciadv.aax7906, 2019.
Soudani, K., Hmimina, G., Delpierre, N., Pontailler, J. Y., Aubinet, M., Bonal, D., Caquet, B., de Grandcourt, A., Burban, B., Flechard, C., Guyon, D., Granier, A., Gross, P., Heinesh, B., Longdoz, B., Loustau, D., Moureaux, C., Ourcival, J. M., Rambal, S., Saint André, L., and Dufrêne, E.: Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes, Remote Sens. Environ., 123, 234–245, https://doi.org/10.1016/j.rse.2012.03.012, 2012.
Souza, C., Firestone, L., Silva, L. M., and Roberts, D.: Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models, Remote Sens. Environ., 87, 494–506, https://doi.org/10.1016/j.rse.2002.08.002, 2003.
Stibig, H.-J. and Malingreau, J.-P.: Forest cover of insular Southeast Asia mapped from recent satellite images of coarse spatial resolution, AMBIO, 32, 469–475, 2003.
Stibig, H. J., Achard, F., and Fritz, S.: A new forest cover map of continental southeast Asia derived from SPOT-VEGETATION satellite imagery, Appl. Veg. Sci., 7, 153–162, 2004.
Tang, H., Armston, J., Hancock, S., Marselis, S., Goetz, S., and Dubayah, R.: Characterizing global forest canopy cover distribution using spaceborne lidar, Remote Sens. Environ., 231, 111262, https://doi.org/10.1016/j.rse.2019.111262, 2019.
Tchuenté, A. T. K., Roujean, J.-L., and De Jong, S. M.: Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale, Int. J. Appl. Earth Obs., 13, 207–219, 2011.
Thapa, R. B., Itoh, T., Shimada, M., Watanabe, M., Takeshi, M., and Shiraishi, T.: Evaluation of ALOS PALSAR sensitivity for characterizing natural forest cover in wider tropical areas, Remote Sens. Environ., 155, 32–41, 2014.
Tran, T. V., de Beurs, K. M., and Julian, J. P.: Monitoring forest disturbances in Southeast Oklahoma using Landsat and MODIS images, Int. J. Appl. Earth Obs., 44, 42–52, https://doi.org/10.1016/j.jag.2015.07.001, 2016.
Twidwell, D., West, A. S., Hiatt, W. B., Ramirez, A. L., Winter, J. T., Engle, D. M., Fuhlendorf, S. D., and Carlson, J.: Plant invasions or fire policy: which has altered fire behavior more in tallgrass prairie?, Ecosystems, 19, 356–368, 2016.
Vermote, E., Justice, C., Claverie, M., and Franch, B.: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product, Remote Sens. Environ., 185, 46–56, https://doi.org/10.1016/j.rse.2016.04.008, 2016.
Wang, J.: 30 m PALSAR-2/Landsat-based Forest and Evergreen Forest maps in CONUS from 2015 to 2017, Figshare [data set], https://doi.org/10.6084/m9.figshare.21270261.v2, 2024.
Zhang, Y., Ling, F., Foody, G. M., Ge, Y., Boyd, D. S., Li, X., Du, Y., and Atkinson, P. M.: Mapping annual forest cover by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016, Remote Sens. Environ., 224, 74–91, https://doi.org/10.1016/j.rse.2019.01.038, 2019.
Short summary
Existing satellite-based forest maps have large uncertainties due to different forest definitions and mapping algorithms. To effectively manage forest resources, timely and accurate annual forest maps at a high spatial resolution are needed. This study improved forest maps by integrating PALSAR-2 and Landsat images. Annual evergreen and non-evergreen forest-type maps were also generated. This critical information supports the Global Forest Resources Assessment.
Existing satellite-based forest maps have large uncertainties due to different forest...
Altmetrics
Final-revised paper
Preprint