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Abstract. Annual forest maps at a high spatial resolution are necessary for forest management and conserva-
tion. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets,
in situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest and ever-
green forest at a 30 m resolution in the contiguous United States (CONUS) during 2015–2017 by integrating
microwave data (Phased Array type L-band Synthetic Aperture Radar – PALSAR-2) and optical data (Landsat)
using knowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were com-
pared with five major forest datasets from the CONUS: (1) the Landsat tree canopy cover from the Global Forest
Watch dataset (GFW-Forest), (2) the Landsat Vegetation Continuous Field dataset (Landsat VCF-Forest), (3) the
National Land Cover Database 2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency forest maps
(JAXA-Forest), and (5) the Forest Inventory and Analysis (FIA) data from the U.S. Department of Agriculture
(USDA) Forest Service (FIA-Forest). The forest structure data (tree canopy height and canopy coverage) derived
from the lidar observations of the Geoscience Laser Altimetry System (GLAS) on board NASA’s Ice, Cloud, and
land Elevation Satellite (ICESat-1) were used to assess the five forest cover datasets derived from satellite images.
Using the forest definition of the Food and Agricultural Organization (FAO) of the United Nations, more forest
pixels from the PL-Forest maps meet the FAO’s forest definition than the GFW-Forest, Landsat VCF-Forest, and
JAXA-Forest datasets. Forest area estimates from PL-Forest were close to those from the FIA-Forest statistics,
higher than GFW-Forest and NLCD-Forest, and lower than Landsat VCF-Forest, which highlights the potential
of using both the PL-Forest and FIA-Forest datasets to support the FAO’s Global Forest Resources Assessment.
Furthermore, the PALSAR-2/Landsat-based annual evergreen forest maps (PL-Evergreen Forest) showed reason-
able consistency with the NLCD product. The comparison of the most widely used forest datasets offered insights
to employ appropriate products for relevant research and management activities across local to regional and na-
tional scales. The datasets generated in this study are available at https://doi.org/10.6084/m9.figshare.21270261
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(Wang, 2024). The improved annual maps of forest and evergreen forest at 30 m over the CONUS can be used
to support forest management, conservation, and resource assessments.

1 Introduction

Forests cover approximately 30 % of Earth’s land surface and
have played major roles in regulating terrestrial carbon and
water cycles (Harris et al., 2012; D’Almeida et al., 2007),
influencing climate (Bonan, 2008; Peng et al., 2014), con-
serving biodiversity (Seto et al., 2012; Betts et al., 2017),
and supplying forest products to humankind (Foley et al.,
2005; Smith et al., 2018). The United States of America
(USA) is covered by 310×106 ha of forests and is the fourth
largest forest country in the world, as estimated in the global
forest resources assessment 2020 (FAO, 2020). Its forest
biomes are dominated by the northwestern Rocky Mountains
and Pacific coast evergreen forests, the eastern deciduous
and mixed forests, and the southeastern coastal plain ever-
green forests (CEC, 1997). The Forest Inventory and Analy-
sis (FIA) program, managed by the U.S. Department of Agri-
culture (USDA) Forest Service, identified 142 forest types
(by major tree species), which were aggregated into 28 for-
est groups across the USA (Ruefenacht et al., 2008). FIA has
reported that the national forest area totals remain stable but
that substantial changes have occurred at local and regional
scales (Oswalt et al., 2019). In addition, extensive impacts of
disturbance (e.g., wildfires, harvests, or insect outbreaks) and
climate factors have increasingly been changing the forest
structure, function, and species composition (Sexton et al.,
2016; Mekonnen et al., 2019). It is crucial to generate timely
and accurate annual forest maps at a high spatial resolution
which can then be used to identify the forest area dynamics,
assess the associated impacts, and support policy discussion
and relevant research (Sexton et al., 2015).

Remote sensing technology offers large-area and high-
frequency observations that have been widely used for re-
gional and global forest mapping. For example, the opti-
cally based regional and global forest maps are generated
at coarse (thousands of meters) and moderate (hundreds of
meters) spatial resolutions using the 1 km Advanced Very
High Resolution Radiometer (AVHRR) (Hansen and Defries,
2004; Achard et al., 2001), 1 km Satellite Pour l’Observation
de la Terre 4 (SPOT-4) VEGETATION (Stibig et al., 2004;
Stibig and Malingreau, 2003; Souza et al., 2003), and 500 m
and 250 m Moderate Resolution Imaging Spectroradiometer
(MODIS) (Friedl et al., 2010; Hansen et al., 2003; Dimiceli
et al., 2017). The characteristics and comparisons of several
major forest cover products at moderate spatial resolution
have been shown in detail in one of our previous studies,
including image data sources, forest definition, algorithms,
accuracy, and other relevant information (Qin et al., 2017).

The Landsat images have been used to generate forest or
other land cover products at a high spatial resolution (tens
of meters) (Chen et al., 2015; Hansen et al., 2013; Jin et al.,
2013). The major Landsat-based products for the contigu-
ous United States (CONUS) include the Global Forest Watch
(GFW) program of the World Resources Institute (Hansen et
al., 2013), the forest cover fraction Vegetation Continuous
Field (VCF) product from the Global Land Cover Facility
(GLCF) Data Center at the University of Maryland (Sexton
et al., 2013), and the National Land Cover Database (NLCD)
from the United States Geological Survey (USGS) (Jin et al.,
2013). In the USA, FIA and NLCD are the primary databases
used by managers, researchers, and policymakers to assess
land use and track land management (Hoover et al., 2020;
Domke et al., 2021). FIA is a field survey of forest plots and
reports information on the status and trends of forests in the
USA. A subset of plots is measured every year with revisit
intervals of 5 to 10 years, depending on the state (Hoover
et al., 2020; Burrill et al., 2021). NLCD provides updated
datasets every 3 years or so, which are generated by change
detection algorithms for a time period only and have a cer-
tain number of commission errors (Jin et al., 2013). Addi-
tionally, the annual global forest maps were published by the
Japan Aerospace Exploration Agency (JAXA) over the years
2007–2010 and 2015–2018 and were generated using Phased
Array type L-band Synthetic Aperture Radar (PALSAR and
PALSAR-2) images at 25 and 50 m spatial resolutions (Shi-
mada et al., 2014). The main characteristics of these high-
spatial-resolution forest maps covering the CONUS are sum-
marized in Table 1. The wide availability of satellite-based
forest and land cover maps makes it easier for stakeholders to
access more information than ever before. However, it is still
challenging for users to understand the differences between
the forest products and clarify their application potential sys-
tematically for specific purposes.

Due to the differences in forest definitions, satellite data, in
situ training data, and mapping algorithms, the available for-
est maps still have large discrepancies in forest area estimates
(Smith et al., 2018; Qin et al., 2017; Sexton et al., 2016).
The optical remote sensing data are affected by cloud cover,
cloud shadow, and smoke, which reduce the number of good-
quality observations (Reiche et al., 2015). Buildings, rocks,
and high-biomass crops often have large PALSAR backscat-
ter coefficients at similar or higher levels of forest (Qin et al.,
2017). The combination of the optical and microwave data
could take advantage of the optical remote sensors that cap-
ture the light and forest canopy interaction, together with L-
band microwave sensors that capture the microwave and for-
est structure (tree trunk and branch) interaction without cloud
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Table 1. Characteristics of the main forest cover datasets at a high spatial resolution (tens of meters) for the CONUS. The forest cover
datasets analyzed in this study are from the Forest Inventory and Analysis program (FIA-Forest), the National Land Cover Database (NLCD-
Forest) from the United States Geological Survey, the Global Forest Watch (GFW-Forest) program of the World Resources Institute, the
Landsat-based forest cover fraction (Landsat VCF-Forest) product from the Global Land Cover Facility Data Center at the University of
Maryland, the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and the PALSAR-2/Landsat-based forest maps (PL-Forest)
generated in this study.

Sensors Datasets Forest definitions Major data sources Method Spatial
resolution

Periods Reference

Statistics FIA-Forest Tree cover ≥ 10 % Inventory data Sampling State Annual sampling
design after 1998

Burrill et al.
(2021)

Optical NLCD-Forest Tree cover ≥ 20 %,
tree height ≥ 5 m

Landsat images Decision
tree

30 m Circa 1992,
2001,
2006, 2011,
2016, 2019

Jin et al.
(2019)

Landsat
VCF-Forest

Tree height ≥ 5 m MODIS VCF and
Landsat
images

Regression
tree

30 m 2000, 2005,
2010, 2015

Sexton et al.
(2013)

GFW-Forest Tree height ≥ 5 m Landsat images Decision
tree

30 m 2000, 2010 Hansen et al.
(2013)

SAR JAXA-Forest Tree cover ≥ 10 %,
tree height ≥ 5 m

PALSAR/PALSAR-2
images

Decision
tree

25 m 2007–2010,
2015–2018

Shimada et al.
(2014)

SAR/
optical

PL-Forest Tree cover ≥ 10 %,
tree height ≥ 5 m

25 m PALSAR-2 and
30 m Landsat images in
2015–2017

Decision
tree

30 m 2015–2017 This study

contamination. One study suggested that the complementar-
ity of optical and synthetic aperture radar (SAR) datasets im-
proved the accuracy of forest maps in comparison to using
either an optical dataset or an SAR dataset (Lehmann et al.,
2015). For example, misclassification of the Landsat-based
forest maps could be caused by replanted areas with small-
or medium-sized trees or by regions with vegetation types
like highland scrub. However, these regions could be identi-
fied correctly by PALSAR data (Lehmann et al., 2015). Im-
proved forest maps have been reported in several studies by
using integrated PALSAR and Landsat data in tropical re-
gions (Reiche et al., 2015; Lehmann et al., 2015; Thapa et al.,
2014) and PALSAR and MODIS data in monsoon Asia and
other regions of the world (Zhang et al., 2019; Qin et al.,
2016a). However, the potential of combined PALSAR and
Landsat images to improve the annual forest area estimates
in the CONUS remains unclear.

In addition to annual forest maps, information on ever-
green forests and deciduous forests is important for forest
management and conservation. Many studies have shown
that the spatial distributions of evergreen and deciduous
forests have been changing and will continue to change in
the future, driven by multiple stressors involving climate
change, forest disturbance, land use change, and invasive
species (Soh et al., 2019; Mekonnen et al., 2019; Knott et al.,
2019). Accurate distribution information on evergreen and
deciduous forest types is also needed to reduce the uncer-
tainty in the carbon budgets (Deb Burman et al., 2021). With

the development of Earth observation technology, some ef-
forts have been made to produce forest-type datasets based
on multiple spaceborne and/or airborne images (Laurin et al.,
2016; Kushwaha, 1990). As an example, for study at the na-
tional or continental scale, the NLCD dataset provides the
nationwide distribution of deciduous, evergreen, and mixed
forests in the USA at 30 m spatial resolution for the years
2001, 2006, 2011, and 2016. The 50 m evergreen and decid-
uous forest map in 2010 was generated across monsoon Asia
using PALSAR and time series MODIS images (Qin et al.,
2016a). In addition, time series MODIS images have been re-
ported to improve the estimates of evergreen forests in tropi-
cal regions (Qin et al., 2019). As NLCD used multi-temporal
Landsat images to identify evergreen and deciduous forests,
time series Landsat images could improve the discrimination
and classification of evergreen and deciduous forests to sup-
port annual analyses in scientific research and policymaking
on forest ecosystems. To date, few efforts have been made to
produce annual maps of evergreen or deciduous forests over
temperate regions, despite their importance.

The United Nations Food and Agriculture Organization
(FAO) Global Forest Resources Assessment (FRA) has pro-
vided essential information for understanding the world’s
forest resources, management, and uses every 5 years since
1990 by assembling the forest data from individual countries
(Keenan et al., 2015). In an effort to improve annual forest
maps at a national scale to support the FAO FRA program,
this study had three objectives. The first objective was to de-
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Figure 1. The workflow of this study. It includes three major study sections and the detailed processes of each section in this study. HH,
HV, HH−HV, and HH/HV denote the horizontal–horizontal (HH) and horizontal–vertical (HV) polarization bands, together with two
composite layers of the difference (HH−HV) and the ratio (HH/HV). AOIs refer to the areas of interest used as calibration and validation
samples in this study. GFW-Forest, Landsat VCF-Forest, NLCD-Forest, JAXA-Forest, and FIA-Forest present the forest cover datasets that
have been released by the Global Forest Watch program of the World Resources Institute, the Landsat-based forest cover fraction product
from the Global Land Cover Facility Data Center at the University of Maryland, the National Land Cover Database from the United States
Geological Survey, the Japan Aerospace Exploration Agency forest maps, and the Forest Inventory and Analysis program managed by the
U.S. Department of Agriculture Forest Service.

velop annual forest maps and annual evergreen forest maps
in the CONUS by using both PALSAR-2 and Landsat im-
ages from 2015 to 2017. The second objective was to assess
and compare the resultant PALSAR-2/Landsat-based forest
(PL-Forest) maps with the major satellite-based forest cover
datasets by using the forest structure data (tree height and tree
canopy coverage), which were derived from the observations
of the Geoscience Laser Altimetry System (GLAS) on board
NASA’s Ice, Cloud, and land Elevation Satellite (ICESat-1).
This comparison with a large amount of lidar data will help
us understand the differences between the forest datasets un-
der the forest definition used by the FAO. The FAO defines
forests as lands of more than 0.5 ha with tree cover over 10 %
and tree height over 5 m (FAO, 2012). The third objective
was to report the PL-Forest maps at two administration lev-
els (state and CONUS) and compare them with the forest area
estimates from the FIA of the USDA Forest Service, which
are the primary data sources provided by the US government
for the FAO Global Forest Resources Assessment. This com-
parison will help us investigate the ability to combine the
PALSAR-2/Landsat approach and the FIA approach to sup-
port the Global Forest Resources Assessment at the national
scale.

2 Materials and methods

The workflow in Fig. 1 presents the three major study sec-
tions and the detailed processes of each section in this study.
First, we generated the annual forest maps and annual ever-
green and deciduous forest maps at 30 m spatial resolution
during 2015–2017 by integrating PALSAR-2 and Landsat

time series Normalized Difference Vegetation Index (NDVI)
data. Second, we compared the resultant PL-Forest maps
with other major satellite-based forest datasets in the study
period of 2015–2017. We assessed these forest maps fol-
lowing the FAO’s forest definition using the tree height and
canopy coverage data from the ICESat-1 lidar-based prod-
ucts. Third, we examined the performance of all the satellite-
based forest maps in forest area estimates by comparison
with the FIA statistical data at the state and national admin-
istration levels.

2.1 Study area

Our study area is the CONUS with an area of about
8.08× 106 km2, including the 48 states and Washington, DC.
About 50 % of the CONUS land cover change has involved
forests since 2001 (Homer et al., 2020). The CONUS has
large topographical variation from the eastern USA to the
western USA, as shown by the spatial distribution of topog-
raphy in the CONUS (Fig. 2a).

2.2 PALSAR-2 data in 2015–2017

The annual 25 m ALOS-2 PALSAR-2 mosaic data from 2015
to 2017 were collected on the Google Earth Engine (GEE)
platform (https://developers.google.com/earth-engine/
datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR,
last access: 18 March 2022). The PALSAR-2 horizontal–
horizontal (HH) and horizontal–vertical (HV) polarization
bands, provided by the Earth Observation Research Center
of JAXA, are slope-corrected, radiometrically calibrated,
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Figure 2. The spatial distributions of (a) the topography of the CONUS using the data from the United States Geological Survey’s 3D-
Elevation Program 10 m resolution digital elevation model (DEM). (b–d) The acquisition dates of PALSAR-2 images in a year during
2015–2017.

and orthorectified backscatters with a geometric accuracy
of around 12 m (Reiche et al., 2018). Figure 2b–d show
the acquisition dates of the PALSAR-2 mosaic images over
the CONUS, and most images were acquired from May
to October. The HH and HV bands were converted from
the amplitude values into gamma-naught backscattering
coefficients in decibels (γ °) using Eq. (1) (Shimada et al.,
2009, 2014; Chen et al., 2018).

γ °= 10× lnDN2
+CF, (1)

where γ ° is the backscattering coefficient using decibels as
the unit, DN is the digital number of amplitude images like
the HH or HV bands, and CF is a calibration factor with a
value of −83 dB. In addition, two composite layers, i.e., the
difference (HH−HV) and the ratio (HH/HV), were calcu-
lated as input data for forest mapping.

2.3 Landsat data in 2015–2017

We used all the Landsat-7 Enhanced Thematic Mapper
(ETM+) and Landsat-8 Operational Land Imager (OLI) sur-
face reflectance (SR) images from 2015 to 2017 to construct
a time series image data cube in GEE (https://developers.
google.com/earth-engine/datasets/catalog/landsat, last ac-
cess: 29 September 2024). This dataset provides multi-
spectral images at 30 m resolution, and the SR data were

derived from top-of-atmosphere (TOA) reflectance by the
atmospheric correction codes (Vermote et al., 2016). The
bad-quality observations with clouds, cloud shadows, snow
or ice, and scan-line-off strips were identified as NODATA
following the quality band (pixel_qa). The remaining good-
quality observations were used to calculate the vegetation
indices NDVI, Enhanced Vegetation Index (EVI), and Land
Surface Water Index (LSWI) for each image in the data cube
(Eqs. 2–4). Figure 3 shows the spatial distribution of annual
total good-quality observation numbers for individual pixels
over the CONUS from 2015 to 2017.

NDVI=
ρNIR− ρRed

ρNIR+ ρRed
, (2)

EVI= 2.5×
ρNIR− ρRed

ρNIR+ 6× ρRed− 7.5× ρBlue+ 1
, (3)

LSWI=
ρNIR− ρSWIR

ρNIR+ ρSWIR
, (4)

where ρBlue, ρRed, ρNIR, and ρSWIR are the surface
reflectance values of the blue (450–520 nm), red (630–
690 nm), near-infrared (760–900 nm), and shortwave-
infrared (1550–1750 nm) bands.
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Figure 3. Summary of the good-quality observation frequencies for individual pixels in a year over the CONUS using all Landsat images in
a year from 2015 to 2017.

Figure 4. The land cover samples for accuracy assessment in this study. These samples were from the global validation sample set released
by the researchers from Tsinghua University, China (http://data.ess.tsinghua.edu.cn/, last access: 20 February 2022) (Gong et al., 2013). They
were revised by excluding the samples with land cover change according to the Google Earth images. Forest_NL, Forest_BL, and Forest_ML
denote needle-leaved forest, broad-leaved forest, and mixed-leaved forest, respectively.
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Figure 5. The ICESat samples in the CONUS. (a) Spatial distribution of ICESat-1 samples. (b) Histogram of canopy height (m) and canopy
coverage (%) for the ICESat-1 samples.

2.4 Sample data for accuracy assessment of forest
maps

The accuracy of the annual PL-Forest maps was assessed
based on the global validation sample set released by re-
searchers from Tsinghua University, China (http://data.ess.
tsinghua.edu.cn/, last access: 20 February 2022) (Gong et al.,
2013). This validation dataset was generated using a random
sampling strategy and visual interpretation method for the
Finer Resolution Observation and Monitoring-Global Land
Cover (FROM-GLC) (Gong et al., 2013). As the validation
samples were generated in 2013, in this study we double-
checked the land cover types of all the samples by visual in-
terpretation of the Google Earth images during 2015–2017.
We deleted those samples with land cover changes (e.g., from
forest to non-forest or from non-forest to forest), and thus a
total of 652 forest samples were kept for this study. Finally, a
total of 1958 points were used for the validation of the resul-
tant forest maps, which include 652 forests, 285 croplands,
431 grasslands, 205 shrublands, 95 water bodies and wet-
lands, 46 impervious surfaces, and 244 barren lands (Fig. 4).

2.5 Canopy height and canopy coverage data from
ICESat lidar

To assess the PL-Forest maps and other forest maps in terms
of forest structure traits (canopy height, canopy coverage)
that are used in the forest definition of the FAO, we used the
ICESat global canopy coverage and height dataset to gen-
erate samples of (1) forest canopy height (m) and (2) forest
canopy coverage (%). This ICESat dataset was derived based
on the observations from GLAS on board NASA’s ICESat-1
with a footprint of about 65 m in diameter (Tang et al., 2019).
The ICESat mission acquired lidar data over the globe during
2003–2009. The ICESat-based tree canopy cover products
provide improved information to characterize biome-level
gradients and canopy cover almost without bias at the foot-
print level (Tang et al., 2019). There are more than 550 000

laser footprints from ICESat-1 over the CONUS (Fig. 5).
This is the only available dataset that can be used to assess the
structural characteristics of the forests extracted by the forest
cover products in the study period of 2015–2017. The im-
age acquisition years differ between the ICESat data (2003–
2009) and the PALSAR-2/Landsat data (2015–2017), which
may cause small uncertainties in the assessment results. A
pixel has three scenarios in terms of forest or not in these
two time periods (2003–2009 vs. 2015–2017): (1) as forest in
both 2003–2009 and 2015–2017, (2) as forest in 2003–2009
but not in 2015–2017 (forest loss due to deforestation), and
(3) as forest in 2015–2017 but not in 2003–2009 (forest gain
due to reforestation or afforestation). For those pixels that
were forest in both 2003–2009 and 2015–2017 (scenario no.
1), as the canopy height (CH) and canopy coverage (CC) of
a forest stand are likely to increase over the years, using CH
and CC data in 2003–2009 may underestimate the number of
pixels meeting the FAO’s forest definition. Those pixels that
were forest in only one period of 2003–2009 or 2015–2017
(scenario no. 2 or 3) were not evaluated in the assessment.
In addition, the differences in image acquisition years would
not affect the results of intercomparison between different
forest cover products.

2.6 Satellite-based forest cover products for
intercomparison

We used four forest cover products derived from analyses
of satellite images at a high spatial resolution (≤ 30 m) for
intercomparison with our PL-Forest maps: the forest product
in 2010 from the GFW program of the World Resources
Institute, the Landsat-based forest cover fraction product
in 2015 from the Global Land Cover Facility Data Center
at the University of Maryland (Landsat VCF), the NLCD
product in 2016, and the JAXA forest maps in 2015–2017
(JAXA-Forest) (Fig. 6). The GFW tree canopy cover product
in 2010 at 30 m resolution was generated by using decision
tree algorithms and multi-temporal Landsat images (https:
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Figure 6. Forest distribution in the CONUS from four forest data products, (a–c) Landsat-based and (d–f) PALSAR-2-based forest products
during 2015–2017. GFW-Forest in 2010 presents the forest cover map in 2010 from the Global Forest Watch program of the World Resources
Institute. Landsat VCF-Forest in 2015 presents the Landsat-based forest cover fraction product from the Global Land Cover Facility Data
Center at the University of Maryland. NLCD-Forest in 2016 presents the forest cover map in 2016 from the National Land Cover Database.
JAXA-Forest in 2015–2017 refers to the Japan Aerospace Exploration Agency forest maps from 2015 to 2017.

//www.glad.umd.edu/dataset/global-2010-tree-cover-30-m,
last access: 1 May 2021) (Hansen et al., 2013). The Landsat
VCF product in 2015 is a global tree cover percentage
dataset and can be downloaded from the Land-Cover
and Land-Use Change Program (https://lcluc.umd.edu/
metadata/global-30m-landsat-tree-canopy-version-4, last
access: 5 May 2021). It is generated by using a regres-
sion tree model to rescale the 250 m MODIS VCF tree
cover layer to 30 m (Sexton et al., 2013). The Landsat-
based NLCD in 2016 provides land cover information at
30 m resolution over the CONUS with an accuracy of 83 %
(https://www.mrlc.gov/data/nlcd-2016-land-cover-conus,
last access: 9 May 2021) (Homer et al., 2020). This
product has three forest types, i.e., deciduous forest, ev-
ergreen forest, and mixed forest, which were included
in the NLCD-Forest map in this study (Homer et al.,

2020). The 25 m annual JAXA-Forest maps from 2015
to 2017 were produced by using the PALSAR-2 mosaic
data and a decision tree method and are available at https:
//www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.html,
last accessed on 12 May 2021 (Shimada et al., 2014).
JAXA-Forest used the FAO’s forest definition. So, similarly,
for the tree cover products of GFW and Landsat VCF, we
selected the pixels with tree canopy coverage greater than
10 % as forests to generate the GFW-Forest and Landsat
VCF-Forest maps.

2.7 Forest cover data from an in situ field inventory for
intercomparison

The forest area statistical data for the year 2017 at the county
scale were also used for comparison analysis (FIA-Forest).
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This statistical dataset comes from the USDA Forest Ser-
vice FIA program (https://www.srs.fs.usda.gov/pubs/57903,
last access: 10 May 2021) and is widely used in the studies
of forests in the CONUS (Domke et al., 2021; Burrill et al.,
2021; Hoover et al., 2020). The definition of the forest land
condition is that it is larger than 0.4 ha (1.0 acre) in size, is
greater than 37 m (120.0 ft) in width, and has at least 10 %
canopy cover by live tally of trees of any size at present or
in the past (Burrill et al., 2021). Forest land also includes
(1) the transition zones, such as areas between forest and
non-forest (F/NF) lands that meet the minimal tree canopy
cover and forest areas; (2) the strips of roadside, streamside,
and shelterbelt trees continuously wider than 37 m (120 ft)
and longer than 111 m (363 ft); and (3) the unimproved roads,
trails, streams, and clearings in forest areas less than 37 m in
width or less than 0.4 ha in size. Forest land does not include
tree-covered regions in agricultural production settings like
orchards or urban areas like city parks (Burrill et al., 2021).
The accuracy standard for forest area in the FIA program is
to meet the mandated sampling error of no more than 3 %
per 4047 km2 (1 million acres) of timberland (Burrill et al.,
2021). This is the critical data source provided by the US
government for the FAO’s Global Forest Resources Assess-
ment and for resource managers and the public to manage
and utilize the forest resources of the USA.

2.8 PALSAR-2/Landsat-based annual forest maps in
2015–2017

The advantages of L-band ALSO-2 PALSAR-2 data in pen-
etrating the tree canopy to interact with tree branches and
trunks lead to higher-volume backscatter signals from forests
than from other land cover types (e.g., grasslands, shrub-
lands, croplands, and water bodies). However, some natu-
ral surfaces (e.g., rocky lands) or artificial structures (e.g.,
buildings) also have high backscatter signals, which could
easily cause commission errors in the PALSAR/PALSAR-2-
based forest signature analysis (Qin et al., 2017). As these
land cover types have low NDVI values, they can be tracked
and identified by optical images. According to this knowl-
edge, we developed a two-step forest mapping approach by
integration of PALSAR or PALSAR-2 images with optical
(e.g., MODIS or Landsat) images in our previous studies,
such as in South America (Qin et al., 2017), Asia (Qin et al.,
2016a), and Australia (Qin et al., 2021). However, these pre-
vious studies were mainly conducted at a lower spatial reso-
lution (e.g., 50 m by PALSAR and MODIS) or attempted for
limited spatial scales using PALSAR/PALSAR-2 and Land-
sat images. The performance of the integrated datasets of
PALSAR-2 and Landsat is still unclear for monitoring an-
nual dynamics of forest distributions and forest functional
types over temperate regions at a higher spatial resolution of
30 m.

In this study, we used the same workflow (Qin et al.,
2016b) to identify and map forest cover in the CONUS. First,

we identified forest pixels by using 25 m PALSAR-2 im-
ages and the threshold-based algorithm. A pixel is classified
as forest if its PALSAR-2 data satisfy −19≤HV≤−7.5,
0≤ difference≤ 9.5, and 0.2≤ ratio≤ 0.95. The thresholds
for the 25 m PALSAR-2 images had been slightly adjusted
from those for the 25 m PALSAR data based on our previ-
ous studies on PALSAR and PALSAR-2 signature analyses
of F/NF samples (Qin et al., 2016b; Chen et al., 2018). A
5× 5 window median filter was applied to decrease the po-
tential noise (e.g., salt-and-pepper noise) on the PALSAR-
based F/NF maps. These resultant 25 m F/NF maps were re-
sampled to 30 m to match the spatial resolution of Landsat
images. Forests usually have a high leaf area index (LAI;
larger than 3 m2 m−2), but rocky lands, barren lands, and
built-up surfaces have no or little green vegetation in a year.
Due to the LAI and NDVI being closely related to each
other, the NDVI value of 0.7 or so usually represents the
range of 1–2 m2 m−2 of the LAI depending on the vegetation
types, which can be used to identify forest and eliminate the
commission errors in the PALSAR/PALSAR-2-based forest
maps (Qin et al., 2016b). Here we generated the maximum
NDVI layers from all the available Landsat images in each
year (January to December) during 2015–2017 and applied
the threshold of NDVImax> 0.7 to the layers to generate the
NDVImax masks and extract the pixels covered by green veg-
etation. The annual 30 m forest map was produced by over-
laying the PALSAR-2-based forest maps and the Landsat-
based NDVImax mask layers.

Post classification, a temporal and logical consistency
check was performed on these 3-year F/NF maps to reduce
the noise or misclassification in the F/NF sequence (Chen
et al., 2018; Qin et al., 2016b). For each pixel in the an-
nual F/NF time series maps from 2015 to 2017, the reason-
able forest dynamics were NNN, FNN, NNF, FFF, NFF, and
FFN (N denotes non-forest and F denotes forest). The NFN
and FNF sequences were considered unreasonable and repro-
cessed as sequences of NNN and FFF, respectively. This 3-
year consistency check during 2015–2017 gives higher con-
fidence to the annual forest map in 2016, and we will use it
for intercomparison and forest area estimates at the county,
state, and CONUS scales. Thus, the annual PL-Forest maps
were generated based on the PALSAR-2/Landsat images in
this study.

2.9 PALSAR-2/Landsat-based annual evergreen forest
maps in 2015–2017

Evergreen trees have green leaves all year round, but de-
ciduous trees usually shed their leaves in winter or in dry
seasons. These leaf phenological profiles can be captured
by the satellite-based vegetation indices (i.e., NDVI, EVI,
and LSWI) to distinguish between evergreen and deciduous
forests (Qin et al., 2016a; Prabakaran et al., 2013). Based on
the characteristics of forest canopy phenology and vegetation
indices, we have developed a simple and robust algorithm
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to map evergreen forests by analyzing the time series water-
related index (LSWI) and greenness-related indices (EVI and
NDVI). The green leaves of evergreen forests have positive
LSWI values all year round and relatively high EVI values
in winter and/or dry seasons, and thus the seasonal profile
analysis of LSWI and EVI was used to identify evergreen
forests (Qin et al., 2016a). The same approach was used to
generate the annual maps of evergreen vegetation using the
criteria of pixels with (1) LSWI≥ 0 for all good observa-
tion images in a year and (2) a minimum EVI (EVImin) of
no less than 0.2 identified as evergreen cover. This rule can
be characterized by the frequency of LSWI≥ 0 (FQLSWI≥0)
for all good observations in a year and EVImin using the
decision thresholds (FQLSWI≥0= 100 % and EVImin≥ 0.2).
Here, FQLSWI≥0 was calculated using the number of obser-
vations with LSWI≥ 0 (NLSWI≥0) over the number of good-
quality observations (NGOBs) in a year for individual pixels
(Eq. 5). Finally, we overlaid our annual 30 m PL-Forest map
with the evergreen vegetation layer to identify the annual
evergreen forests (called PL-Evergreen Forest maps in this
study). Thus, evergreen forests refer to forest land with green
leaves throughout the year, with a tree canopy height greater
than 5 m and a tree canopy cover larger than 10 %. In this
study, both the forests and evergreen forests include natural
and artificial forests that meet the requirements (Qin et al.,
2024). Meanwhile, as the evergreen forests were extracted
based on the greenness signature observed by the satellite im-
ages, this map includes both needle-leaved and broad-leaved
evergreen forests that meet the requirements.

FQLSWI≥0 =
NLSWI≥0

NGOBs
× 100 (5)

2.10 Validation

The resultant PL-Forest maps in 2015–2017 were validated
using the samples generated by the researchers from Ts-
inghua University, China (Gong et al., 2013) (Fig. 4). We
overlaid the samples and the resultant PL-Forest maps to cal-
culate the confusion matrix and assess the user, producer, and
overall accuracies.

2.11 Cross-comparison between forest-related products

We selected the five forest cover data products at 25 or 30 m
spatial resolution to perform the intercomparison analysis at
three spatial scales: (1) assessment of forest or non-forest
identification with forest height and canopy coverage data at
the pixel scale, (2) forest area estimates at the state scale, and
(3) forest area estimates at the CONUS scale.

Firstly, to understand the differences in terms of forest
structure measurements in the PALSAR-2-based, Landsat-
based, and PL-Forest maps, we overlaid the ICESat-1 sam-
ples and individual forest products to identify those forest
pixels that geographically correspond to the ICESat-1 sam-
ples and gather their information on the attributes of forest

canopy height and canopy coverage. In this process, all the
forest products were resampled into 70 m to match the foot-
print size of ICESat-1. Then, the distributions of the forest
pixels were analyzed with the canopy height and canopy cov-
erage for individual forest maps by using 1-D histogram and
2-D histogram graphs.

Secondly, we compared our PL-Forest-based forest maps
with the five selected forest datasets in terms of forest areas
at the state scale. All the forest maps were reprojected into
equal-area projection before the forest areas were calculated
from individual maps. The linear regression approach was
used to show the relationships between these forest datasets
for forest areas at the state level.

Thirdly, the forest area estimates at the national level were
directly compared amongst themselves. Based on the repro-
jected forest maps, the forest areas were calculated in the
CONUS region from each individual map. The results for
the forest area of the CONUS were compared amongst them-
selves.

3 Results

3.1 Annual PALSAR-2/Landsat-based forest and
evergreen forest maps in 2015–2017

The PL-Forest maps show the annual forest distribution in
the CONUS from 2015 to 2017 (Fig. 7a–c). At the pixel level,
we calculated the frequency of individual pixels covered by
forest in 2015–2017 (Fig. 7d): 79 % of the forest pixels have
consistent forest cover from 2015 to 2017 with a frequency of
3, which is much larger than the proportions of forest pixels
with 1 year (11 %) or 2 years (10 %) of forest cover. The for-
est dynamics from 2015 to 2017 are shown in Fig. 7e and f.
They suggest that more forest decreases than increases, espe-
cially in the central regions.

Based on the validation samples (Fig. 4), the accuracies
of the PL-Forest maps were high and varied slightly for the
years 2015 to 2017: the overall accuracies were ∼ 93 %, the
user accuracies were 87.6 % to 95.8 %, and the producer ac-
curacies were 90.6 % to 91.9 % (Table 2). The forest map in
2016 had a slightly higher accuracy than in 2015 and 2017,
which was expected because the temporal and logical consis-
tency check was implemented on the resultant map of 2016
to reduce the noise or misclassification in the F/NF sequence
of 2015 to 2017 (see Sect. 2.7). The accuracies were compa-
rable to the PALSAR-based forest maps that reported over-
all accuracies exceeding 91 % (Shimada et al., 2014). In de-
tail, the accuracies of the PL-Forest maps in 2016 were esti-
mated at different altitudes of 0–500, 500–1000, 1000–2000,
and 2000–4000 m (Table 3). The results showed that the ar-
eas with altitudes lower than 2000 m have user and producer
accuracies greater than 88 % and overall accuracies greater
than 91 %. The areas with altitudes higher than 2000 m have
slightly lower user (78.3 %), producer (76.6 %), and over-
all (87.8 %) accuracies. Additionally, we examined the po-
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Figure 7. Annual forest maps in 2015–2017 based on PALSAR-2 and Landsat images (PL-Forest): (a) PL-Forest in 2015, (b) PL-Forest in
2016, and (c) PL-Forest in 2017. (d) The forest frequency map was generated based on the PL-Forest maps in 2015–2017. The colors red,
blue, and green denote the numbers of a specific pixel classified as forest in the annual PL-Forest maps from 2015 to 2017. (e) The decreased
forest in 2015–2017. (f) The increased forest in 2015–2017.

tential of PL-Forest in 2016 to exclude the impacts of the
burned area by overlaying a MODIS burned-area product and
the forest map (Fig. 8). The results showed that there were
6 845 692 pixels covered by burned areas, and 713 003 pixels
were identified as forests in the resultant PL-Forest map in
2016 with a proportion of about 10.4 %. However, this num-
ber may not accurately represent the commission error, as the
burned forest may not be fully dead and could regrow again.

Based on the PL-Forest maps, we further generated an-
nual PL-Evergreen Forest maps in the CONUS during 2015–
2017 (Fig. 9a–c). These PL-Evergreen Forest maps have spa-
tial patterns that are similar to the evergreen forests in the
NLCD dataset in 2016 (Fig. 9d). Evergreen forests show ob-
vious regional characteristics and are mainly distributed in
the western, southeastern, and northeastern regions of the
CONUS. The evergreen forest area estimated from the PL-

Evergreen Forest map in 2016 was 1.08× 106 km2, which is
higher than that of the evergreen forests of 0.92× 106 km2

but lower than the total area of evergreen forests and mixed
forests of 1.22× 106 km2 from NLCD in 2016 (Fig. 9a–
d). The spatial comparison between these two products was
carried out at the pixel scale (Fig. 9e). The noticeable dis-
crepancies were in the southwestern regions (e.g., Nevada,
Utah, or Arizona), southern Florida, and some regions in the
northeastern CONUS. In the southwestern regions, the dif-
ferences were mainly from the detection of evergreen and
non-evergreen forests between these two products. For the
eastern regions (e.g., southern Florida and the New Eng-
land states), the differences between these two products were
mostly caused by the detection of forests, as most of the ev-
ergreen forest pixels on the PL-Evergreen Forest map were
shown as non-forest on the NLCD map (Fig. 9e). At the state
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Figure 8. Distribution of burned areas overlaid with the PALSAR-2/Landsat-based forest (PL-Forest) map in 2016. The burned area in 2016
was generated from the MODIS Burned Area Monthly Global 500 m products (MCD64A1.061). If a pixel was burned in any month, it was
considered a burned area in 2016.

Table 2. Accuracy assessment of annual PALSAR-2/Landsat-based forest maps in 2015–2017 (PL-Forest) based on the validation samples
(Fig. 4). The user (UA), producer (PA), and overall (OA) accuracies are shown.

PL-Forest Reference UA PA OA

classifications Forests Non-forests Total (%) (%) (%)

2015 Forests 596 84 680 87.6 91.4 92.8
Non-forests 56 1222 1278 95.6 93.5

Total 652 1306 1958

2016 Forests 599 81 680 88.1 91.9 93.2
Non-forests 53 1225 1278 95.8 93.8

Total 652 1306 1958

2017 Forests 591 84 675 87.6 90.6
Non-forests 61 1222 1283 95.2 93.5

Total 652 1306 1958

scale, the PL-Evergreen Forest map in 2016 had a good lin-
ear relationship with the evergreen forests of NLCD in 2016,
with a slope of 0.8 and R2 of 0.54 (Fig. 9f). A stronger rela-
tionship was found between the evergreen forest areas from
the PL-Evergreen Forest map in 2016 and the sum of ever-
green forests and mixed forests from NLCD in 2016 at the
state scale, with a slope of 0.98 and R2 of 0.69 (Fig. 9f).
One possible explanation could be that the mixed forests in
NLCD include evergreen species (Selkowitz and Stehman,

2011). However, this cannot be estimated quantitatively be-
cause it is uncertain about the forest types and proportions
within the mixed forest pixels (Tran et al., 2016).

3.2 A comparison of five satellite-based forest maps at
the pixel scale

At the pixel scale, we compared PL-Forest and JAXA-Forest
in 2016 in terms of forest area identification (Fig. 10). These
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Table 3. Accuracy assessment of the PALSAR-2/Landsat-based forest map in 2016 (PL-Forest) with different elevations (m a.s.l.) based on
the validation samples (Fig. 4). The UA, PA, and OA accuracies are shown.

Elevation levels PL-Forest Reference UA PA OA

(m) classifications Forests Non-forests Total (%) (%) (%)

0–500 Forests 441 58 499 88.4 94.0 91.2
Non-forests 28 555 583 95.2 90.5

Total 469 613 1092

500–1000 Forests 70 6 76 92.1 90.9
Non-forests 7 234 241 97.1 97.5

Total 77 240 317

1000–2000 Forests 52 7 59 88.1 88.1
Non-forests 7 321 328 97.9 97.9

Total 59 328 387

2000–4000 Forests 36 10 46 78.3 76.6
Non-forests 11 115 126 91.3 92.0

Total 47 125 172

two products have about 75 % of their pixels in agreement,
11 % of them only being identified by JAXA-Forest and
14 % of them only being identified by PL-Forest. Compar-
ison through zoomed-in random samples showed that some
pixels with obvious backgrounds of barren lands or rocks
have been classified as forests in JAXA-Forest, which were
excluded in PL-Forest. However, over the regions with dense
tree cover, there are more omission errors in the JAXA-Forest
map than were identified in the PL-Forest map (Fig. 10).

We further compared the five studied satellite-based forest
data products in terms of their forest definitions of canopy
(tree) height and canopy coverage. The frequency distribu-
tions of the forest pixels with CH and CC were extracted
from different forest products using ICESat-1 observations
(Fig. 11). The comparison result showed that the proportion
of forest pixels with CH more than 5 m and CC more than
10 % was 85 % for NLCD-Forest in 2016, ∼ 82 % for the
PL-Forest maps, 81 % for the JAXA-Forest maps, 80 % for
the GFW-Forest maps in 2010 (79.98 %), and 77 % for the
Landsat VCF-Forest maps in 2015.

3.3 A comparison of forest area estimates from six
forest datasets at the state and CONUS scales

The forest areas were estimated at the state and CONUS
scales from the six forest datasets, including five satellite-
based forest maps in 2010–2017 and FIA statistical data in
2017 (Fig. 12). At the state scale, the PL-Forest maps have
good linear relationships with other satellite-based datasets
for each year during 2015 to 2017, with the slope ranging
from 0.65 to 1.15 and R2 from 0.87 to 0.96 (Fig. 12a–c). In
terms of forest area estimates at the state scale, the PL-Forest

and JAXA-Forest maps showed higher agreements with the
FIA-Forest dataset than do GFW-Forest 2010, Landsat VCF-
Forest 2015, and NLCD-Forest 2016 (Fig. 12d). The forest
area estimates from Landsat VCF-Forest 2015 were higher
than the FIA-Forest area estimates (slope of 1.19), while the
forest area estimates from GFW-Forest 2010 and NLCD-
Forest 2016 were lower than the FIA-Forest area estimates
(slopes of 0.89 and 0.71) (Fig. 12d). The forest area estimates
from the PL-Forest and JAXA-Forest maps were very close
to the numbers from FIA-Forest (slope of 0.98).

At the CONUS scale, the forest area estimates from the
PL-Forest maps for the years 2015 to 2017 were 2.73× 106,
2.79× 106, and 2.66× 106 km2, respectively, and were sim-
ilar to the areas of the JAXA-Forest maps of 2.79× 106,
2.68× 106, and 2.62× 106 km2 (Fig. 12e). The FIA-Forest
dataset reported a forest area of 2.57× 106 km2 in 2017,
which was very close to the value of 2.66× 106 km2 from
the PL-Forest map in 2017 (a difference of 3.5 %).

3.4 Discussion

3.5 Improved annual forest maps at high spatial
resolution

To improve the accuracy of the forest cover maps, several
efforts have examined the likely factors causing the uncer-
tainties of the resultant products (Sexton et al., 2016; Sexton
et al., 2013; Tchuenté et al., 2011; Qin et al., 2016a). These
factors include (1) the diverse forest cover definitions, (2) in-
put image datasets, (3) training samples, and (4) algorithms
(Qin et al., 2021; Tchuenté et al., 2011). For example, the
forest definitions use different criteria for tree coverage (from
10 % to 60 %), tree height (from 2 m to 5 m), and parcel size
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Figure 9. Spatial distributions of evergreen forests in the CONUS. (a–c) Annual evergreen and non-evergreen forest maps generated from
the PALSAR-2/Landsat (PL) images in 2015–2017. (d) The forest-type map from the National Land Cover Database (NLCD) in the 2016
dataset. Panel (e) shows the consistency between PL-Evergreen Forest in 2016 and NLCD-Evergreen Forest in 2016. The abbreviations are
Evergreen Forest (EF), PL-Evergreen Forest in 2016 (PL), Mixed Forest (MF), Non-Forest (NF), Deciduous Forest (DF), and Non-Evergreen
Forest (NEF). Panel (f) shows the comparison between PL-Evergreen Forest, NLCD-Evergreen Forest, NLCD-Evergreen, and Mixed Forest
in 2016 at the state scale using linear regression analysis.

(Qin et al., 2016a; Sexton et al., 2016). To reduce the uncer-
tainty in the forest maps from the perspective of forest defini-
tion, a solution was proposed by Sexton et al. (2016) to focus
on the measurable ecological characteristics of tree cover,
canopy height, biomass, and composition of vegetation. This
study provided a comprehensive assessment through inter-
comparison with the widely used forest products using the
FAO’s forest definition and the lidar-based forest structural
data (CC and CH) as references. The comparison between
forest datasets suggested that PL-Forest had a slightly higher
percentage of pixels than JAXA-Forest, GFW-Forest 2010,
and Landsat VCF-Forest 2015, in line with the FAO’s forest
criteria of tree heights greater than 5 m and/or canopy cov-

ers larger than 10 %. By this criterion, NLCD-Forest 2016
had the highest pixel proportion, but this dataset used a
tree canopy cover larger than 20 % as the forest threshold
that resulted in the lowest forest area estimate (Fig. 12e).
The comparison results based on the PL-Forest maps agree
well with our recent study on forest mapping in Australia,
which demonstrated that the PALSAR/MODIS forest maps
had more forest pixels satisfied with the FAO’s forest defini-
tion than the GFW-Forest and JAXA-Forest maps (Qin et al.,
2021).

Forest cover products have been generated based on op-
tical images (e.g., MODIS or Landsat), microwave images
(e.g., PALSAR or PALSAR-2), or integration of microwave
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Figure 10. A comparison between the PALSAR-2/Landsat-based forest (PL-Forest) map in 2016 and the Japan Aerospace Exploration
Agency forest (JAXA-Forest) map in 2016 at the pixel scale. Six random areas denoted as “a” to “f” were selected from the disagreement
regions, which were used to show the zoomed-in landscapes from the Google Earth high-resolution images. The images were acquired from
Google Earth Pro (©Google Earth Pro 2020).

and optical images (e.g., PALSAR/MODIS or PALSAR/-
Landsat). For the forest area estimates, under a consistent
tree canopy cover definition (10 %), the PL-Forest products
had results close to the JAXA-Forest (i.e., PALSAR-2-based
forest) maps for the years 2015 to 2017 at both the state
and national scales (Fig. 12). The forest area estimates in
2017 from the PL-Forest dataset were very close to the re-
sult from the FIA-Forest dataset, which indicates that the
PL-Forest dataset is more accurate than the forest area es-
timates from the other optical satellite-based forest prod-
ucts (Fig. 12e). One of the reasons for the improved accu-
racy could be the utilization of PALSAR-2 images, which
(1) are less affected by atmospheric conditions, clouds, and
cloud shadows than optical data and (2) have stronger pene-
tration capability into forest canopy with more sensitivity to
forest structure (Shimada et al., 2014). Our previous studies
also showed similar forest area estimates from the PALSAR/-
MODIS or PALSAR/Landsat forest products and the JAXA-
Forest maps in several regions like monsoon Asia (Qin et al.,
2016a) and South America (Qin et al., 2017). For example,
in South America, forest area estimates from the 30 m GFW-
Forest 2010 dataset were higher than those from the 50 m
PALSAR/MODIS forest products (Qin et al., 2017). In addi-
tion, GFW-Forest in 2010 and Landsat VCF-Forest in 2015
present the forest cover in the CONUS in the years 2010 and
2015. The inconsistent time with FIA-Forest in 2017 may
contribute to some discrepancies between them that would
be difficult to quantify.

The results mentioned above also suggested that PL-Forest
had a slightly better performance than the other four forest
products, according to the potential of forest tree height and
tree canopy cover monitoring, and forest area estimates. This
result corroborates the previous claims for integrating mi-
crowave and optical images to improve forest cover maps
(Reiche et al., 2015; Lehmann et al., 2015; Thapa et al.,
2014). These forest mapping approaches take advantage of
(1) the sensitivity of microwave signals to forest structures
without weather interference (Næsset et al., 2016; Qin et al.,
2016a) and (2) the optical signals to reduce the number of
ground objects with backscatter values similar to those of
forests, such as rocky lands and buildings (Reiche et al.,
2015; Lehmann et al., 2015) (Fig. 10). The integration of
PALSAR and MODIS images has been demonstrated to gen-
erate improved forest maps in tropical, temperate, and bo-
real forests with overall accuracies above 90 % (Zhang et al.,
2019; Qin et al., 2017, 2016a). This study produced forest
maps with an overall accuracy of about 93 %, which corrob-
orated the potential of combining PALSAR-2 and Landsat
observations to monitor the annual dynamics of forest dis-
tributions and functional types at a high spatial resolution for
national or larger scales across temperate regions. It also sug-
gested the potential of integrating FIA data and PL-Forest
products to support the FAO’s Global Forest Resources As-
sessment at the national scale.

However, there could be some uncertainties and limi-
tations when applying this approach. Firstly, although the
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Figure 11. The frequency distributions of the forest pixels with tree canopy height (CH) and canopy cover (CC) features. The forest pixels
were from the five satellite-based forest products. The CH and CC data were extracted from the ICESat-1 observations. PL-Forest is the
PALSAR-2/Landsat-based forest map generated in this study. JAXA-Forest is the Japan Aerospace Exploration Agency forest map from
2015 to 2017. GFW-Forest 2010 is the forest map in 2010 from the Global Forest Watch program of the World Resources Institute. Landsat
VCF-Forest 2015 is the Landsat-based forest cover fraction product in 2015 from the Global Land Cover Facility Data Center at the University
of Maryland. NLCD-Forest 2016 refers to the forest map from the National Land Cover Database in 2016 provided by the United States
Geological Survey.

thresholds of PALSAR-2 signatures for extracting forests
were trained by numerous samples, they could have been
impacted by forest composition and structures (Chen et al.,
2018). Thus, a careful study of the thresholds using samples
of specific areas could provide more information that affects
the accuracy and uncertainty of the forest maps when ap-
plying the algorithms to other regions. In addition, due to
the PALSAR data not being available during 2011–2014, we
cannot apply this PALSAR/optical data approach in these 4
years. PALSAR data are available for 2007–2010, and thus
a combination of PALSAR (2007–2010), PALSAR-2 (2015
to present), and optical images would develop forest maps to
monitor forest changes since 2007 (Zhang et al., 2019).

3.6 Evergreen forest mapping algorithms

Evergreen forests show different functional traits from decid-
uous forests, such as water use efficiency (Soh et al., 2019)
and high ecosystem stability in carbon sinks in extreme cli-
mates (Huang and Xia, 2019). Driven by climate change and
diverse human activities, the expansion of evergreen forests

has been reported in many regions all over the world (Twid-
well et al., 2016; Saintilan and Rogers, 2015). Various map-
ping algorithms have been developed to identify evergreen
and non-evergreen forests, which could provide accurate in-
formation on evergreen forests for science and policy users
(Qin et al., 2016a). These evergreen forest mapping algo-
rithms can be grouped as (1) NDVI-based and (2) LSWI-
based algorithms. Evergreen plants keep green leaves in the
winter season or dry season and yield high NDVI values,
in contrast to senescent plants. Following this phenological
feature, evergreen plants and forests were successfully sep-
arated from non-evergreen plants based on the seasonal dy-
namics of the NDVI, e.g., using mean or median NDVI val-
ues of the winter season (Qin et al., 2016a; Soudani et al.,
2012). Evergreen forests have LSWI values of above zero
throughout the year, which have been used to map evergreen
forests for tropical regions (Qin et al., 2016a; Grogan et al.,
2016). In this study, the LSWI-based algorithm was used to
identify the evergreen forests in the CONUS, and the results
have reasonable consistency with the NLCD 2016 evergreen
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Figure 12. Comparisons of forest area estimates between satellite-based forest products and FIA statistics at the state and national scales. PL-
Forest is the annual PALSAR-2/Landsat-based forest map in 2015–2017 generated in this study. JAXA-Forest maps are the Japan Aerospace
Exploration Agency forest maps from 2015 to 2017. GFW-Forest 2010 is the forest map in 2010 from the Global Forest Watch program of the
World Resources Institute. Landsat VCF-Forest 2015 is the Landsat-based forest cover fraction product in 2015 from the Global Land Cover
Facility Data Center at the University of Maryland. NLCD-Forest 2016 refers to the forest map from the National Land Cover Database in
2016 provided by the United States Geological Survey. FIA-Forest 2017 presents the forest cover datasets from the Forest Inventory and
Analysis program in 2017.

forest product (Fig. 9). This demonstrated the potential of
the LSWI-based algorithm for evergreen forest identification
over temperate regions based on Landsat datasets.

The moderate discrepancy in the evergreen forest prod-
ucts between the PL-Forest maps and the NLCD dataset in
2016 could be attributed in part to the differences in the algo-
rithms and image data. The NLCD products were generated
using the decision tree algorithm and multi-temporal images
(Jin et al., 2019). The classification algorithm is based on
the spatial statistics of images (image-based spatial statistics)
and training samples to generate classification rules. There-
fore, the resultant forest maps are affected by the quantity
and quality of the training samples. In comparison, we used
the LSWI-based algorithm and time series images in a year to
identify forests for individual pixels, which used pixel-based
time series statistics. Our method used all the images in a
year, which are more than the multi-temporal images used
in the image-based spatial statistical approach. A challenge
for the LSWI-based algorithm is to acquire a sufficient num-
ber of good-quality observations throughout the year, partic-
ularly during the winter season. As Landsat acquires images
in a 16 d revisit cycle, the missing data issue could cause
some uncertainties in the PL-Evergreen Forest maps. How-

ever, this data issue could be improved by combining multi-
source remote sensing images like Sentinel-2, Landsat-8, and
Landsat-9 in the future. To improve the evergreen forest map-
ping, the development of a hybrid approach of both LSWI-
and NDVI-based algorithms is another promising way, which
will be examined in our following works for discrimination
between evergreen and deciduous trees, shrubs, and grasses.

4 Data availability

The data are available at https://doi.org/10.6084/m9.figshare.
21270261 (Wang, 2024).

5 Conclusions

This study integrated microwave (PALSAR-2) and optical
(Landsat) images and produced annual forest maps in 2015–
2017 for the CONUS at 30 m spatial resolution with im-
proved accuracy. Furthermore, we generated the annual 30 m
evergreen forest maps in the CONUS, which can be used
to investigate how climate change and human activities af-
fect these forest types in the CONUS. In addition, following
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the FAO’s forest definition, we compared the widely used
Landsat-based, PALSAR-2-based, and PALSAR-2/Landsat-
based forest cover products in the characterization of forest
structure metrics (CC and CH) by using the ICESat lidar tree
structure datasets. We also compared the satellite-based for-
est cover products and the FIA statistical data in the forest
area estimates. The comprehensive intercomparison with a
wide range of products provides insights for applying appro-
priate products for relevant research and management activi-
ties.
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