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Abstract. Ocean color data are essential for developing our understanding of biological and ecological phe-
nomena and processes and also of important sources of input for physical and biogeochemical ocean models.
Chlorophyll-a (Chl-a) is a critical variable of ocean color in the marine environment. Quantitative retrieval from
satellite remote sensing is a main way to obtain large-scale oceanic Chl-a. However, missing data are a major
limitation in satellite remote-sensing-based Chl-a products due mostly to the influence of cloud, sun glint con-
tamination, and high satellite viewing angles. The common methods to reconstruct (gap fill) missing data often
consider spatiotemporal information of initial images alone, such as Data Interpolating Empirical Orthogonal
Functions, optimal interpolation, Kriging interpolation, and the extended Kalman filter. However, these methods
do not perform well in the presence of large-scale missing values in the image and overlook the valuable infor-
mation available from other datasets for data reconstruction. Here, we developed a convolutional neural network
(CNN) named Ocean Chlorophyll-a concentration reconstruction by convolutional neural NETwork (OCNET)
for Chl-a concentration data reconstruction in open-ocean areas, considering environmental variables that are
associated with ocean phytoplankton growth and distribution. Sea surface temperature (SST), salinity (SAL),
photosynthetically active radiation (PAR), and sea surface pressure (SSP) from reanalysis data and satellite ob-
servations were selected as the input of OCNET to correlate with the environment and phytoplankton biomass.
The developed OCNET model achieves good performance in the reconstruction of global open ocean Chl-a
concentration data and captures spatiotemporal variations of these features. The reconstructed Chl-a data are
available online at https://doi.org/10.5281/zenodo.10011908 (Hong et al., 2023). This study also shows the po-
tential of machine learning in large-scale ocean color data reconstruction and offers the possibility of predicting
Chl-a concentration trends in a changing environment.
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1 Introduction

Chlorophyll-a (Chl-a), the primary pigment responsible for
photosynthesis in plants, plays a vital role in the global car-
bon cycle and serves as a key indicator of the health and
productivity of aquatic ecosystems (Righetti et al., 2019;
Sun et al., 2021; Mouw et al., 2016). Chl-a is a measure of
the amount of phytoplankton present in water bodies, and
changes in its concentration can indicate shifts in the bal-
ance of these ecosystems, including the onset of harmful al-
gal blooms or declines in productivity (Ho et al., 2019). Ac-
curate and timely measurement of chlorophyll-a concentra-
tions is therefore of paramount importance for understanding
and predicting carbon fluxes and other elemental cycles in
the oceans (Salgado-Hernanz et al., 2019; Laufkotter et al.,
2016).

In recent years, satellite remote sensing has become a
widely used method for monitoring chlorophyll-a concen-
trations on a global scale (Hu et al., 2012, 2019a; Feng et
al., 2021). Satellite sensors can provide synoptic coverage of
large areas, with a temporal resolution that ranges from daily
to monthly. However, there are a lot of missing data in satel-
lite products caused by cloud, sun glint contamination, and
high satellite viewing angles (Feng and Hu, 2016; Mikelsons
and Wang, 2019). For example, Over 70 % of the data are
missing in global daily ocean color products from MODIS-
Terra/Aqua and VIIRS-SNPP (refer to Fig. 1) (Feng and Hu,
2016; Liu and Wang, 2018). In addition, the spatial and tem-
poral resolutions of these measurements are often limited,
and they are subject to various sources of error and uncer-
tainty. These include atmospheric effects, such as scattering
and absorption of light, which can distort the signal and intro-
duce biases in the measurements (Hu et al., 2019a; Zheng and
Digiacomo, 2017). To address these limitations, it is useful to
combine satellite remote sensing data with other sources of
information, such as in situ measurements, model outputs,
and ancillary data (Nikolaidis et al., 2014). Conventional
methods for reconstructing missing data, such as data inter-
polation, DINEOF (Data Interpolating Empirical Orthogonal
Functions), optimal interpolation, Kriging interpolation, and
the extended Kalman filter, often rely on the spatiotempo-
ral information of the initial images alone (Wang and Liu,
2014; Hilborn and Costa, 2018; Catipovic et al., 2023; Liu
and Wang, 2018). However, these geostatistical methods are
not always effective in the presence of large-scale missing
values and do not take into account the potential contribution
of other information to the reconstruction of missing pixels
(Konik et al., 2019).

The development of robust and efficient methods for syn-
thesizing and integrating multisource information is becom-
ing increasingly important as the availability and diversity
of data sources continue to grow (Li et al., 2020). The in-
tegration of multisource information is not a trivial task as
the data sources may have different spatial and temporal
scales, resolutions, and uncertainties and may be subject to

different biases and errors. These differences can make it
challenging to reconcile and combine the data in a mean-
ingful and reliable way (Catipovic et al., 2023). With the
proliferation of sensors and platforms, the volume of data
being generated is increasing at an exponential rate, mak-
ing it difficult to manage and analyze in a traditional way.
Machine learning techniques, such as convolutional neural
networks (CNNs), offer a promising approach for handling
and extracting meaningful insights from this large and com-
plex data stream (Zhang et al., 2018). CNNs are a class of
deep learning algorithms that have proven to be highly ef-
fective for image recognition and analysis tasks. They are
particularly well suited to this problem as they can automat-
ically learn features and patterns from data and can handle
large amounts of data with high dimensionality and com-
plexity. CNNs have been applied to a wide range of re-
mote sensing applications, including the analysis of satel-
lite imagery and the integration of multisource data. A num-
ber of studies have demonstrated the effectiveness of CNNs
for analyzing global or regional daily chlorophyll-a products
(Cao et al., 2020; Jin et al., 2021; Cen et al., 2022; Yussof
et al., 2021). Most machine-learning-based data reconstruc-
tion methods, such as convolutional neural networks (CNNs)
and random forests, predominantly leverage spatiotemporal
correlations inherent in the data. They utilize valuable spa-
tiotemporal sequences to predict missing regions. Neverthe-
less, these techniques face significant challenges in yielding
satisfactory outcomes when confronted with extensive and ir-
regularly distributed missing data. Here, we propose a CNN-
based approach named Ocean Chlorophyll-a concentration
reconstruction by convolutional neural NETwork (OCNET)
for the reconstruction of global daily chlorophyll-a products
from multisource information. By emphasizing the signifi-
cance of incorporating spatiotemporally complete environ-
mental variables for chlorophyll gap-filling, OCNET demon-
strates remarkable data reconstruction performance.

The OCNET model developed here is an improved ver-
sion based on the general U-Net. One advantage of U-Net
is its ability to handle large images while maintaining high-
resolution segmentation results (Li et al., 2020; Ronneberger
et al., 2015; Andersson et al., 2021). This is achieved by us-
ing skip connections, which allow the network to skip certain
layers and merge higher-resolution information from early
layers into the final prediction (Ronneberger et al., 2015; Wa-
gle et al., 2020). This helps preserve fine-grained details of
the input image and generates more accurate segmentation
results (Krug et al., 2017). Here, we utilized this character-
istic of OCNET for a global-scale input of big data and suc-
cessfully accomplished the task of data reconstruction. Given
that the input image contains multi-level information ele-
ments at the global scale, it places high demands on how the
model extracts feature information and captures its inherent
correlations (Moran et al., 2022; Chen et al., 2019). Another
advantage of U-Net is its ability to utilize contextual infor-
mation from the entire image. Compared to other machine
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learning methods such as multiple linear regression and ran-
dom forests, U-Net excels in learning complex nonlinear re-
lationships between input data and output predictions (Ron-
neberger et al., 2015; Li et al., 2020). This is due to the use
of nonlinear activation functions and the ability to learn hier-
archical features through convolutional layers. Because arti-
ficial neural networks (ANNs) often face limitations in pro-
cessing large images and struggle to incorporate global back-
grounds into their predictions (Catipovic et al., 2023), U-Net
outperforms traditional ANNs in various image segmentation
tasks. Unlike ANNs, U-Net can handle high-resolution im-
ages and effectively incorporate global context information
into its predictions (Andersson et al., 2021; Li et al., 2020).

In the big-data era, the effective integration and utiliza-
tion of multisource information about the ocean are of im-
portance for studying ocean color. The primary objective of
this study was to propose the OCNET model, which could be
trained with environmental variables that are associated with
ocean phytoplankton growth and distribution, in order to re-
construct high-quality gap-filled Chl-a data in open oceans.
The Chl-a dataset covers the period from 2001 to 2021, with
a daily temporal resolution and a spatial resolution of 0.25◦.
Compared to traditional interpolation methods, this approach
takes full advantage of environmental information mainly
provided by ERA5 data and considers the key factors that
influence the growth and distribution of surface phytoplank-
ton in the oceans. Furthermore, this method is not limited
by the size of the ocean region or the temporal span covered
by satellite data. By providing reliable environmental infor-
mation, OCNET enables the retrospective analysis of Chl-a
concentration data from the pre-satellite era and the predic-
tion of future changes in global marine phytoplankton.

2 Data and methodology

2.1 Training-data considerations

The Ocean-Colour Climate Change Initiative (OCCCI) ver-
sion 5 and the National Oceanic and Atmospheric Ad-
ministration multi-sensor DINEOF global gap-filled data
(termed NOAA MSL12 hereafter) are two Chl-a prod-
ucts used in training the OCNET model (Table 1). OC-
CCI’s data sources include the Moderate Spectral Resolu-
tion Imaging Spectroradiometer (MERIS) sensor from the
European Space Agency, the SeaWiFS (Sea-viewing Wide
Field-of-view Sensor) and MODIS-Aqua (Moderate Resolu-
tion Imaging Spectroradiometer-Aqua) sensors from NASA,
and the National Oceanic and Atmospheric Administra-
tion’s VIIRS sensor (Visible and Infrared Imaging Radiome-
ter Suite) (Sathyendranath et al., 2019). Data can be ob-
tained starting from 1997. The Multi-Sensor Level 1 to
Level 2 (MSL12) is the NOAA official enterprise VIIRS
ocean color data-processing system (Liu and Wang, 2022).
The NOAA MSL12 dataset provides near-real-time, gap-free
global maps of chlorophyll-a concentration by merging data

from the VIIRS and OLCI-Sentinel-3A satellites and utiliz-
ing the DINEOF method to fill in missing pixels caused by
clouds, sun glint, and other factors (Liu and Wang, 2022).
The strength of this dataset lies in its broader spatial cover-
age, showcasing more marine features in coastal and inland
waters and enhancing data accuracy. In addition, Chl-a data
from OLCI-Sentinel-3B have not been applied in the produc-
tion of the OCCCI V5 or NOAA MSL12 datasets. Therefore,
Sentinel-3B data were used for the evaluation and compari-
son of the final performance of the OCNET model as an in-
dependent product.

The ocean Chl-a data of the OCCCI product cover more
than 20 years. Compared with a single-satellite product, OC-
CCI products that integrate multiple sources of data improve
data availability by complementing different data sources
(refer to Fig. 1). Due to changes in satellite data sources used
in different years, the valid data proportion of OCCCI varies
greatly in different time periods. In addition, OCCCI has
been significantly improved with the introduction of more
satellite data. However, valid observations from OCCCI are
unevenly distributed globally (referring to Fig. 1). Missing
data on more than 70 % of satellite-based products still pose
a huge obstacle to the study of ocean color (Feng and Hu,
2016). The NOAA MSL12 achieved the spatiotemporal con-
tinuity of chlorophyll concentration products by means of the
DINEOF method, but NOAA MSL12 are only available after
9 February 2018. Given the high coincidence of OCCCI and
NOAA MSL12 datasets in the selection of satellite sources,
these two datasets were selected as the main data sources.
Other Chl-a data products from single-mission satellites,
such as MODIS-Aqua/Terra and VIIRS-SNPP, which have
more severe missing values (referring to Fig. 1), were only
used for comparison in this study and were not directly ap-
plied.

We have selected four environmental variables, i.e., sea
surface temperature (SST), salinity (SAL), photosyntheti-
cally active radiation (PAR), and sea surface pressure (SSP),
as the input data for the OCNET model. These variables
play a significant role in influencing the growth and distribu-
tion of marine phytoplankton (Flynn, 2001; Han and Zhou,
2022). SST affects algal metabolic rates, enzymatic activity,
cell division rates, and growth cycles, among other biolog-
ical processes (Nelson et al., 2020). Variations in salinity
can influence osmoregulation in marine phytoplankton and
ion balance within cells (Nelson et al., 2020). Consequently,
SST and SAL are considered to be pivotal input variables in
the OCNET model. Furthermore, from a hydrodynamic per-
spective, changes in wind patterns and ocean currents can
also affect the distribution of surface algae. To capture this
impact, we have chosen to represent changes in ocean sur-
face pressure with the parameter SSP. Therefore, we selected
the reanalysis data of ERA5’s SSP and SST and the Ocean
ReAnalysis System 5’s SAL as input data for the OCNET
model.
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Table 1. Full names, spatiotemporal resolution, temporal coverage, sources, and other information of data used in this study. Last access:
2 July 2023 (applicable for all URLs in this table).

Data Variables Abbre-
viation

Unit Temporal
resolu-
tion

Spatial
resolu-
tion

Temporal
coverage

References

OCCCI
V5

Chlorophyll a Chl-a mg m−3 daily 4 km 1997.9.4–
2021

Sathyendranath et al. (2019)

MODIS-
Aqua

Photosynthetically
available radia-
tion

PAR einstein/(m2 d) daily 4 km 2002.7.4–
present

https://oceancolor.gsfc.nasa.
gov/l3

MODIS-
Terra

Photosynthetically
available radia-
tion

PAR einstein/(m2 d) daily 4 km 2000.2.24–
present

https://oceancolor.gsfc.nasa.
gov/l3

VIIRS-
SNPP

Photosynthetically
available radia-
tion

PAR einstein/(m2 d) daily 4 km 2012.1.2–
present

https://oceancolor.gsfc.nasa.
gov/l3

OLCI
S3B
NRT

Chlorophyll a Chl-a mg m−3 daily 4 km 2018.5.14–
present

https://www.star.nesdis.noaa.
gov

NOAA
MSL12

Chlorophyll a Chl-a mg m−3 daily 9 km 2018.2.9–
present

Liu and Wang (2022)

ERA5 Surface pres-
sure

SSP Pa hourly 0.25◦ 1940.1.1–
present

Hersbach et al. (2020)

ERA5 Sea surface
temperature

SST K hourly 0.25◦ 1940.1.1–
present

Hersbach et al. (2020)

ORAS5 Salinity SAL PSU monthly 0.25◦ 1958.1.1–
present

Zuo et al. (2019)

ETOPO1 Depth Dep m – 1’ – NOAA National Geophysical
Data Center (2009)

WOA2013 Salinity SAL PSU – 0.25◦ – Levitus et al. (2014)

In addition to SST and SAL, PAR is a crucial energy
source for plant photosynthesis, and its distribution is of
great importance for studying plant growth and photosyn-
thetic processes (Xing and Boss, 2021). Its spatiotemporal
variations can impact the photosynthetic efficiency, biomass
accumulation, and yield of plants (Righetti et al., 2019).
Here, we selected PAR data from satellite sources, specif-
ically MODIS-Terra/Aqua and VIIRS-SNPP, as part of the
model input. To address spatial gaps in satellite data and to
correct biases among different datasets, preprocessing and
fusion techniques were applied to the PAR data from differ-
ent satellite products (see Sect. 2.2).

Both ETOPO1 (Earth TOPOgraphy) and the World Ocean
Atlas 2013 (WOA13) data were used as auxiliary data for
determining the study area and were not input for the OC-
NET model. The ETOPO global relief model is a global dig-
ital elevation model developed by the National Geophysical
Data Center (NGDC), a NOAA department (NOAA National

Geophysical Data Center, 2009). It provides elevation data
for the Earth’s surface and finds applications in areas such as
topographic maps, hydrological models, oceanography, and
other related fields. Data of ETOPO1 were selected because
of the 1 min resolution it offers. ETOPO1 is widely utilized
in scientific and research communities due to its high accu-
racy, serving various purposes like mapping, visualization,
resource management, and environmental modeling (Moran
et al., 2022; Righetti et al., 2019). The World Ocean Atlas
2013 (WOA2013) is a comprehensive collection of objec-
tively analyzed climatology data for various oceanic param-
eters, including temperature, salinity, oxygen, phosphate, sil-
icate, and nitrate (Zweng et al., 2013). It was provided by
NOAA’s National Oceanographic Data Center – Ocean Cli-
mate Laboratory. Salinity data provided by WOA13 are often
used as a reference to analyze abnormal variations in ocean
salinity (Righetti et al., 2019; Li et al., 2017).
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Figure 1. Valid data proportion of each satellite-based Chl-a product during 2001–2021. The global distribution of the valid chlorophyll-a
(Chl-a) observations ratio was examined using (a) MODIS-Aqua, (b) MODIS-Terra, (c) VIIRS-SNPP, and (d) OCCCI satellite datasets,
along with an examination of the (e) temporal variation over their respective coverage periods.

The study area considered here mainly focuses on the mid-
dle and low latitudes of the open-ocean area, constrained pri-
marily due to limitations in satellite data sources. In particu-
lar, satellite-based Chl-a products exhibit a substantial num-
ber of missing values in high latitudes and coastal regions
(referring to Fig. 1). Additionally, the accuracy of chloro-
phyll concentration retrievals is affected mostly by the pres-
ence of high concentrations of suspended matter resulting
from sediment discharge from rivers in coastal areas. To mit-
igate the influences stemming from complex coastal envi-
ronments on the analysis of ocean color, we excluded re-
gions from seas shallower than 200 m and from seas with

surface salinities below 25, as determined by ETOPO1 and
WOA2013 datasets, respectively (Righetti et al., 2019).

2.2 Data preprocessing

For the OCCCI V5 data, we selected its climatology prod-
uct as the background field. Because the OCCCI climatol-
ogy data only provide valid observations for 12 months,
temporal-smoothing interpolation was performed to cover
each ocean grid cell from 1 January 2001 to 31 Decem-
ber 2021. Due to the presence of missing values in both the
daily and monthly data products of OCCCI V5, it is not suit-
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Table 2. Maximum, minimum, and mean values of environmental
variables obtained from satellite and reanalysis datasets.

Variables Max Min Mean Units

SST 310.06 269.17 286.821 K
SSP 106 980 54 834 96 643 Pa
PAR 70.329 0 32.2007 einstein/(m2 d)
SAL 43.467 0 34.169 PSU

able for direct use as model input. Therefore, the climatol-
ogy product without missing values in the spatial domain was
used to set the Chl-a baseline.

As PAR data from different satellite sources were used in
this study, preprocessing and bias correction were applied.
The overlapping period of MODIS and VIIRS data from
2012 to 2021 was chosen as the reference, using a ratio-based
method with MODIS-Aqua as the baseline for bias correc-
tion. In cases of missing values in the spatial domain, the
three different products were used for complementarity. If
effective observational values were not available, linear spa-
tial interpolation was performed. Finally, a spatiotemporally
continuous PAR dataset was obtained for model input.

For the reanalysis datasets, as they are already spatiotem-
porally continuous with a spatial resolution of 0.25◦, no addi-
tional preprocessing is required. The average of the first five
levels of SAL data (approximately 5.14 m) from ORAS5 was
taken as the input. It should be noted that ORAS5 has a spa-
tial resolution of 9 km near the polar regions. However, this
study does not consider the inversion of Chl-a data in high-
latitude areas. Considering the different spatial resolutions of
the data, apart from the reanalysis data, the other input data
for the model in this study were resampled to 0.25◦ using the
nearest interpolation method.

When using the data mentioned above as inputs for the
OCNET model, normalization is necessary. For environmen-
tal variables (SST, SSP, SAL, and PAR), normalization was
performed according to Eq. (1), where the parameters used in
the formula were pre-calculated (Table 2). Due to the pres-
ence of numerous low values in the Chl-a concentration data
in open waters, the Chl-a data are first transformed using nat-
ural logarithm and then normalized to achieve a uniform dis-
tribution of the input data (Eq. 2).

XN =
X−X

Xmax−Xmin
(1)

CN =
ln(C)+ 4.61

4.61× 2
(2)

In the above equation, X represents different environmental
variables, subscript N represents the normalized variables,
subscripts max and min correspond to the maximum and
minimum values in Table 2, and X represents the mean. C
represents Chl-a data. Values of Chl-a concentration lower

than 0.01 mg m−3 were all set to 0.01 mg m−3. Actually, the
accuracy of satellite retrievals cannot reach such a small
value.

2.3 Model architecture

Data-driven deep learning algorithms can extract high-level
information from multisource input data using multiple non-
linear processing layers (Li et al., 2020; Cen et al., 2022).
In the research of large-scale, long-term, and multi-data sce-
narios, deep learning algorithms excel at discovering data
patterns and inherent connections (Li et al., 2020; Anders-
son et al., 2021). Given the applicability of CNNs to satel-
lite remote sensing imagery and climate model data, we con-
structed the global OCNET model consisting of 405 regional
CNNs. Specifically, each CNN employed in the individual
regions was based on the U-Net model (referring to Fig. 2).
U-Net, initially designed for medical image segmentation,
is a variant of the CNN (Ronneberger et al., 2015). Across
various applications, U-Net has been consistently proven to
be highly effective in terms of learning accuracy and pixel-
wise mappings (Andersson et al., 2021; Urakubo et al., 2019;
Wagner et al., 2019).

Here, we applied the OCNET to reconstruct global Chl-a
concentration data in open-ocean areas considering environ-
mental variables that are associated with ocean phytoplank-
ton growth and distribution. SST, SAL, and SSP from reanal-
ysis data and PAR from satellite observations were selected
as the input of OCNET to correlate with the environment and
phytoplankton mass. The whole area considered in this study
covers the latitude 45◦ N to 45◦ S, and the longitude 180◦W
to 180◦ E. The open ocean is divided into 45 horizontal and
9 vertical zones, with 405 in total. Each area has a size of
16◦× 16◦ and a side length of 64 grid cells. There is an 8◦

overlap in the latitudinal direction between each pair of ad-
jacent regions at the same latitude. Additionally, there is a
6.25◦ overlap in the longitudinal direction between each pair
of adjacent regions at the same longitude. This is to reduce
the boundary effect caused by dividing regions for network
training separately.

Inputs to the network include Chl-a_OCCCI, Chl-a_N,
SST, SAL, SSP, PAR, and SST_d. Chl-a_OCCCI refers to
the climatology data from OCCCI, used as the background
field of the dataset, with only one value per month. Consid-
ering the typical monthly growth cycle of phytoplankton, we
calculated the environmental factors influencing marine al-
gae growth by averaging the data from the preceding month
as input variables. Therefore, SST, SAL, and PAR took the
average of 1 month forward as input to OCNET. In addition,
the values of SST_d and SSP were also taken as the input of
the day, respectively.

There are, in total, 405 zones of size 64×64 globally. Each
zone has its own independent U-Net. Each network under-
goes a maximum of 100 training steps to ultimately output
the network model for each region. First, the input data with

Earth Syst. Sci. Data, 15, 5281–5300, 2023 https://doi.org/10.5194/essd-15-5281-2023



Z. Hong et al.: A global daily gap-filled chlorophyll-a dataset 5287

Figure 2. Flowchart of the developed OCNET model in each zone. The OCNET model, comprised of deep learning U-Net models, receives
three monthly averaged variables (SST, SAL, and PAR) and two daily real-time variables (SST and SSP) as input. The climatology Chl-a of
OCCCI and daily Chl-a data of NOAA MSL12 were treated as the background and target set, respectively.

a size of 64× 64× 7 are passed through the initial convolu-
tional layer, which consists of 64 filters. Each filter has a grid
size of 3× 3 and a stride of 1. Subsequently, an activation
function is applied to the data, and the dimension of the fea-
ture map is reduced to half of its original size, resulting in a
size of 32×32×64, through a pooling-layer operation of size
2× 2. After completing this initial step, the subsequent op-
erations follow a similar pattern. The feature map undergoes
a halving of its spatial dimension through pooling, while the
number of channels is doubled through convolution. The fi-
nal feature map obtained from these operations has a size of
8×8×512, and it serves as input for the subsequent decoding
process. The decoding process mirrors the encoding process
described earlier. It is important to note that the encoding and
decoding networks are connected through skip connections,
enabling the preservation of information that may be lost dur-
ing downscaling. This U-Net structure facilitates the preser-
vation of detailed information from previous layers during
the subsequent decoding stage. Finally, the last layer con-
sists of a single filter that outputs a feature map with a size of
64×64×1, representing a single channel of data. Finally, by
inputting environmental information from 2001 to 2021 into
the OCNET model, a spatiotemporal continuous dataset of
Chl-a concentration was reconstructed, covering the period
from 2001 to 2021.

2.4 Statistical tests

2.4.1 Evaluation of OCNET output

In the simulation performed by OCNET, the data from the
year 2021 were selected as the testing set. This portion of the
data was excluded from model training and validation and
was solely used for evaluating the quality of the final data.
The commonly used evaluation metrics, including CC, bias,
and RMSE, were employed for this purpose. The specific for-

mulae used for the calculations can be found in Table 3, while
the evaluation results are presented in Sect. 3.2.

2.4.2 Evaluation using the ETC method

Due to the lack of enough reliable in situ measurements for
the assessment of global-ocean Chl-a, the extended triple
collocation (ETC) method was used to indirectly evaluate the
quality of OCNET model output data (Mccoll et al., 2014).
The ETC method uses exactly the same assumptions as the
triple collocation (TC) method. The TC method utilizes three
mutually independent datasets to assess the relative errors of
the data without requiring the knowledge of the true value.
This method was initially developed by Stoffelen (1998) and
has been widely used for soil moisture assessment (Dorigo
et al., 2010; Miralles et al., 2010). The ETC method, im-
proved by Mccoll et al. (2014) from the TC method, provides
the correlation coefficient as another performance index. The
ETC method has also been extensively applied, such as in
the evaluation of sea surface temperature data (Gentemann,
2014).

Because the Sentinel-3B data are not used in the OC-
CCI and NOAA MSL12 datasets, these were selected as
an independent dataset for evaluation. Chl-a data products
from Sentinel-3B, NOAA MSL12, and OCNET were used
in the ETC method. Considering the available time period
of Sentinel-3B data, the evaluation covers the period from
7 June 2019 to 31 December 2021. Due to the presence of nu-
merous missing values in the Sentinel-3B data products, grid
cells with severe missing values, i.e., grid cells with fewer
than 30 valid days, were excluded, and the remaining grid
cells were retained for evaluation. It should be noted that,
since OCNET was trained using NOAA MSL12 as the target
set, they cannot be considered to be mutually independent
datasets. This evaluation mainly utilizes Sentinel-3B data as
a third-party source to validate the reliability of the OCNET
model. It is possible that the results of the ETC in some grid
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Table 3. Statistical metrics used in evaluating the reconstructed Chl-a (C) against the observed data (Cg) from the NOAA MSL12 during
the testing period. An overbar donates the mean during evaluation periods. N denotes the number of data pairs. Cov denotes the covariance,
and σ is the standard deviation.

Performance score Score symbol Equation

Pearson’s correlation coefficient CC CC= cov(C,Cg)
σ (C)σ (Cg) (3)

Bias Bias BIAS=
∑

(C−Cg)
Cg

(4)

Root mean square error RMSE RMSE=
√∑

(C−Cg)2

N
(5)

cells may yield a negative square of the correlation coeffi-
cient or root mean square error. This can happen if the sam-
ple size is too small or if one of the assumptions of ETC is
violated. In the final presentation of results, these grid cells
were excluded.

The calculation method is based on Eqs. (6)–(11), where
Cij represents the covariance between the ith and j th data
points. The calculated correlation coefficient (tCC) and root
mean square error (tRMSE) based on the TC method are de-
noted as ρ and σ , respectively. It should be noted that the
magnitude of the tCC and tRMSE only reflects the relative
performance as opposed to the absolute values.

σt,1 =
√
C11−C12C13/C23 (6)

σt,2 =
√
C22−C21C23/C13 (7)

σt,3 =
√
C33−C31C32/C21 (8)

ρt,1 =±
√
C12C13/C11C23 (9)

ρt,2 =±sign(C13C23)
√
C12C23/C22C13 (10)

ρt,3 =±sign(C12C23)
√
C13C23/C33C12 (11)

3 Results

3.1 Spatial variations and trends in global Chl-a
estimates during 2001–2021

We have developed high-quality gap-filled Chl-a data in
open oceans using the OCNET model. The dataset cov-
ers the time period from 2001 to 2021 and has a spatial
resolution of 0.25◦, with a daily temporal resolution. We
applied the natural logarithm transformation to the Chl-a
concentration values when generating global maps (refer to
Fig. 3). This transformation was necessary due to the rel-
atively low Chl-a concentrations in most sea areas but the
relatively high concentrations in areas experiencing algal
blooms. There are high chlorophyll concentrations in the
sea areas near the west coast of Africa (∼ 2.2 mg m−3), the
east coast of Asia (∼ 1.1 mg m−3), and the west coast of the
Americas (∼ 2.3 mg m−3), which indicates a higher likeli-
hood of algal blooms in these regions. Chl-a concentrations
near the Equator and in regions above 30◦ latitude are higher
than in open-ocean regions between 10 and 20◦ latitude. In

addition, oceanic regions far from the continents, such as
the Pacific Ocean, Indian Ocean, and Atlantic Ocean, ex-
hibit low chlorophyll concentration distributions (less than
0.05 mg m−3). This also suggests a higher possibility of al-
gal blooms in coastal areas to some extent.

To ensure spatial continuity in the global Chl-a concentra-
tion product, the data underwent regional processing before
being input into the OCNET model. Subsequently, overlap-
ping region processing and image stitching were performed,
resulting in a seamless global Chl-a concentration product
without noticeable discontinuity or fragmentation. Although
the OCNET model was trained separately for each region, the
final results obtained after adequate data preprocessing and
sufficient training steps were consistent and globally contin-
uous. This outcome further highlights the effectiveness of the
OCNET model in global data reconstruction.

Trends in Chl-a concentration in the global-ocean area
from 2001 to 2021 according to the output of the OCNET
model were derived (refer to Fig. 4). To emphasize regions
exhibiting clear trends, data in this section were not subjected
to natural-logarithm transformation and were magnified in-
stead (please note that the unit is 10−2 mg m−3 decade−1).
In general, the sea areas closer to continental land exhibit
more significant trends (refer to Fig. 4). Although the sea
areas near the west coast of Africa show high chlorophyll
concentrations (referring to Fig. 3), the two hemispheres,
the Northern Hemisphere and the Southern Hemisphere, ex-
hibit different trend patterns. Specifically, the sea areas on
the western side of the northern hemisphere of Africa show
a clear upward trend in chlorophyll concentration (∼ 4×
10−2 mg m−3 decade−1), while the sea areas on the western
side of the southern hemisphere of Africa show a significant
downward trend (∼−8× 10−2 mg m−3 decade−1). The sea
areas near North America predominantly exhibit a notice-
able downward trend (∼−5× 10−2 mg m−3 decade−1). The
islands around the northern part of South America show a
pronounced decrease in chlorophyll concentration (∼−5×
10−2 mg m−3 decade−1), while the sea areas on the western
side exhibit distinct increasing or decreasing trends at differ-
ent latitudes. The chlorophyll concentration variation around
Japan in eastern Asia shows the most significant trend. The
sea areas near Japan demonstrate a decrease in chlorophyll
concentration at lower latitudes and an increase at higher lat-
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Figure 3. Natural logarithm of the OCNET model output Chl-a during 2001–2021. Light blue represents land areas. White denotes areas
that are not considered in this study.

Figure 4. Global Chl-a trends from OCNET over the period January 2001–December 2021. Regions with significant trends (p < 0.05) are
marked with black dots.

itudes. In general, there are more areas in the open oceans
worldwide where Chl-a concentration shows a decreasing
trend than areas where it shows an increasing trend.

3.2 Temporal variations in Chl-a estimates in different
ocean regions

To facilitate the analysis and evaluation of regional data, we
divided the study area into 10 regions based on latitude, lon-
gitude, and the range of oceans (referring to Fig. 5). The di-

vision of sea areas considered the characteristics of the re-
gions and the influence of ocean currents, taking into account
the division of biogeochemical provinces (Reygondeau et al.,
2013). To avoid excessive complexity resulting from overly
detailed regional divisions, a final selection of 10 regions
was determined. This study calculated and presented the Chl-
a concentration products for these 10 regions in a 20-year
time series. Due to the OCNET model’s target dataset being
NOAA MSL12, the output results of the OCNET model are
consistent with NOAA MSL12 after 9 February 2018. How-
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ever, the results of the OCNET model are noticeably lower
than the results of OCCCI V5, particularly in regions 2, 4,
6, 7, 8, and 9 (referring to Fig. 5). The primary reason for
this systematic bias is the discrepancy between the NOAA
MSL12 data and the OCCCI V5 data products.

The long-term Chl-a concentration trends in most regions
are relatively small, with changes within 0.001 mg m−3 yr−1,
except for region 3 (refer to Fig. 5). In terms of seasonal vari-
ations, regions 3, 5, and 9 exhibit larger intra-annual fluctua-
tions. On the other hand, regions 4, 7, and 8, which encom-
pass a wider range of low Chl-a concentrations (referring to
Fig. 3), show smaller seasonal fluctuations. It is worth noting
that OCCCI V5 and OCNET show significant deviations in
region 9, where there are higher Chl-a concentrations (par-
ticularly during the period from 2010 to 2015). Considering
the fact that region 9 mainly covers the sea areas surrounding
the Americas, it is likely influenced by human activities. Ad-
ditionally, the satellite retrieval of Chl-a concentration data
in this region is of poorer quality due to high sediment con-
centrations and turbidity near the coastline. This partially ex-
plains the significant interannual variability observed in OC-
CCI V5 products for region 9. Furthermore, both OCCCI
V5 and NOAA MSL12 products have instances of unusually
high Chl-a values, such as in regions 7 and 10 for OCCCI
V5 and in region 4 for NOAA MSL12. These abnormally
high Chl-a concentrations, which surpass typical values for
the respective years, could be due to algal blooms or satellite
data quality issues. Overall, from the long-term trends, most
regions show small magnitudes of change, with more regions
exhibiting a decreasing trend.

3.3 Evaluation of OCNET’s performance

The target dataset for the OCNET model is the NOAA
MSL12 data product, with a time span from 9 February 2018
to 31 December 2021. Details of model construction are ex-
plained in Sect. 2.3, where the data were divided into train-
ing, validation, and testing sets in a ratio of 7 : 1.5 : 1.5.
Three statistical metrics, i.e., CC, bias, and RMSE, were se-
lected to evaluate the training performance of the OCNET
model (Fig. 6 and Table 4) for different regions (refer to
Fig. 5).

From the daily evaluation, it is shown that the model per-
forms well (referring to Fig. 6). The median values of CC for
the training set are mostly above 0.6. The performances of
the validating set and the testing set are similar, but individ-
ual regions show poor performance. For example, in the val-
idating set, the median values of CC for regions 6, 9, and 10
are around 0.4 and 0.5, and for region 9 in the testing set, the
median value of CC is around 0.4. This corroborates the find-
ings in Sect. 3.1 that region 9, being mostly near the Ameri-
can continent, is heavily influenced by human activities, and
the satellite data quality in coastal areas is also poorer. In
terms of bias, the performance of the training set is excellent,
with biases within a small range for each region. The boxplot

ranges for the validating set and the testing set also fluctuate
within 0.2. It is worth noting that, due to the low Chl-a con-
centrations in most marine areas, the calculated biases are
defined as relative biases (with the denominator being the
mean of the target dataset). Therefore, it is possible to have
higher biases in regions with low Chl-a concentrations. For
the RMSE, both the training set, validating set, and testing
set are below 0.2, with most of them being below 0.1, indicat-
ing excellent performance. Regions 6 and 8 have the lowest
RMSE values. This may be because regions 6 and 8 mostly
cover low-Chl-a-concentration offshore areas with minimal
seasonal fluctuations (referring to Fig. 5).

According to the results of the Chl-a concentration rate
of change in each region, it can be observed that most re-
gions show relatively small trends, as Table 4 shows. Most
regions exhibit a decreasing trend, which is consistent with
the conclusions of existing related studies (Le Grix et al.,
2021; Beaulieu et al., 2013; Signorini et al., 2015). Based on
the results of the OCNET model, regions 2, 3, and 5 show
larger decreasing magnitudes compared to the other regions,
which also exhibit a decreasing trend. According to the re-
sults of OCCCI, except for regions 4, 7, and 8, which show
small increasing trends, the other regions demonstrate a de-
creasing trend, with regions 3, 6, 9, and 10 showing more
pronounced declines. As for NOAA MSL12, except for re-
gions 6 and 8, which show an upward trend, the other regions
display a decreasing trend. Due to the relatively short time
series of NOAA MSL12, it cannot reflect long-term trend
characteristics. It can be seen that NOAA MSL12 shows a
significant decrease in Chl-a concentration in regions 1, 3, 5,
7, 9, and 10. This overall decline exhibited by NOAA MSL12
directly influences the training results of the OCNET model.
Therefore, OCNET and OCCCI share similarities in long-
term trends but may have differences in individual regions.

From the comparison results with the target data NOAA
MSL12, the OCNET model has effectively learned the rela-
tionship between environmental data and Chl-a concentra-
tion variations (referring to Fig. 7). At the global scale, the
overall performance of CC is good, with most regions being
above 0.7. Regions with lower CC are mainly concentrated in
the eastern tropical Pacific, where the OCNET model output
shows apparent systematic biases compared to OCCCI (re-
ferring to Fig. 5). Due to the low mean Chl-a concentration in
region 8 (referring to Fig. 3), the RMSE and BIAS of region
8 are better than other regions. The preliminary evaluation
results in region 8 suggest that OCNET’s performance is not
as good as in other areas. This may be related to the specific
climate characteristics or low satellite data quality in that re-
gion. The complex factors ultimately result in OCNET’s less
optimal learning effect in region 8. For the density distribu-
tion maps of the evaluation results for the training, validation,
and testing sets, the performance of the training set is gener-
ally excellent. The performances of the validation and test-
ing sets are comparable. From the results of bias, the training
set shows a clear tendency of underestimation (referring to

Earth Syst. Sci. Data, 15, 5281–5300, 2023 https://doi.org/10.5194/essd-15-5281-2023



Z. Hong et al.: A global daily gap-filled chlorophyll-a dataset 5291

Figure 5. Global open ocean was divided into 10 regions in this study, and the temporal variations of Chl-a from 2001 to 2021 are shown
for each region. The blue line represents the output results of the OCNET model, the red line represents the results from OCCCI V5, the
green line represents the results from NOAA MSL12 data, and the dashed dark line represents the linear fit of OCNET. The trends of OCCCI
V5 and the OCNET model outputs during 2001 to 2021 are indicated with their respective color labels in the top-left corner of the temporal
variation plot. For comparison purposes, we only consider and display calculations based on grid cells with valid values from OCCCI V5.
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Figure 6. Boxplot of evaluation results of the OCNET model in each region.

Fig. 7d) compared to the validating and testing sets, which
exhibit less underestimation but are less pronounced. This
may be due to the smoothing effect of OCNET on some ab-
normally high values in the satellite data (Sect. 3.2). In sum-
mary, the evaluation results indicate that OCNET performs
exceptionally well in the reconstruction of global open-ocean
Chl-a concentration data.

3.4 Extended triple-collocation evaluation

Outputs of the OCNET model, NOAA MSL12, and Sentinel-
3B’s Chl-a concentration data were selected for the ETC
evaluation method. It should be noted that the Sentinel-3B
dataset was considered to be independent of the other two
datasets, while the output of OCNET is not independent of
the NOAA MSL12 dataset. Therefore, the evaluation results
are biased towards OCNET and NOAA MSL12 data and may
underestimate Sentinel-3B data. The purpose of the ETC
method evaluation here was to demonstrate the quality of
OCNET output data compared to NOAA MSL12 data. The
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Table 4. Chl-a concentration change rates for each region from three datasets and the median values of evaluation metrics (including the
training set, validating set, and testing set) for the OCNET model.

Region Change rate (×10−4 mg m−3 yr−1) Evaluation index

OCNET OCCCI NOAA MSL12 CC Bias RMSE

1 −3.5 −1.1 −103.3 0.73 −0.06 0.03
2 −7.1 −1.9 −1.5 0.78 −0.08 0.04
3 −13.3 −16.7 −91.2 0.75 −0.07 0.04
4 −4.0 7.1 −17.6 0.72 −0.08 0.04
5 −5.9 −4.9 −94.4 0.76 −0.09 0.04
6 −3.5 −8.6 3.5 0.66 −0.09 0.02
7 −3.1 3.2 −26.0 0.71 −0.06 0.04
8 −0.8 1.0 6.1 0.63 −0.03 0.02
9 −1.6 −6.1 −96.0 0.56 −0.07 0.04
10 −3.5 −9.1 −29.8 0.64 −0.08 0.03

low absolute values of the evaluation results do not neces-
sarily imply that the Sentinel-3B dataset is unreliable. Ad-
ditionally, due to algorithmic reasons, grid cells with outlier
data were excluded. To highlight relevant information, Fig. 8
only includes the results of Sentinel-3B data in the interval
distributions (e) and (f) while omitting the global distribu-
tion of the metrics (which mostly perform worse). It should
be noted that tCC and tRMSE mentioned in Sect. 3.4 are dif-
ferent from those in Sect. 3.3. The metrics in Sect. 3.4 can
only reflect the relative ranking.

By referring to Fig. 8(a–b), the output data of the OCNET
model show a similar distribution to NOAA MSL12 data in
the global tCC distribution, with most regions above 0.7. In
the interval distribution (refer to Fig. 8e), the proportion of
OCNET model output data exceeding 0.8 is approximately
12 %, slightly lower than NOAA MSL12’s 14 %. Regions
with poorer tCC evaluation results are mainly distributed in
the eastern tropical Pacific where there are significant miss-
ing values in tCC, and the performance of OCNET is slightly
lower than in other regions. It should be noted that, in the
ocean areas near the American continent, there is a preva-
lent occurrence of tCC values below 0.5. This is similar to
the evaluation results in Sect. 3.3, where the training per-
formance for region 9 is also slightly lower than other re-
gions (referring to Fig. 7). Additionally, in the southern hemi-
spheric region of the Atlantic Ocean, OCNET seems to ex-
hibit higher tCC values in the middle compared to on the
northern and southern sides, which is a different characteris-
tic from the NOAA MSL12 dataset.

By referring to Fig. 8f, from the results of tRMSE, the
model output of OCNET is slightly better than that of NOAA
MSL12 data. Specifically, NOAA MSL12 exhibits poorer
tRMSE performance in the sea area near the west coast of
Africa. This area is also characterized by high Chl-a con-
centration and significant interannual variations (referring to
Figs. 3 and 4). While OCNET exhibits similar high tRMSE
values in the ocean areas near the western side of Africa as

NOAA MSL12, the distribution range is smaller compared to
NOAA MSL12. Additionally, in the ocean areas near South
America, both OCNET and NOAA MSL12 show small-scale
high tRMSE values. It is worth mentioning that, even for
Sentinel-3B, the majority of tRMSE values are concentrated
below 0.4. This may be related to the fact that most of the
ocean Chl-a concentrations are relatively low.

4 Discussion

4.1 Factors affecting the distribution of marine
phytoplankton

We focused on the surface chlorophyll-a (Chl-a) concentra-
tion as an indicator of the distribution of phytoplankton in the
ocean surface layer. The distribution of marine phytoplank-
ton is influenced by various factors, including light, temper-
ature, nutrients, salinity, hydrodynamic conditions, and bio-
logical interactions (Behrenfeld et al., 2006; Ducklow et al.,
2022; Feng et al., 2021). Among them, light, temperature,
salinity, and hydrodynamics are directly reflected in the input
data of the OCNET model. However, the influences of nu-
trients and biological interactions are more complex. Differ-
ent phytoplankton communities require different major nutri-
ents such as nitrogen, phosphorus, and silicon (Powell et al.,
2015; Takeda, 1998). The biological interactions also include
predation by zooplankton and the impact of human activities
in coastal areas. Due to the lack of publicly available reliable
quantitative data on these two aspects, they are not consid-
ered in this study.

Considering the correlation between SST, SAL, and PAR
with the growth cycle of phytoplankton, when creating input
data samples for the OCNET model, the mean values from
1 month prior were selected as variables. However, hydro-
dynamic conditions have real-time effects on the distribution
of planktonic algae so SSP and SST were taken as daily val-
ues for input. It is worth mentioning that surface wind speed
variations also have a direct impact on the movement of sur-
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Figure 7. Evaluation results of OCNET based on the NOAA MSL12 dataset. Panels (a), (c), and (e) represent the global distribution maps
of CC, RMSE, and bias from 9 February 2018 to 31 December 2021, respectively. Panels (b), (d), and (f) display the density distributions of
the evaluation results for CC, RMSE, and bias across the training, validating, and testing sets, respectively. Note that RMSE took logarithm
base 10.

face phytoplankton in the ocean. However, wind speed not
only includes direction and magnitude but also fluctuates sig-
nificantly in terms of both direction and magnitude within a
day. Therefore, simply taking daily averages as model inputs
would not suffice. Additionally, selecting too many variables
can lead to overfitting or poor training performance due to
limitations in the quantity of sample data.

According to the results of the OCNET model (referring
to Fig. 3), regions with higher Chl-a concentration are gen-
erally located near continents. From the perspective of hy-
drodynamic conditions, hydrological factors such as water
currents, ocean currents, and tides have a significant influ-
ence on the distribution and aggregation of phytoplankton.
They affect the horizontal migration, vertical mixing, and nu-

trient transport of phytoplankton. The nearshore waters have
relatively low seawater velocity, coupled with features such
as coastlines, underwater ridges, and archipelagos, which, to
some extent, contribute to the retention and aggregation of
phytoplankton. In addition, river inflows into the ocean often
bring abundant nutrients (Slomp, 2011; Wang et al., 2016),
creating favorable conditions for the growth of phytoplank-
ton (Liu et al., 2022).

Global variations in ocean temperature also have an im-
portant impact on the growth of phytoplankton. With the
continued increase in global sea temperatures, temperature
anomalies can also lead to anomalies in Chl-a concentration
(Liu et al., 2022; Gruber et al., 2021; Le Grix et al., 2021).
Global ocean warming results in more pronounced stratifica-

Earth Syst. Sci. Data, 15, 5281–5300, 2023 https://doi.org/10.5194/essd-15-5281-2023



Z. Hong et al.: A global daily gap-filled chlorophyll-a dataset 5295

Figure 8. Evaluation results based on the ETC evaluation method. Global distribution map of the tCC of Chl-a for (a) OCNET and (b) NOAA
MSL12. Global distribution map of the tRMSE of Chl-a for (c) OCNET and (d) NOAA MSL12. Interval distribution of (e) tCCs and
(f) tRMSEs for the three products was calculated using the ETC method.

tion of the ocean, altering the depth of the mixed layer and
reducing vertical mixing between the surface layer and the
cold, nutrient-rich layer below (Liu et al., 2022; Le Grix et
al., 2021). The reduction in nutrients ultimately leads to a
decrease in Chl-a concentration in the ocean surface layer.
However, the declining trend in Chl-a concentration over
20 years does not necessarily indicate a reduction in algal
blooms. On the contrary, the frequency of extreme events as-
sociated with algal blooms may be continuously increasing
due to the influence of climate change (Feng et al., 2021; Dai
et al., 2023).

In conclusion, understanding and studying these influenc-
ing factors are crucial for comprehending the ecological and
biogeochemical processes of marine phytoplankton. A thor-

ough investigation of the interactions among these factors
can lead to better predictions and explanations of the growth
and distribution patterns of phytoplankton. Subsequent re-
search can further focus on the impact of human activities
in coastal areas on the growth of marine phytoplankton.

4.2 Uncertainty in ocean color data from satellite
remote sensing

Satellite remote sensing is one of the important technolo-
gies for obtaining long-term and large-scale ocean color
data (Groom et al., 2019). However, there is uncertainty in
the satellite data inversion process, degrading the accuracy
(Groom et al., 2019; Hu et al., 2019a; Jiang and Wang, 2013).
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The first factor is the influence of atmospheric correction al-
gorithms. The selection of models and parameters can affect
the satellite data during the atmospheric correction process.
In addition, coastal areas and inland lakes closer to land of-
ten have more turbid waters, and the presence of high con-
centrations of suspended particles in complex water environ-
ments makes it more difficult for satellites to accurately re-
trieve water color information from the water surface (Lian,
2021; Wang et al., 2021; Zheng and Digiacomo, 2017). Fur-
thermore, weather and environmental factors such as clouds
and fog can partially or completely obscure the target water
areas, posing important challenges to satellite data acquisi-
tion (Zheng and Digiacomo, 2017; Wang et al., 2021).

In practical applications, in situ measurements are typi-
cally used to calibrate and fit parameters for satellite data (Hu
et al., 2012). However, obtaining a large amount of continu-
ous shipborne measurement data is challenging, and publicly
available in situ data often suffer from problems such as in-
consistent formats, varying measurement standards, complex
composition of research institutions, and unclear data quality.
Therefore, the application of in situ data is limited for study-
ing large-scale, long-term time series of Chl-a concentration
variations. In this study, to further demonstrate the data qual-
ity of OCNET outputs comparable to NOAA MSL12, an
indirect evaluation method using ETC was employed. The
evaluation results not only confirmed the excellent training
performance of the OCNET model but also indicated signif-
icant differences among different satellite products, as evi-
denced by the low evaluation indicators for Sentinel-3B (re-
ferring to Fig. 7). Therefore, when applying satellite prod-
ucts of Chl-a concentration data, it is important to carefully
select and correct for biases (Krug et al., 2017). It should be
noted that the global distribution map of ETC evaluation re-
sults shows a significant number of missing values (referring
to Fig. 7). These missing values primarily stem from data
gaps in Sentinel-3B and issues within the algorithm itself,
resulting in negative squared evaluation metrics. Short data
sequences or data that do not conform to the algorithm’s un-
derlying assumptions can lead to unusable results from the
ETC algorithm. The final result analysis is based solely on
grid cells with valid values.

The main purpose of our study was to address the serious
issue of missing spatial values in existing satellite datasets.
It should be noted that the satellite-derived water color data
themselves still have errors that are difficult to correct (Wang
et al., 2021). To improve accuracy, algorithms can be ap-
plied to differentiate different concentrations, such as OCx
and CI algorithms (Hu et al., 2012), or specific parameter fit-
ting can be performed for different regions (Li et al., 2019).
However, the accuracy of satellite sensors, the resolution, and
other factors still influence the inversion accuracy. The accu-
racy of satellite data is not the focus of this study. Neverthe-
less, satellite data can still provide important references for
algal blooms on a global scale (Wang et al., 2021; Feng et
al., 2021). An anomaly algorithm can also be used to reduce

the impact of systematic biases (Wang et al., 2021; Stumpf,
2001). It may be beneficial to employ machine learning tech-
niques for anomalies of Chl-a concentration, enabling better
prediction of extreme events.

4.3 Applications of OCNET in the future

The variation of Chl-a concentration in the global-ocean sur-
face is influenced by various complex factors, which poses
challenges to accurately retrieving Chl-a concentration. We
selected Chl-a data products retrieved from satellite data as a
reference, supplemented by reanalysis data to provide envi-
ronmental factor information. By combining the advantages
of machine learning in big-data analysis and simulation, we
ultimately reconstructed a global-scale, long-term time series
of Chl-a concentration datasets.

It is worth noting that this study intentionally excluded
coastal regions in the selection of the study region, due
mostly to the poor performance of satellite data in coastal
regions. Currently, most satellite data algorithms for Chl-a
retrieval are based on the absorption peak of Chl-a in the
blue spectral band (Hu et al., 2019b, 2012). This approach is
highly applicable in open waters but can be significantly af-
fected by interference in coastal regions, particularly in cases
of high suspended-matter concentration or colored dissolved
organic matter (CDOM) (Blondeau-Patissier et al., 2014).
Although adjustments can be made to the retrieval algorithms
based on localized measurements, there is significant vari-
ability in water composition across different coastal regions.
This has resulted in poor performance of current satellite re-
trieval algorithms for estimating global Chl-a concentrations
in coastal areas (Dai et al., 2023).

The performance of OCNET in coastal areas is primarily
limited by the quality of the input satellite data. The construc-
tion of the OCNET model can be affected if the training-set
quality is poor or severely lacking. However, OCNET has
demonstrated its potential application in open waters. In re-
gional calculations, OCNET can effectively capture the in-
terrelationships among various environmental factors in dif-
ferent zones and apply them to the reconstruction of Chl-a
concentrations. There have also been successful studies ap-
plying machine learning to analyze Chl-a concentration vari-
ations at the regional scale (Chen et al., 2019; Roussillon et
al., 2023), further demonstrating the potential application of
machine learning methods in coastal areas. In the future, if
reliable water color data from coastal areas can be obtained
with a certain time span and spatiotemporal continuity for
training OCNET, the reconstruction of Chl-a concentrations
in coastal regions may also yield favorable results.

Overall, OCNET is capable of surpassing traditional ma-
chine learning methods such as multiple linear regression and
random forests, as well as traditional artificial neural net-
works, because it can learn complex nonlinear relationships
and incorporate global context into its predictions. This is
of great significance for in-depth understanding and analysis
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of variable changes under the complex environmental influ-
ences in the context of big data.

5 Data availability

The reconstructed Chl-a data are archived and available
at https://doi.org/10.5281/zenodo.10011908 (Hong et al.,
2023).

6 Conclusions

We developed the OCNET model for the purpose of recon-
structing global-ocean Chlorophyll-a (Chl-a) concentration
data. Chl-a is an important indicator of the health and pro-
ductivity of marine ecosystems, and accurate measurements
of Chl-a concentrations are essential for understanding the
dynamics of these systems. The OCNET model is based on a
convolutional neural network and considers a variety of en-
vironmental variables that are known to influence the growth
and distribution of ocean phytoplankton, which are the pri-
mary producers of Chl-a.

Our results show that the OCNET model performs very
well in reconstructing Chl-a concentrations, accurately cap-
turing the temporal variations of these features. This sug-
gests that the model has strong potential for use in large-scale
ocean color data reconstruction and may even be able to pre-
dict Chl-a concentration trends in response to changes in the
environment. However, we did observe that the model’s per-
formance was somewhat weaker in the eastern tropical Pa-
cific region compared to in other areas. This may be due to
specific climate characteristics that have a significant impact
on phytoplankton growth and distribution (Geng et al., 2022;
Duteil and Park, 2023) or the low quality of the satellite-
based dataset in this region. The model’s performance in the
eastern tropical Pacific region requires further improvement
in future work.

Overall, the OCNET model represents an important step
forward in the use of machine learning techniques for
predicting and reconstructing Chl-a concentrations. The
model’s strong performance in all regions of the globe sug-
gests that it could be a valuable tool for understanding and
predicting the dynamics of marine ecosystems on a global
scale. OCNET and other machine learning tools will help us
in better understanding and predicting the change in marine
phytoplankton under climate change. It is hoped that the re-
sults of this study will be of interest and relevance to a wide
range of researchers, policymakers, and managers involved
in the monitoring and management of aquatic ecosystems.
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