Articles | Volume 16, issue 6
https://doi.org/10.5194/essd-16-2701-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-2701-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multifrequency radar observations of marine clouds during the EPCAPE campaign
Juan M. Socuellamos
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Raquel Rodriguez Monje
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Matthew D. Lebsock
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Ken B. Cooper
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Robert M. Beauchamp
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Arturo Umeyama
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Related authors
Nitika Yadlapalli Yurk, Matthew Lebsock, Juan Socuellamos, Raquel Rodriguez Monje, Ken Cooper, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2025-618, https://doi.org/10.5194/egusphere-2025-618, 2025
Short summary
Short summary
Current knowledge of the link between clouds and climate is limited by lack of observations of the drop size distribution (DSD) within clouds, especially for the smallest drops. We demonstrate a method of retrieving DSDs down to small drop sizes using observations of drizzling marine layer clouds captured by the CloudCube millimeter-wave Doppler radar. We compare the shape of the observed spectra to theoretical expectations of radar echoes to solve for DSDs at each time and elevation.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024, https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Short summary
This article presents a novel technique to estimate liquid water content (LWC) profiles in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows retrieving the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Luis F. Millán, Matthew D. Lebsock, and Marcin J. Kurowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-322, https://doi.org/10.5194/egusphere-2025-322, 2025
Short summary
Short summary
This study explores the potential of a hypothetical spaceborne radar to observe water vapor within clouds.
Nitika Yadlapalli Yurk, Matthew Lebsock, Juan Socuellamos, Raquel Rodriguez Monje, Ken Cooper, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2025-618, https://doi.org/10.5194/egusphere-2025-618, 2025
Short summary
Short summary
Current knowledge of the link between clouds and climate is limited by lack of observations of the drop size distribution (DSD) within clouds, especially for the smallest drops. We demonstrate a method of retrieving DSDs down to small drop sizes using observations of drizzling marine layer clouds captured by the CloudCube millimeter-wave Doppler radar. We compare the shape of the observed spectra to theoretical expectations of radar echoes to solve for DSDs at each time and elevation.
Marcin J. Kurowski, Matthew D. Lebsock, and Kevin M. Smalley
EGUsphere, https://doi.org/10.5194/egusphere-2025-714, https://doi.org/10.5194/egusphere-2025-714, 2025
Short summary
Short summary
This study explores how clouds respond to pollution throughout the day using high-resolution simulations. Polluted clouds show stronger daily changes: thicker clouds at night and in the morning but faster thinning in the afternoon. Pollution reduces rainfall but enhances drying, deepening the cloud layer. While the pollution initially brightens clouds, the daily cycle of cloudiness slightly reduces this brightening effect.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024, https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Short summary
This article presents a novel technique to estimate liquid water content (LWC) profiles in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows retrieving the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024, https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Short summary
In this study, we describe and validate a new technique in which three radar tones are used to estimate the water vapor inside clouds and precipitation. This instrument flew on board NASA's P-3 aircraft during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign and the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign.
Matthew D. Lebsock and Mikael Witte
Atmos. Chem. Phys., 23, 14293–14305, https://doi.org/10.5194/acp-23-14293-2023, https://doi.org/10.5194/acp-23-14293-2023, 2023
Short summary
Short summary
This paper evaluates measurements of cloud drop size distributions made from airplanes. We find that as the number of cloud drops increases the distribution of the cloud drop sizes narrows. The data are used to develop a simple equation that relates the drop number to the width of the drop sizes. We then use this equation to demonstrate that existing approaches to observe the drop number from satellites contain errors that can be corrected by including the new relationship.
Richard M. Schulte, Matthew D. Lebsock, and John M. Haynes
Atmos. Meas. Tech., 16, 3531–3546, https://doi.org/10.5194/amt-16-3531-2023, https://doi.org/10.5194/amt-16-3531-2023, 2023
Short summary
Short summary
In order to constrain climate models and better understand how clouds might change in future climates, accurate satellite estimates of cloud liquid water content are important. The satellite currently best suited to this purpose, CloudSat, is not sensitive enough to detect some non-raining low clouds. In this study we show that information from two other satellite instruments, MODIS and CALIOP, can be combined to provide cloud water estimates for many of the clouds that are missed by CloudSat.
Kevin M. Smalley, Matthew D. Lebsock, Ryan Eastman, Mark Smalley, and Mikael K. Witte
Atmos. Chem. Phys., 22, 8197–8219, https://doi.org/10.5194/acp-22-8197-2022, https://doi.org/10.5194/acp-22-8197-2022, 2022
Short summary
Short summary
We use geostationary satellite observations to track pockets of open-cell (POC) stratocumulus and analyze how precipitation, cloud microphysics, and the environment change. Precipitation becomes more intense, corresponding to increasing effective radius and decreasing number concentrations, while the environment remains relatively unchanged. This implies that changes in cloud microphysics are more important than the environment to POC development.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 15, 117–129, https://doi.org/10.5194/amt-15-117-2022, https://doi.org/10.5194/amt-15-117-2022, 2022
Short summary
Short summary
Sunlight can pass diagonally through the atmosphere, cutting through the 3-D water vapour field in a way that
smears2-D maps of imaging spectroscopy vapour retrievals. In simulations we show how this smearing is
towardsor
away fromthe Sun, so calculating
across the solar direction allows sub-kilometre information about water vapour's spatial scaling to be calculated. This could be tested by airborne campaigns and used to obtain new information from upcoming spaceborne data products.
Richard J. Roy, Matthew Lebsock, and Marcin J. Kurowski
Atmos. Meas. Tech., 14, 6443–6468, https://doi.org/10.5194/amt-14-6443-2021, https://doi.org/10.5194/amt-14-6443-2021, 2021
Short summary
Short summary
This study describes the potential capabilities of a hypothetical spaceborne radar to observe water vapor within clouds.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021, https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
Short summary
Modern and upcoming hyperspectral imagers will take images with spatial resolutions as fine as 20 m. They can retrieve column water vapour, and we show evidence that from these column measurements you can get statistics of planetary boundary layer (PBL) water vapour. This is important information for climate models that need to account for sub-grid mixing of water vapour near the surface in their PBL schemes.
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021, https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary
Short summary
Observations collected during the 25 February 2020 deployment of the VIPR at the Stony Brook Radar Observatory clearly demonstrate the potential of G-band radars for cloud and precipitation research. The field experiment, which coordinated an X-, Ka-, W- and G-band radar, revealed that the differential reflectivity from Ka–G band pair provides larger signals than the traditional Ka–W pairing underpinning an increased sensitivity to smaller amounts of liquid and ice water mass and sizes.
David R. Thompson, Brian H. Kahn, Philip G. Brodrick, Matthew D. Lebsock, Mark Richardson, and Robert O. Green
Atmos. Meas. Tech., 14, 2827–2840, https://doi.org/10.5194/amt-14-2827-2021, https://doi.org/10.5194/amt-14-2827-2021, 2021
Short summary
Short summary
Concentrations of water vapor in the atmosphere vary dramatically over space and time. Mapping this variability can provide insights into atmospheric processes that help us understand atmospheric processes in the Earth system. Here we use a new measurement strategy based on imaging spectroscopy to map atmospheric water vapor concentrations at very small spatial scales. Experiments demonstrate the accuracy of this technique and some initial results from an airborne remote sensing experiment.
Luis Millán, Richard Roy, and Matthew Lebsock
Atmos. Meas. Tech., 13, 5193–5205, https://doi.org/10.5194/amt-13-5193-2020, https://doi.org/10.5194/amt-13-5193-2020, 2020
Short summary
Short summary
This paper describes the feasibility of using a differential absorption radar technique for the remote sensing of total column water vapor from a spaceborne platform.
Mark Richardson, Matthew D. Lebsock, James McDuffie, and Graeme L. Stephens
Atmos. Meas. Tech., 13, 4947–4961, https://doi.org/10.5194/amt-13-4947-2020, https://doi.org/10.5194/amt-13-4947-2020, 2020
Short summary
Short summary
We previously combined CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar data and reflected-sunlight measurements from OCO-2 (Orbiting Carbon Observatory 2) for information about low clouds over oceans. The satellites are no longer formation-flying, so this work is a step towards getting new information about these clouds using only OCO-2. We can rapidly and accurately identify liquid oceanic clouds and obtain their height better than a widely used passive sensor.
Cited articles
Atlas, D. and Mossop, S. C.: Calibration of a Weather Radar by Using a Standard Target, B. Am. Meteorol. Soc., 41, 377–382, https://doi.org/10.1175/1520-0477-41.7.377, 1960.
Atlas, D., Srivastava, R. C., and Sekhon, R. S.: Doppler radar characteristics of precipitation at vertical incidence, Rev. Geophys. Space Phys., 11, 1–35, https://doi.org/10.1029/RG011i001p00001, 1973.
Baker, M. and Peter, T.: Small-scale cloud processes and climate, Nature, 451, 299–300, https://doi.org/10.1038/nature06594, 2008.
Battaglia, A., Westbrook, C. D., Kneifel, S., Kollias, P., Humpage, N., Löhnert, U., Tyynelä, J., and Petty, G. W.: G band atmospheric radars: new frontiers in cloud physics, Atmos. Meas. Tech., 7, 1527–1546, https://doi.org/10.5194/amt-7-1527-2014, 2014.
Beauchamp, R. M., Tanelli, S., Peral, E., and Chandrasekar, V.: Pulse Compression Waveform and Filter Optimization for Spaceborne Cloud and Precipitation Radar, IEEE T. Geosci. Remote, 55, 915–931, https://doi.org/10.1109/TGRS.2016.2616898, 2017.
Boucher, O., Randall, D. A., Artaxo, P., Bretherton, C., Feingold, G., Forster, P. M., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Clouds and Aerosols, Cambridge, Cambridge University Press, 571–658, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Cooper, K. B., Llombart, N., Chattopadhyay, G., Dengler, R., Cofield, R. E., Lee, C., Filchenkov, S., and Koposova, E.: A Grating-Based Circular Polarization Duplexer for Submillimetre-Wave Transceivers, IEEE Microw. Wirel. Co., 22, 108–110, https://doi.org/10.1109/LMWC.2012.2184273, 2012.
Cooper, K. B., Roy, R. J, Dengler, R., Rodriguez Monje, R., Alonso-Delpino, M., Siles, J. V., Yurduseven, O., Parashare, C., Millan, L., and Lebsock, M.: G-Band Radar for Humidity and Cloud Remote Sensing, IEEE T. Geosci. Remote, 59, 1106–1117, https://doi.org/10.1109/TGRS.2020.2995325, 2021.
Courtier, B. M., Battaglia, A., Huggard, P. G., Westbrook, C., Mroz, K., Dhillon, R. S., Walden, C. J., Howells, G., Wang, H., Ellison, B. N., Reeves, R., Robertson, D. A., and Wylde, R. J.: First Observations of G-band Radar Doppler Spectra, Geophys. Res. Lett., 49, e2021GL096475, https://doi.org/10.1029/2021GL096475, 2022.
Doviak, R. and Zrnic, D. S.: Doppler Radar and Weather Observations, 2nd edn., Academic Press, San Diego, CA, USA, 592 pp., ISBN 0486450600, 1993.
Du Toit, P. S.: Doppler Radar Observation of Drop Sizes in Continuous Rain, J. Appl. Meteorol., 6, 1082–1087, https://doi.org/10.1175/1520-0450(1967)006<1082:DROODS>2.0.CO;2, 1967.
Elton, D. C.: Understanding the Dielectric Properties of Water, Ph.D. thesis, Stony Brook University, USA, https://ir.stonybrook.edu/xmlui/bitstream/handle/11401/76639/Elton_grad.sunysb_0771E_13076.pdf (last access: 21 September 2023), 2016.
Hogan, R. J., Illingworth, A. J., and Sauvageot, H.: Measuring Crystal Size in Cirrus Using 35- and 94-GHz Radars, J. Atmos. Ocean Tech., 17, 27–37, https://doi.org/10.1175/1520-0426(2000)017<0027:MCSICU>2.0.CO;2, 2000.
ITU: ITU-R P. 676-10 Recommendation: Attenuation by Atmospheric Gases, https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-10-201309-S!!PDF-E.pdf (last access: 21 September 2023), 2013.
Jing, X. and Suzuki, K.: The impact of process-based warm rain constraints on the aerosol indirect effect, Geophys. Res. Lett., 45,729–737, https://doi.org/10.1029/2018GL079956, 2018.
Lamer, K., Oue, M., Battaglia, A., Roy, R. J., Cooper, K. B., Dhillon, R., and Kollias, P.: Multifrequency radar observations of clouds and precipitation including the G-band, Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021, 2021.
Lin, W., Zhang, M., and Loeb, N. G.: Seasonal Variation of the Physical Properties of Marine Boundary Layer Clouds off the California Coast, J. Climate, 22, 2624–2638, https://doi.org/10.1175/2008jcli2478.1, 2009.
Leinonen, J., Lebsock, M. D., Tanelli, S., Suzuki, K., Yashiro, H., and Miyamoto, Y.: Performance assessment of a triple-frequency spaceborne cloud–precipitation radar concept using a global cloud-resolving model, Atmos. Meas. Tech., 8, 3493–3517, https://doi.org/10.5194/amt-8-3493-2015, 2015.
Lhermitte, R.: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation, J. Atmos. Ocean. Tech., 7, 464–479, https://doi.org/10.1175/1520-0426(1990)007<0464:AASOMW>2.0.CO;2, 1990.
Matrosov, S. Y.: A Dual-Wavelength Radar Method to Measure Snowfall Rate, J. App. Met., 37, 1510–1521, https://doi.org/10.1175/1520-0450(1998)037<1510:ADWRMT>2.0.CO;2, 1998.
Mroz, K., Battaglia, A., Nguyen, C., Heymsfield, A., Protat, A., and Wolde, M.: Triple-frequency radar retrieval of microphysical properties of snow, Atmos. Meas. Tech., 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021, 2021.
Mülmenstädt, J., Salzmann, M., Kay, J.E. Zelinka, M. D., Ma, P., Nam, C., Kretzschmar, J., Hornig, S., and Quaas, J.: An underestimated negative cloud feedback from cloud lifetime changes, Nat. Clim. Change, 11, 508–513, https://doi.org/10.1038/s41558-021-01038-1, 2021.
Peral, E., Eastwood, I., Wye, L., Lee, S., Tanelli, S., Rahmat-Samii, Y., Horst, S., Hoffman, J., Yun, S., Imken, T., and Hawkins, D.: Radar Technologies for Earth Remote Sensing from CubeSat Platforms, P. IEEE, 106, 404–418, https://doi.org/10.1109/JPROC.2018.2793179, 2018a.
Peral, E., Statham, S., Eastwood, I., Tanelli, S., Imken, T., Price, D., Sauder, J., Chahat, N., and Williams, A.: The Radar-in-a-Cubesat (RAINCUBE) and Measurement Results, in: Proc. Int. Geosci. Remote Se. (IGARSS), Valencia, Spain, 22–27 July 2018, https://doi.org/10.1109/IGARSS.2018.8519194, 2018b.
Petters, M. D., Snider, J. R., Stevens, B., Vali, G., Faloona, I., and Russell, L. M.: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer, J. Geophys. Res.-Atmos., 111, D02206, https://doi.org/10.1029/2004jd005694, 2006.
Rosenkranz, P. W.: Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33, 919–928, https://doi.org/10.1029/98RS01182, 1998.
Roy, R. J., Lebsock, M. D., Millan, L., and Cooper, K.: Validation of a G-band Differential Absorption Cloud Radar for Humidity Remote Sensing, J. Atmos. Ocean. Tech., 37, 1085–1102, https://doi.org/10.1175/JTECH-D-19-0122.1, 2020.
Russell, L. M., Lubin, D., Silber, I., Eloranta, E., Muelmenstaedt, J., Burrows, S., Aiken, A., Wang, D., Petters, M., Miller, M., Ackerman, A., Fridlind, A., Witte, M., Lebsock, M., Painemal, D., Chang, R., Liggio, J., and Wheeler, M.: Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) Science Plan, U.S. Department of Energy, Office of Science, https://www.arm.gov/publications/programdocs/doe-sc-arm-21-009.pdf (last access: 21 September 2023), 2021.
Sanchez, K. J., Russell, L. M., Modini, R. L., Frossard, A. A., Ahlm, L., Corrigan, C. E., Roberts, G. C., Hawkins, L. N., Schroder, J. C., Bertram, A. K., Zhao, R., Lee, A. K. Y., Lin, J. J., Nenes, A., Wang, Z., Wonaschutz, A., Sorooshian, A., Noone, K. J., Jonsson, H., Toom, D., Macdonald, A. M, Leaitch, W. R., and Seinfeld, J. H.: Meteorological and aerosol effects on marine cloud microphysical properties, J. Geophys. Res.-Atmos., 121, 4142–4161, https://doi.org/10.1002/2015jd024595, 2016.
Socuellamos, J. M., Rodriguez Monje, R., Lebsock, M., Cooper, K., Beauchamp, R., and Umeyama A.: Ka, W and G-band observations of clouds and light precipitation during the EPCAPE campaign in March and April 2023, Zenodo [data set], https://doi.org/10.5281/zenodo.10076227, 2024.
Stephens, G. L., van den Heever, S. C., Haddad, Z. S., Posselt, D. J., Storer, R. L., Grant, L. D., Sy, O. O., Rao, T. N., Tanelli, S. and Peral, E.: A Distributed Small Satellite Approach for Measuring Convective Transports in the Earth's Atmosphere, IEEE T. Geosci. Remote, 58, 4–13, https://doi.org/10.1109/TGRS.2019.2918090, 2020.
Sumlin, B. J., Heinson, W. R., and Chakrabarty, R. K.: Retrieving the aerosol complex refractive index using PyMieScatt: A Mie computational package with visualization capabilities, J. Quant. Spectrosc. Ra., 205, 127–134, https://doi.org/10.1016/j.jqsrt.2017.10.012, 2018.
Tanelli, S., Haddad, Z. S., Eastwood, I., Durden, S. L., Sy, O. O., Peral, E., Gregory, A. S., and Sanchez-Barbetty, M.: Radar concepts for the next generation of cloud and precipitation processes, in: Proc. IEEE Rad. Conf. (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018, https://doi.org/10.1109/RADAR.2018.8378741, 2018.
Zelinka, M. D., Randall, D. A., Webb, M. J., and Klein, S. A.: Clearing clouds of uncertainty, Nat. Clim. Change, 7, 674–678, https://doi.org/10.1038/nclimate3402, 2017.
Short summary
This paper describes multifrequency radar observations of clouds and precipitation during the EPCAPE campaign. The data sets were obtained from CloudCube, a Ka-, W-, and G-band atmospheric profiling radar, to demonstrate synergies between multifrequency retrievals. This data collection provides a unique opportunity to study hydrometeors with diameters in the millimeter and submillimeter size range that can be used to better understand the drop size distribution within clouds and precipitation.
This paper describes multifrequency radar observations of clouds and precipitation during the...
Altmetrics
Final-revised paper
Preprint