Articles | Volume 16, issue 3
https://doi.org/10.5194/essd-16-1503-2024
https://doi.org/10.5194/essd-16-1503-2024
Data description paper
 | 
20 Mar 2024
Data description paper |  | 20 Mar 2024

FOCA: a new quality-controlled database of floods and catchment descriptors in Italy

Pierluigi Claps, Giulia Evangelista, Daniele Ganora, Paola Mazzoglio, and Irene Monforte

Related authors

Features of Italian large dams and their upstream catchments
Giulia Evangelista, Paola Mazzoglio, Daniele Ganora, Francesca Pianigiani, and Pierluigi Claps
Earth Syst. Sci. Data, 17, 1407–1426, https://doi.org/10.5194/essd-17-1407-2025,https://doi.org/10.5194/essd-17-1407-2025, 2025
Short summary
Rainfall data augmentation in Northern Italy through daily extremes and the Hershfield factor
Paola Mazzoglio, Ilaria Butera, and Pierluigi Claps
Proc. IAHS, 385, 147–153, https://doi.org/10.5194/piahs-385-147-2024,https://doi.org/10.5194/piahs-385-147-2024, 2024
Short summary
The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy
Paola Mazzoglio, Ilaria Butera, Massimiliano Alvioli, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 26, 1659–1672, https://doi.org/10.5194/hess-26-1659-2022,https://doi.org/10.5194/hess-26-1659-2022, 2022
Short summary
Technical note: Space–time analysis of rainfall extremes in Italy: clues from a reconciled dataset
Andrea Libertino, Daniele Ganora, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 22, 2705–2715, https://doi.org/10.5194/hess-22-2705-2018,https://doi.org/10.5194/hess-22-2705-2018, 2018
Short summary
Technical note: Design flood under hydrological uncertainty
Anna Botto, Daniele Ganora, Pierluigi Claps, and Francesco Laio
Hydrol. Earth Syst. Sci., 21, 3353–3358, https://doi.org/10.5194/hess-21-3353-2017,https://doi.org/10.5194/hess-21-3353-2017, 2017
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
Features of Italian large dams and their upstream catchments
Giulia Evangelista, Paola Mazzoglio, Daniele Ganora, Francesca Pianigiani, and Pierluigi Claps
Earth Syst. Sci. Data, 17, 1407–1426, https://doi.org/10.5194/essd-17-1407-2025,https://doi.org/10.5194/essd-17-1407-2025, 2025
Short summary
Gridded rainfall erosivity (2014–2022) in mainland China using 1 min precipitation data from densely distributed weather stations
Yueli Chen, Yun Xie, Xingwu Duan, and Minghu Ding
Earth Syst. Sci. Data, 17, 1265–1274, https://doi.org/10.5194/essd-17-1265-2025,https://doi.org/10.5194/essd-17-1265-2025, 2025
Short summary
High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data, 17, 703–717, https://doi.org/10.5194/essd-17-703-2025,https://doi.org/10.5194/essd-17-703-2025, 2025
Short summary
CAMELS-IND: hydrometeorological time series and catchment attributes for 228 catchments in Peninsular India
Nikunj K. Mangukiya, Kanneganti Bhargav Kumar, Pankaj Dey, Shailza Sharma, Vijaykumar Bejagam, Pradeep P. Mujumdar, and Ashutosh Sharma
Earth Syst. Sci. Data, 17, 461–491, https://doi.org/10.5194/essd-17-461-2025,https://doi.org/10.5194/essd-17-461-2025, 2025
Short summary
LakeBeD-US: a benchmark dataset for lake water quality time series and vertical profiles
Bennett J. McAfee, Aanish Pradhan, Abhilash Neog, Sepideh Fatemi, Robert T. Hensley, Mary E. Lofton, Anuj Karpatne, Cayelan C. Carey, and Paul C. Hanson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-27,https://doi.org/10.5194/essd-2025-27, 2025
Revised manuscript accepted for ESSD
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. 
Andréassian, V., Delaigue, O., Perrin, C., Janet, B., and Addor, N.: CAMELS-FR: A large sample, hydroclimatic dataset for France, to support model testing and evaluation, EGU General Assembly 2021, online, 19–30 April 2021, EGU21-13349, https://doi.org/10.5194/egusphere-egu21-13349, 2021. 
ARPA Lombardia Sistema Informativo Idrologico: SIDRO – Sistema Informativo Idrologico, https://idro.arpalombardia.it/it/map/sidro/ (last access: 29 May 2023). 
Arsenault, R., Bazile, R., Ouellet Dallaire, C., and Brissette, F.: CANOPEX: A Canadian hydrometeorological watershed database, Hydrol. Process., 30, 2734–2736, https://doi.org/10.1002/hyp.10880, 2016. 
Download
Short summary
FOCA (Italian FlOod and Catchment Atlas) is the first systematic collection of data on Italian river catchments. It comprises geomorphological, soil, land cover, NDVI, climatological and extreme rainfall catchment attributes. FOCA also contains 631 peak and daily discharge time series covering the 1911–2016 period. Using this first nationwide data collection, a wide range of applications, in particular flood studies, can be undertaken within the Italian territory.
Share
Altmetrics
Final-revised paper
Preprint