Articles | Volume 15, issue 12
https://doi.org/10.5194/essd-15-5281-2023
https://doi.org/10.5194/essd-15-5281-2023
Data description paper
 | 
29 Nov 2023
Data description paper |  | 29 Nov 2023

A global daily gap-filled chlorophyll-a dataset in open oceans during 2001–2021 from multisource information using convolutional neural networks

Zhongkun Hong, Di Long, Xingdong Li, Yiming Wang, Jianmin Zhang, Mohamed A. Hamouda, and Mohamed M. Mohamed

Related authors

Integrating Geopolymer Pervious Concrete Pavement for Sustainable Stormwater Management: A Case Study in the UAE
Ahmed Wagih, Mohamed Hamouda, and Hilal El-Hassan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1501–1507, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1501-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1501-2025, 2025
Satellite-observed surging dynamics of North Kunchhang Glacier I in the Eastern Karakoram
Fanyu Zhao, Di Long, Chenqi Fang, Yiming Wang, and Xingwu Duan
EGUsphere, https://doi.org/10.5194/egusphere-2025-652,https://doi.org/10.5194/egusphere-2025-652, 2025
Short summary
Ice thickness and water level estimation for ice-covered lakes with satellite altimetry waveforms and backscattering coefficients
Xingdong Li, Di Long, Yanhong Cui, Tingxi Liu, Jing Lu, Mohamed A. Hamouda, and Mohamed M. Mohamed
The Cryosphere, 17, 349–369, https://doi.org/10.5194/tc-17-349-2023,https://doi.org/10.5194/tc-17-349-2023, 2023
Short summary
Performance of GPM-IMERG precipitation products under diverse topographical features and multiple-intensity rainfall in an arid region
Safa A. Mohammed, Mohamed A. Hamouda, Mohammed T. Mahmoud, and Mohamed M. Mohamed
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-547,https://doi.org/10.5194/hess-2019-547, 2020
Revised manuscript not accepted
Short summary
High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions
Xingdong Li, Di Long, Qi Huang, Pengfei Han, Fanyu Zhao, and Yoshihide Wada
Earth Syst. Sci. Data, 11, 1603–1627, https://doi.org/10.5194/essd-11-1603-2019,https://doi.org/10.5194/essd-11-1603-2019, 2019
Short summary

Related subject area

Domain: ESSD – Ocean | Subject: Biological oceanography
Quantitative imaging datasets of surface micro- to mesoplankton communities and microplastic across the Pacific and North Atlantic oceans from the Tara Pacific expedition
Zoé Mériguet, Guillaume Bourdin, Nathaniel Kristan, Laetitia Jalabert, Olivier Bun, Marc Picheral, Louis Caray-Counil, Juliette Maury, Maria-Luiza Pedrotti, Amanda Elineau, David A. Paz-Garcia, Lee Karp-Boss, Gaby Gorsky, Fabien Lombard, and the Tara Pacific Consortium Coordinators team
Earth Syst. Sci. Data, 17, 2761–2792, https://doi.org/10.5194/essd-17-2761-2025,https://doi.org/10.5194/essd-17-2761-2025, 2025
Short summary
Fish functional groups of the North Atlantic and Arctic oceans
Murray S. A. Thompson, Izaskun Preciado, Federico Maioli, Valerio Bartolino, Andrea Belgrano, Michele Casini, Pierre Cresson, Elena Eriksen, Gema Hernandez-Milian, Ingibjörg G. Jónsdóttir, Stefan Neuenfeldt, John K. Pinnegar, Stefán Ragnarsson, Sabine Schückel, Ulrike Schückel, Brian E. Smith, María Ángeles Torres, Thomas J. Webb, and Christopher P. Lynam
Earth Syst. Sci. Data, 17, 2447–2462, https://doi.org/10.5194/essd-17-2447-2025,https://doi.org/10.5194/essd-17-2447-2025, 2025
Short summary
Satellite-derived global-ocean phytoplankton phenology indices
Sarah-Anne Nicholson, Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Marié E. Smith
Earth Syst. Sci. Data, 17, 1959–1975, https://doi.org/10.5194/essd-17-1959-2025,https://doi.org/10.5194/essd-17-1959-2025, 2025
Short summary
Long-term plankton and environmental monitoring dataset from the Marine Protected Area of the Iroise Marine Natural Park (2010–2023) in the Iroise Sea, North Atlantic
Laetitia Drago, Caroline Cailliau, Patrick Pouline, Beatriz Beker, Laëtitia Jalabert, Jean-Baptiste Romagnan, and Sakina-Dorothée Ayata
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-207,https://doi.org/10.5194/essd-2025-207, 2025
Revised manuscript accepted for ESSD
Short summary
Hyperspectral library of submerged aquatic vegetation and benthic substrates in the Baltic Sea
Ele Vahtmäe, Laura Argus, Kaire Toming, Martin Ligi, and Tiit Kutser
Earth Syst. Sci. Data, 17, 1685–1692, https://doi.org/10.5194/essd-17-1685-2025,https://doi.org/10.5194/essd-17-1685-2025, 2025
Short summary

Cited articles

Beaulieu, C., Henson, S. A., Sarmiento, J. L., Dunne, J. P., Doney, S. C., Rykaczewski, R. R., and Bopp, L.: Factors challenging our ability to detect long-term trends in ocean chlorophyll, Biogeosciences, 10, 2711–2724, https://doi.org/10.5194/bg-10-2711-2013, 2013. 
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755, https://doi.org/10.1038/nature05317, 2006. 
Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R., and Brando, V. E.: A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans, Prog. Oceanogr., 123, 123–144, https://doi.org/10.1016/j.pocean.2013.12.008, 2014. 
Cao, Z. G., Ma, R. H., Duan, H. T., Pahlevan, N., Melack, J., Shen, M., and Xue, K.: A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes, Remote Sens. Environ., 248, https://doi.org/10.1016/j.rse.2020.111974, 2020. 
Download
Short summary
Changes in ocean chlorophyll-a (Chl-a) concentration are related to ecosystem balance. Here, we present high-quality gap-filled Chl-a data in open oceans, reflecting the distribution and changes in global Chl-a concentration. Our findings highlight the efficacy of reconstructing missing satellite observations using convolutional neural networks. This dataset and model are valuable for research in ocean color remote sensing, offering data support and methodological references for related studies.
Share
Altmetrics
Final-revised paper
Preprint