Articles | Volume 15, issue 12
https://doi.org/10.5194/essd-15-5281-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-5281-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global daily gap-filled chlorophyll-a dataset in open oceans during 2001–2021 from multisource information using convolutional neural networks
Zhongkun Hong
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Department of Hydraulic Engineering, Institute of Ocean Engineering, Tsinghua University, Beijing 100084, China
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Department of Hydraulic Engineering, Institute of Ocean Engineering, Tsinghua University, Beijing 100084, China
Xingdong Li
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Department of Hydraulic Engineering, Institute of Ocean Engineering, Tsinghua University, Beijing 100084, China
Yiming Wang
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Department of Hydraulic Engineering, Institute of Ocean Engineering, Tsinghua University, Beijing 100084, China
Jianmin Zhang
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Department of Hydraulic Engineering, Institute of Ocean Engineering, Tsinghua University, Beijing 100084, China
Mohamed A. Hamouda
Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
National Water and Energy Center, United Arab Emirates University, Al Ain, United Arab Emirates
Mohamed M. Mohamed
Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
National Water and Energy Center, United Arab Emirates University, Al Ain, United Arab Emirates
Related authors
No articles found.
Ahmed Wagih, Mohamed Hamouda, and Hilal El-Hassan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1501–1507, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1501-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1501-2025, 2025
Fanyu Zhao, Di Long, Chenqi Fang, Yiming Wang, and Xingwu Duan
EGUsphere, https://doi.org/10.5194/egusphere-2025-652, https://doi.org/10.5194/egusphere-2025-652, 2025
Short summary
Short summary
The heterogeneous surge behaviors in Karakoram reveal critical knowledge gaps in the underlying mechanism, urging detailed investigations. We integrate multisource remote sensing (satellite altimetry, DEMs, optical/SAR imagery) to holistically characterize surge phases of a Karakoram glacier, quantifying flow velocity, surface elevation, terminus position, and lake level variations. This integrated approach underscores the value of multi-sensor synergies in deciphering complex surge mechanisms.
Xingdong Li, Di Long, Yanhong Cui, Tingxi Liu, Jing Lu, Mohamed A. Hamouda, and Mohamed M. Mohamed
The Cryosphere, 17, 349–369, https://doi.org/10.5194/tc-17-349-2023, https://doi.org/10.5194/tc-17-349-2023, 2023
Short summary
Short summary
This study blends advantages of altimetry backscattering coefficients and waveforms to estimate ice thickness for lakes without in situ data and provides an improved water level estimation for ice-covered lakes by jointly using different threshold retracking methods. Our results show that a logarithmic regression model is more adaptive in converting altimetry backscattering coefficients into ice thickness, and lake surface snow has differential impacts on different threshold retracking methods.
Cited articles
Andersson, T. R., Hosking, J. S., Perez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B., Blanchard-Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal Arctic sea ice forecasting with probabilistic deep learning, Nat. Commun., 12, 5124, https://doi.org/10.1038/s41467-021-25257-4, 2021.
Beaulieu, C., Henson, S. A., Sarmiento, J. L., Dunne, J. P., Doney, S. C., Rykaczewski, R. R., and Bopp, L.: Factors challenging our ability to detect long-term trends in ocean chlorophyll, Biogeosciences, 10, 2711–2724, https://doi.org/10.5194/bg-10-2711-2013, 2013.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755, https://doi.org/10.1038/nature05317, 2006.
Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R., and Brando, V. E.: A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans, Prog. Oceanogr., 123, 123–144, https://doi.org/10.1016/j.pocean.2013.12.008, 2014.
Cao, Z. G., Ma, R. H., Duan, H. T., Pahlevan, N., Melack, J., Shen, M., and Xue, K.: A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes, Remote Sens. Environ., 248, https://doi.org/10.1016/j.rse.2020.111974, 2020.
Catipovic, L., Matic, F., and Kalinic, H.: Reconstruction Methods in Oceanographic Satellite Data Observation-A Survey, J. Mar. Sci. Eng., 11, 340, https://doi.org/10.3390/jmse11020340, 2023.
Cen, H. B., Jiang, J. H., Han, G. Q., Lin, X. Y., Liu, Y., Jia, X. Y., Ji, Q. Y., and Li, B.: Applying Deep Learning in the Prediction of Chlorophyll-a in the East China Sea, Remote Sens., 14, 5461, https://doi.org/10.3390/rs14215461, 2022.
Chen, S., Hu, C., Barnes, B. B., Xie, Y., Lin, G., and Qiu, Z.: Improving ocean color data coverage through machine learning, Remote Sens. Environ., 222, 286–302, https://doi.org/10.1016/j.rse.2018.12.023, 2019.
Dai, Y., Yang, S., Zhao, D., Hu, C., Xu, W., Anderson, D. M., Li, Y., Song, X.-P., Boyce, D. G., Gibson, L., Zheng, C., and Feng, L.: Coastal phytoplankton blooms expand and intensify in the 21st century, Nature, 615, 280–284, https://doi.org/10.1038/s41586-023-05760-y, 2023.
Dorigo, W. A., Scipal, K., Parinussa, R. M., Liu, Y. Y., Wagner, W., de Jeu, R. A. M., and Naeimi, V.: Error characterisation of global active and passive microwave soil moisture datasets, Hydrol. Earth Syst. Sci., 14, 2605–2616, https://doi.org/10.5194/hess-14-2605-2010, 2010.
Ducklow, H., Cimino, M., Dunton, K. H., Fraser, W. R., Hopcroft, R. R., Ji, R., Miller, A. J., Ohman, M. D., and Sosik, H. M.: Marine Pelagic Ecosystem Responses to Climate Variability and Change, BioScience, 72, 827–850, https://doi.org/10.1093/biosci/biac050, 2022.
Duteil, O. and Park, W.: Future changes in atmospheric synoptic variability slow down ocean circulation and decrease primary productivity in the tropical Pacific Ocean, Npj Climate and Atmospheric Science, 6, 136, https://doi.org/10.1038/s41612-023-00459-3, 2023.
Feng, L. and Hu, C. M.: Comparison of Valid Ocean Observations Between MODIS Terra and Aqua Over the Global Oceans, IEEE T. Geosci. Remote, 54, 1575–1585, https://doi.org/10.1109/tgrs.2015.2483500, 2016.
Feng, L., Dai, Y., Hou, X., Xu, Y., Liu, J., and Zheng, C.: Concerns about phytoplankton bloom trends in global lakes, Nature, 590, E35–E47, https://doi.org/10.1038/s41586-021-03254-3, 2021.
Flynn, K. J.: A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton, J. Plankton Res., 23, 977–997, https://doi.org/10.1093/plankt/23.9.977, 2001.
Geng, T., Cai, W. J., Wu, L. X., Santoso, A., Wang, G. J., Jing, Z., Gan, B. L., Yang, Y., Li, S. J., Wang, S. P., Chen, Z. H., and McPhaden, M. J.: Emergence of changing Central-Pacific and Eastern-Pacific El Nino-Southern Oscillation in a warming climate, Nat. Commun., 13, 6616, https://doi.org/10.1038/s41467-022-33930-5, 2022.
Gentemann, C. L.: Three way validation of MODIS and AMSR-E sea surface temperatures, J. Geophys. Res.-Oceans, 119, 2583–2598, https://doi.org/10.1002/2013jc009716, 2014.
Groom, S., Sathyendranath, S., Ban, Y., Bernard, S., Brewin, R., Brotas, V., Brockmann, C., Chauhan, P., Choi, J.-k., Chuprin, A., Ciavatta, S., Cipollini, P., Donlon, C., Franz, B., He, X., Hirata, T., Jackson, T., Kampel, M., Krasemann, H., Lavender, S., Pardo-Martinez, S., Mélin, F., Platt, T., Santoleri, R., Skakala, J., Schaeffer, B., Smith, M., Steinmetz, F., Valente, A., and Wang, M.: Satellite Ocean Colour: Current Status and Future Perspective, Front. Mar. Sci., 6, 485, https://doi.org/10.3389/fmars.2019.00485, 2019.
Gruber, N., Boyd, P. W., Frölicher, T. L., and Vogt, M.: Biogeochemical extremes and compound events in the ocean, Nature, 600, 395–407, https://doi.org/10.1038/s41586-021-03981-7, 2021.
Han, Y. and Zhou, Y. T.: Investigating biophysical control of marine phytoplankton dynamics via Bayesian mechanistic modeling, Ecol. Model., 474, 110168, https://doi.org/10.1016/j.ecolmodel.2022.110168, 2022.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hilborn, A. and Costa, M.: Applications of DINEOF to Satellite-Derived Chlorophyll-a from a Productive Coastal Region, Remote Sens., 10, 1449, https://doi.org/10.3390/rs10091449, 2018.
Ho, J. C., Michalak, A. M., and Pahlevan, N.: Widespread global increase in intense lake phytoplankton blooms since the 1980s, Nature, 574, 667–670, https://doi.org/10.1038/s41586-019-1648-7, 2019.
Hong, Z. K., Long, D., Li, X. D., Wang, Y. M., Zhang, J. M., Mohamed, A. H., and Mohamed, M. M.: OCNET global daily Chlorophyll-a products, Zenodo [data set], https://doi.org/10.5281/zenodo.10011908, 2023.
Hu, C., Lee, Z., and Franz, B.: Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference:a novel ocean chlorophyll a algorithm, J. Geophys. Res.-Oceans, 117, C01011, https://doi.org/10.1029/2011JC007395, 2012.
Hu, C., Feng, L., Lee, Z., Franz, B. A., Bailey, S. W., Werdell, P. J., and Proctor, C. W.: Improving Satellite Global Chlorophyll-a Data Products Through Algorithm Refinement and Data Recovery, J. Geophys. Res.-Oceans, 124, 1524–1543, https://doi.org/10.1029/2019JC014941, 2019a.
Hu, C. M., Feng, L., Lee, Z. P., Franz, B. A., Bailey, S. W., Werdell, P. J., and Proctor, C. W.: Improving Satellite Global Chlorophyll a Data Products Through Algorithm Refinement and Data Recovery, J. Geophys. Res.-Oceans, 124, 1524–1543, https://doi.org/10.1029/2019jc014941, 2019b.
NOAA National Geophysical Data Center: ETOPO1 1 Arc-Minute Global Relief Model, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5C8276M, 2009.
Jiang, L. D. and Wang, M. H.: Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing, Appl. Opt., 52, 6757–6770, https://doi.org/10.1364/ao.52.006757, 2013.
Jin, D., Lee, E., Kwon, K., and Kim, T.: A Deep Learning Model Using Satellite Ocean Color and Hydrodynamic Model to Estimate Chlorophyll-a Concentration, Remote Sens., 13, 2003, https://doi.org/10.3390/rs13102003, 2021.
Konik, M., Kowalewski, M., Bradtke, K., and Darecki, M.: The operational method of filling information gaps in satellite imagery using numerical models, Int. J. Appl. Earth Obs., 75, 68–82, https://doi.org/10.1016/j.jag.2018.09.002, 2019.
Krug, L. A., Platt, T., Sathyendranath, S., and Barbosa, A. B.: Ocean surface partitioning strategies using ocean colour remote Sensing: A review, Prog. Oceanogr., 155, 41–53, https://doi.org/10.1016/j.pocean.2017.05.013, 2017.
Laufkötter, C., Vogt, M., Gruber, N., Aumont, O., Bopp, L., Doney, S. C., Dunne, J. P., Hauck, J., John, J. G., Lima, I. D., Seferian, R., and Völker, C.: Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem, Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, 2016.
Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S., and Frölicher, T. L.: Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period, Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021, 2021.
Levitus, S., Boyer, T. P., García, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Reagan, J. R., Antonov, J. I., Baranova, O. K., Biddle, M., Hamilton, M., Johnson, D. R., Paver, C. R., and Seidov, D.: World Ocean Atlas 2013 (NCEI Accession 0114815), [data set], doi.org/10.7289/v5f769gt, 2014.
Li, H., Xu, F. H., Zhou, W., Wang, D. X., Wright, J. S., Liu, Z. H., and Lin, Y. L.: Development of a global gridded Argo data set with Barnes successive corrections, J. Geophys. Res.-Oceans, 122, 866–889, https://doi.org/10.1002/2016jc012285, 2017.
Li, J., Gao, M., Feng, L., Zhao, H., Shen, Q., Zhang, F., Wang, S., and Zhang, B.: Estimation of Chlorophyll-a Concentrations in a Highly Turbid Eutrophic Lake Using a Classification-Based MODIS Land-Band Algorithm, IEEE J. Sel. Top. Appl., 12, 3769–3783, https://doi.org/10.1109/JSTARS.2019.2936403, 2019.
Li, X., Liu, B., Zheng, G., Ren, Y., Zhang, S., Liu, Y., Gao, L., Liu, Y., Zhang, B., and Wang, F.: Deep-learning-based information mining from ocean remote-sensing imagery, Nat. Sci. Rev., 7, 1584–1605, 10.1093/nsr/nwaa047, 2020.
Lian, F.: Key issues in detecting lacustrine cyanobacterial bloom using satellite remote sensing, J. Lake Sci., 33, 647–652, https://doi.org/10.18307/2021.0301, 2021.
Liu, D., Zhou, C., Keesing, J. K., Serrano, O., Werner, A., Fang, Y., Chen, Y., Masque, P., Kinloch, J., Sadekov, A., and Du, Y.: Wildfires enhance phytoplankton production in tropical oceans, Nat. Commun., 13, 1348, https://doi.org/10.1038/s41467-022-29013-0, 2022.
Liu, X. and Wang, M.: Gap Filling of Missing Data for VIIRS Global Ocean Color Products Using the DINEOF Method, IEEE T. Geosci. Remote, 56, 4464–4476, https://doi.org/10.1109/TGRS.2018.2820423, 2018.
Liu, X. and Wang, M.: Global daily gap-free ocean color products from multi-satellite measurements, Int. J. Appl. Earth Obs., 108, 102714, https://doi.org/10.1016/j.jag.2022.102714, 2022.
McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M., and Stoffelen, A.: Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target, Geophys. Res. Lett., 41, 6229–6236, https://doi.org/10.1002/2014gl061322, 2014.
Mikelsons, K. and Wang, M.: Optimal satellite orbit configuration for global ocean color product coverage, Opt. Express, 27, A445, https://doi.org/10.1364/OE.27.00A445, 2019.
Miralles, D. G., Crow, W. T., and Cosh, M. H.: Estimating Spatial Sampling Errors in Coarse-Scale Soil Moisture Estimates Derived from Point-Scale Observations, J. Hydrometeorol., 11, 1423–1429, https://doi.org/10.1175/2010jhm1285.1, 2010.
Moran, N., Stringer, B., Lin, B. C., and Hoque, M. T.: Machine learning model selection for predicting bathymetry, Deep-Sea Res. Pt. I, 185, 103788, https://doi.org/10.1016/j.dsr.2022.103788, 2022.
Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, L., and Pilcher, D.: Phytoplankton size impact on export flux in the global ocean, Global Biogeochem. Cy., 30, 1542–1562, https://doi.org/10.1002/2015gb005355, 2016.
Nelson, N. G., Munoz-Carpena, R., and Phlips, E.: Parameter uncertainty drives important incongruities between simulated chlorophyll-a and phytoplankton functional group dynamics in a mechanistic management model, Environ. Model. Softw., 129, 104708, https://doi.org/10.1016/j.envsoft.2020.104708, 2020.
Nikolaidis, A., Georgiou, G. C., Hadjimitsis, D., and Akylas, E.: Filling in missing sea-surface temperature satellite data over the Eastern Mediterranean Sea using the DINEOF algorithm, Cent. Eur. J. Geosci., 6, 27–41, https://doi.org/10.2478/s13533-012-0148-1, 2014.
Powell, C. F., Baker, A. R., Jickells, T. D., Bange, H. W., Chance, R. J., and Yodle, C.: Estimation of the Atmospheric Flux of Nutrients and Trace Metals to the Eastern Tropical North Atlantic Ocean, J. Atmos. Sci., 72, 4029–4045, https://doi.org/10.1175/jas-d-15-0011.1, 2015.
Reygondeau, G., Longhurst, A., Martinez, E., Beaugrand, G., Antoine, D., and Maury, O.: Dynamic biogeochemical provinces in the global ocean, Global Biogeochem. Cy., 27, 1046–1058, https://doi.org/10.1002/gbc.20089, 2013.
Righetti, D., Vogt, M., Gruber, N., Psomas, A., and Zimmermann, N. E.: Global pattern of phytoplankton diversity driven by temperature and environmental variability, Sci. Adv., 5, eaau6253, https://doi.org/10.1126/sciadv.aau6253, 2019.
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015, WOS:000365963800028, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28, 2015.
Roussillon, J., Fablet, R., Gorgues, T., Drumetz, L., Littaye, J., and Martinez, E.: A Multi-Mode Convolutional Neural Network to reconstruct satellite-derived chlorophyll-a time series in the global ocean from physical drivers, Front. Mar. Sci., 10, 1077623, https://doi.org/10.3389/fmars.2023.1077623, 2023.
Salgado-Hernanz, P. M., Racault, M. F., Font-Muñoz, J. S., and Basterretxea, G.: Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing, Remote Sens. Environ., 221, 50–64, https://doi.org/10.1016/j.rse.2018.10.036, 2019.
Sathyendranath, S., Brewin, R., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., Cipollini, P., Couto, A., Dingle, J., Doerffer, R., Donlon, C., Dowell, M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T., Krasemann, H., Lavender, S., Martinez-Vicente, V., Mazeran, C., Mélin, F., Moore, T., Müller, D., Regner, P., Roy, S., Steele, C., Steinmetz, F., Swinton, J., Taberner, M., Thompson, A., Valente, A., Zühlke, M., Brando, V., Feng, H., Feldman, G., Franz, B., Frouin, R., Gould, R., Hooker, S., Kahru, M., Kratzer, S., Mitchell, B., Muller-Karger, F., Sosik, H., Voss, K., Werdell, J., and Platt, T.: An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI), Sensors, 19, 4285, https://doi.org/10.3390/s19194285, 2019.
Signorini, S. R., Franz, B. A., and McClain, C. R.: Chlorophyll variability in the oligotrophic gyres: mechanisms, seasonality and trends, Front. Mar. Sci., 2, 1, https://doi.org/10.3389/fmars.2015.00001, 2015.
Slomp, C. P.: Phosphorus Cycling in the Estuarine and Coastal Zones: Sources, Sinks, and Transformations, Treatise on Estuarine and Coastal Science, Biogeochemistry, 5, 201–229, https://doi.org/10.1016/B978-0-12-374711-2.00506-4, 2011.
Stoffelen, A.: Toward the true near-surface wind speed: Error modeling and calibration using triple collocation, J. Geophys. Res.-Oceans, 103, 7755–7766, https://doi.org/10.1029/97jc03180, 1998.
Stumpf, R. P.: Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms, Hum. Ecol. Risk Assess., 7, 1363–1368, https://doi.org/10.1080/20018091095050, 2001.
Sun, D., Pan, T., Wang, S., and Hu, C.: Linking phytoplankton absorption to community composition in Chinese marginal seas, Prog. Oceanogr., 192, 102517, https://doi.org/10.1016/j.pocean.2021.102517, 2021.
Takeda, S.: Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters, Nature, 393, 774–777, https://doi.org/10.1038/31674, 1998.
Urakubo, H., Bullmann, T., Kubota, Y., Oba, S., and Ishii, S.: UNI-EM: An Environment for Deep Neural Network-Based Automated Segmentation of Neuronal Electron Microscopic Images, Sci. Rep., 9, 19413, https://doi.org/10.1038/s41598-019-55431-0, 2019.
Wagle, N., Acharya, T. D., and Lee, D. H.: Comprehensive Review on Application of Machine Learning Algorithms for Water Quality Parameter Estimation Using Remote Sensing Data, Sensor. Mater., 32, 3879, https://doi.org/10.18494/SAM.2020.2953, 2020.
Wagner, F. H., Sanchez, A., Tarabalka, Y., Lotte, R. G., Ferreira, M. P., Aidar, M. P. M., Gloor, E., Phillips, O. L., and Aragao, L.: Using the U-net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images, Remote Sensing in Ecology and Conservation, 5, 360–375, https://doi.org/10.1002/rse2.111, 2019.
Wang, B. L., Liu, C. Q., Maberly, S. C., Wang, F. S., and Hartmann, J.: Coupling of carbon and silicon geochemical cycles in rivers and lakes, Sci. Rep., 6, 35832, https://doi.org/10.1038/srep35832, 2016.
Wang, M., Jiang, L., Mikelsons, K., and Liu, X.: Satellite-derived global chlorophyll-a anomaly products, Int. J. Appl. Earth Obs., 97, 102288, https://doi.org/10.1016/j.jag.2020.102288, 2021.
Wang, Y. Q. and Liu, D. Y.: Reconstruction of satellite chlorophyll-a data using a modified DINEOF method: a case study in the Bohai and Yellow seas, China, Int. J. Remote Sens., 35, 204–217, https://doi.org/10.1080/01431161.2013.866290, 2014.
Xing, X. and Boss, E.: Chlorophyll-Based Model to Estimate Underwater Photosynthetically Available Radiation for Modeling, In-Situ, and Remote-Sensing Applications, Geophys. Res. Lett., 48, e2020GL092189, https://doi.org/10.1029/2020GL092189, 2021.
Yussof, F. N., Maan, N., and Reba, M. N. M.: LSTM Networks to Improve the Prediction of Harmful Algal Blooms in the West Coast of Sabah, Int. J. Environ. Res. Pub. He., 18, 7650, https://doi.org/10.3390/ijerph18147650, 2021.
Zhang, Q., Yuan, Q., Zeng, C., Li, X., and Wei, Y.: Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial-Temporal-Spectral Deep Convolutional Neural Network, IEEE T. Geosci. Remote, 56, 4274–4288, https://doi.org/10.1109/tgrs.2018.2810208, 2018.
Zheng, G. and DiGiacomo, P. M.: Uncertainties and applications of satellite-derived coastal water quality products, Prog. Oceanogr., 159, 45–72, https://doi.org/10.1016/j.pocean.2017.08.007, 2017.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., and D. Seidov, M. M. B.: World Ocean Atlas 2013: Volume 2, edited by: Salinity, S. L. and Mishonov, A., NOAA Atlas NESDIS 74, 39 pp., 2013.
Short summary
Changes in ocean chlorophyll-a (Chl-a) concentration are related to ecosystem balance. Here, we present high-quality gap-filled Chl-a data in open oceans, reflecting the distribution and changes in global Chl-a concentration. Our findings highlight the efficacy of reconstructing missing satellite observations using convolutional neural networks. This dataset and model are valuable for research in ocean color remote sensing, offering data support and methodological references for related studies.
Changes in ocean chlorophyll-a (Chl-a) concentration are related to ecosystem balance. Here, we...
Altmetrics
Final-revised paper
Preprint