Articles | Volume 16, issue 5
https://doi.org/10.5194/essd-16-2297-2024
https://doi.org/10.5194/essd-16-2297-2024
Data description paper
 | 
06 May 2024
Data description paper |  | 06 May 2024

A 30 m annual cropland dataset of China from 1986 to 2021

Ying Tu, Shengbiao Wu, Bin Chen, Qihao Weng, Yuqi Bai, Jun Yang, Le Yu, and Bing Xu

Related authors

Global DEM Product Generation by Correcting ASTER GDEM Elevation with ICESat-2 Altimeter Data
Binbin Li, Huan Xie, Shijie Liu, Zhen Ye, Zhonghua Hong, Qihao Weng, Yuan Sun, Qi Xu, and Xiaohua Tong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-277,https://doi.org/10.5194/essd-2024-277, 2024
Revised manuscript accepted for ESSD
Short summary
Tracking spatiotemporal dynamics of crop-specific areas through machine learning and statistics disaggregating
Xiyu Li, Le Yu, Zhenrong Du, and Xiaoxuan Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-233,https://doi.org/10.5194/essd-2024-233, 2024
Manuscript not accepted for further review
Short summary
Global cropland expansion enhances cropping potential and reduces its inequality among countries
Xiaoxuan Liu, Peng Zhu, Shu Liu, Le Yu, Yong Wang, Zhenrong Du, Dailiang Peng, Ece Aksoy, Hui Lu, and Peng Gong
Earth Syst. Dynam., 15, 817–828, https://doi.org/10.5194/esd-15-817-2024,https://doi.org/10.5194/esd-15-817-2024, 2024
Short summary
GTWS-MLrec: global terrestrial water storage reconstruction by machine learning from 1940 to present
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023,https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
A gridded dataset of a leaf-age-dependent leaf area index seasonality product over tropical and subtropical evergreen broadleaved forests
Xueqin Yang, Xiuzhi Chen, Jiashun Ren, Wenping Yuan, Liyang Liu, Juxiu Liu, Dexiang Chen, Yihua Xiao, Qinghai Song, Yanjun Du, Shengbiao Wu, Lei Fan, Xiaoai Dai, Yunpeng Wang, and Yongxian Su
Earth Syst. Sci. Data, 15, 2601–2622, https://doi.org/10.5194/essd-15-2601-2023,https://doi.org/10.5194/essd-15-2601-2023, 2023
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Enhancing high-resolution forest stand mean height mapping in China through an individual tree-based approach with close-range lidar data
Yuling Chen, Haitao Yang, Zekun Yang, Qiuli Yang, Weiyan Liu, Guoran Huang, Yu Ren, Kai Cheng, Tianyu Xiang, Mengxi Chen, Danyang Lin, Zhiyong Qi, Jiachen Xu, Yixuan Zhang, Guangcai Xu, and Qinghua Guo
Earth Syst. Sci. Data, 16, 5267–5285, https://doi.org/10.5194/essd-16-5267-2024,https://doi.org/10.5194/essd-16-5267-2024, 2024
Short summary
Annual high-resolution grazing-intensity maps on the Qinghai–Tibet Plateau from 1990 to 2020
Jia Zhou, Jin Niu, Ning Wu, and Tao Lu
Earth Syst. Sci. Data, 16, 5171–5189, https://doi.org/10.5194/essd-16-5171-2024,https://doi.org/10.5194/essd-16-5171-2024, 2024
Short summary
Global mapping of oil palm planting year from 1990 to 2021
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024,https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary
A 28-time-point cropland area change dataset in Northeast China from 1000 to 2020
Ran Jia, Xiuqi Fang, Yundi Yang, Masayuki Yokozawa, and Yu Ye
Earth Syst. Sci. Data, 16, 4971–4994, https://doi.org/10.5194/essd-16-4971-2024,https://doi.org/10.5194/essd-16-4971-2024, 2024
Short summary
Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2
Stefania Di Tommaso, Sherrie Wang, Rob Strey, and David B. Lobell
Earth Syst. Sci. Data, 16, 4931–4947, https://doi.org/10.5194/essd-16-4931-2024,https://doi.org/10.5194/essd-16-4931-2024, 2024
Short summary

Cited articles

Belgiu, M. and Csillik, O.: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis, Remote Sens. Environ, 204, 509–523, https://doi.org/10.1016/j.rse.2017.10.005, 2018. 
Boryan, C., Yang, Z., Mueller, R., and Craig, M.: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program, Geocarto Int., 26, 341–358, https://doi.org/10.1080/10106049.2011.562309, 2011. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Bryan, B. A., Gao, L., Ye, Y., Sun, X., Connor, J. D., Crossman, N. D., Stafford-Smith, M., Wu, J., He, C., Yu, D., Liu, Z., Li, A., Huang, Q., Ren, H., Deng, X., Zheng, H., Niu, J., Han, G., and Hou, X.: China's response to a national land-system sustainability emergency, Nature, 559, 193–204, https://doi.org/10.1038/s41586-018-0280-2, 2018. 
Canny, J.: A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8, 679–698, https://doi.org/10.1109/TPAMI.1986.4767851, 1986. 
Download
Short summary
We developed the first 30 m annual cropland dataset of China (CACD) for 1986–2021. The overall accuracy of CACD reached up to 0.93±0.01 and was superior to other products. Our fine-resolution cropland maps offer valuable information for diverse applications and decision-making processes in the future.
Altmetrics
Final-revised paper
Preprint