Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4163-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4163-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bio-optical properties of the cyanobacterium Nodularia spumigena
Shungudzemwoyo P. Garaba
CORRESPONDING AUTHOR
Marine Sensor Systems Group, Center for Marine Sensors, Institute
for Chemistry and Biology of the Marine Environment, Carl von Ossietzky
University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
Michelle Albinus
Marine Sensor Systems Group, Center for Marine Sensors, Institute
for Chemistry and Biology of the Marine Environment, Carl von Ossietzky
University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
Guido Bonthond
Environmental Biochemistry Group, Institute for Chemistry and Biology
of the Marine Environment, Carl von Ossietzky University of Oldenburg,
Schleusenstraße 1, 26382 Wilhelmshaven, Germany
Sabine Flöder
Plankton Ecology Group, Institute for Chemistry and Biology of the
Marine Environment, Carl von Ossietzky University of Oldenburg,
Schleusenstraße 1, 26382 Wilhelmshaven, Germany
Mario L. M. Miranda
Laboratorio de la Calidad del Agua y Aire, Universidad de Panamá, P.O. Box 0824, Panama City, Panama
Sistema Nacional de Investigación, Secretaría Nacional de
Ciencia y Tecnologías, P.O. Box 0816-02852, Panama City, Panama
Sven Rohde
Environmental Biochemistry Group, Institute for Chemistry and Biology
of the Marine Environment, Carl von Ossietzky University of Oldenburg,
Schleusenstraße 1, 26382 Wilhelmshaven, Germany
Joanne Y. L. Yong
Plankton Ecology Group, Institute for Chemistry and Biology of the
Marine Environment, Carl von Ossietzky University of Oldenburg,
Schleusenstraße 1, 26382 Wilhelmshaven, Germany
Jochen Wollschläger
Marine Sensor Systems Group, Center for Marine Sensors, Institute
for Chemistry and Biology of the Marine Environment, Carl von Ossietzky
University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
Related authors
Ashley Ohall, Kelsey Bisson, Shungudzemwoyo Garaba, and Sara Rivero-Calle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-342, https://doi.org/10.5194/essd-2025-342, 2025
Preprint under review for ESSD
Short summary
Short summary
Marine debris poses a growing threat to the environment. Monitoring from remote sensing is promising but there are limitations due to the diversity of marine debris. The open-access MADLib collection, with 24889 hyperspectral reflectances from 3032 diverse debris samples, is anticipated to support algorithm and sensor development based on well-curated representative spectra of marine debris. We also discuss gaps and propose improved metadata schemes for expanding the living MADLIB collection.
Robin V. F. de Vries, Shungudzemwoyo P. Garaba, and Sarah-Jeanne Royer
Earth Syst. Sci. Data, 15, 5575–5596, https://doi.org/10.5194/essd-15-5575-2023, https://doi.org/10.5194/essd-15-5575-2023, 2023
Short summary
Short summary
We present a high-quality dataset of hyperspectral point and multipixel reflectance observations of virgin, ocean-harvested, and biofouled multipurpose plastics. Biofouling and a submerged scenario of the dataset further extend the variability in open-access spectral reference libraries that are important in algorithm development with relevance to remote sensing use cases.
Els Knaeps, Sindy Sterckx, Gert Strackx, Johan Mijnendonckx, Mehrdad Moshtaghi, Shungudzemwoyo P. Garaba, and Dieter Meire
Earth Syst. Sci. Data, 13, 713–730, https://doi.org/10.5194/essd-13-713-2021, https://doi.org/10.5194/essd-13-713-2021, 2021
Short summary
Short summary
This paper describes a dataset consisting of 47 hyperspectral-reflectance measurements of plastic litter samples. The plastic litter samples include virgin and real samples. They were measured in dry conditions, and a selection of the samples were also measured in wet conditions and submerged in a water tank. The dataset can be used to better understand the effect of water absorption on the plastics and develop algorithms to detect and characterize marine plastics.
Shungudzemwoyo P. Garaba, Tomás Acuña-Ruz, and Cristian B. Mattar
Earth Syst. Sci. Data, 12, 2665–2678, https://doi.org/10.5194/essd-12-2665-2020, https://doi.org/10.5194/essd-12-2665-2020, 2020
Short summary
Short summary
Technologies to support detection and tracking of plastic litter in aquatic environments capable of repeated observations at a wide-area scale have been getting increased interest from scientists and stakeholders. We report findings about thermal infrared optical properties of naturally dried samples of algae, sands, sea shells and synthetic plastics obtained in Chile. Diagnostic features of the dataset are foreseen to contribute towards research relevant in thermal infrared sensing of plastics.
Ashley Ohall, Kelsey Bisson, Shungudzemwoyo Garaba, and Sara Rivero-Calle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-342, https://doi.org/10.5194/essd-2025-342, 2025
Preprint under review for ESSD
Short summary
Short summary
Marine debris poses a growing threat to the environment. Monitoring from remote sensing is promising but there are limitations due to the diversity of marine debris. The open-access MADLib collection, with 24889 hyperspectral reflectances from 3032 diverse debris samples, is anticipated to support algorithm and sensor development based on well-curated representative spectra of marine debris. We also discuss gaps and propose improved metadata schemes for expanding the living MADLIB collection.
Riaz Bibi, Mariana Ribas-Ribas, Leonie Jaeger, Carola Lehners, Lisa Gassen, Edgar Cortés, Jochen Wollschläger, Claudia Thölen, Hannelore Waska, Jasper Zöbelein, Thorsten Brinkhoff, Isha Athale, Rüdiger Röttgers, Michael Novak, Anja Engel, Theresa Barthelmeß, Josefine Karnatz, Thomas Reinthaler, Dmytro Spriahailo, Gernot Friedrichs, Falko Schäfer, and Oliver Wurl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1773, https://doi.org/10.5194/egusphere-2025-1773, 2025
Short summary
Short summary
A multidisciplinary mesocosm study was conducted to investigate biogeochemical processes and their relationships in the sea-surface microlayer and underlying water during an induced phytoplankton bloom. Phytoplankton-derived organic matter, fuelled microbial activity and biofilm formation, supporting high bacterial abundance. Distinct temporal patterns in biogeochemical parameters and greater variability in the sea-surface microlayer highlight its influence on air–sea interactions.
Robin V. F. de Vries, Shungudzemwoyo P. Garaba, and Sarah-Jeanne Royer
Earth Syst. Sci. Data, 15, 5575–5596, https://doi.org/10.5194/essd-15-5575-2023, https://doi.org/10.5194/essd-15-5575-2023, 2023
Short summary
Short summary
We present a high-quality dataset of hyperspectral point and multipixel reflectance observations of virgin, ocean-harvested, and biofouled multipurpose plastics. Biofouling and a submerged scenario of the dataset further extend the variability in open-access spectral reference libraries that are important in algorithm development with relevance to remote sensing use cases.
Els Knaeps, Sindy Sterckx, Gert Strackx, Johan Mijnendonckx, Mehrdad Moshtaghi, Shungudzemwoyo P. Garaba, and Dieter Meire
Earth Syst. Sci. Data, 13, 713–730, https://doi.org/10.5194/essd-13-713-2021, https://doi.org/10.5194/essd-13-713-2021, 2021
Short summary
Short summary
This paper describes a dataset consisting of 47 hyperspectral-reflectance measurements of plastic litter samples. The plastic litter samples include virgin and real samples. They were measured in dry conditions, and a selection of the samples were also measured in wet conditions and submerged in a water tank. The dataset can be used to better understand the effect of water absorption on the plastics and develop algorithms to detect and characterize marine plastics.
Shungudzemwoyo P. Garaba, Tomás Acuña-Ruz, and Cristian B. Mattar
Earth Syst. Sci. Data, 12, 2665–2678, https://doi.org/10.5194/essd-12-2665-2020, https://doi.org/10.5194/essd-12-2665-2020, 2020
Short summary
Short summary
Technologies to support detection and tracking of plastic litter in aquatic environments capable of repeated observations at a wide-area scale have been getting increased interest from scientists and stakeholders. We report findings about thermal infrared optical properties of naturally dried samples of algae, sands, sea shells and synthetic plastics obtained in Chile. Diagnostic features of the dataset are foreseen to contribute towards research relevant in thermal infrared sensing of plastics.
Cited articles
Böddi, B., Kis-Petik, K., Kaposi, A. D., Fidy, J., and Sundqvist, C.:
The two spectroscopically different short wavelength protochlorophyllide
forms in pea epicotyls are both monomeric, Biochim. Biophys. Acta Bioenerg.,
1365, 531–540, https://doi.org/10.1016/S0005-2728(98)00106-6, 1998.
Bracher, A., Bouman, H. A., Brewin, R. J. W., Bricaud, A., Brotas, V.,
Ciotti, A. M., Clementson, L., Devred, E., Di Cicco, A., Dutkiewicz, S.,
Hardman-Mountford, N. J., Hickman, A. E., Hieronymi, M., Hirata, T., Losa,
S. N., Mouw, C. B., Organelli, E., Raitsos, D. E., Uitz, J., Vogt, M., and
Wolanin, A.: Obtaining phytoplankton diversity from ocean color: A
scientific roadmap for future development, Front. Mar. Sci., 4, 55,
https://doi.org/10.3389/fmars.2017.00055, 2017.
Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., and Öquist, G.:
Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and
acclimation, Microbiol. Mol. Biol. Rev., 62, 667–683,
https://doi.org/10.1128/MMBR.62.3.667-683.1998, 1998.
Carmichael, W. W.: Cyanobacteria secondary metabolites—the cyanotoxins, J.
Appl. Bacteriol., 72, 445–459, https://doi.org/10.1111/j.1365-2672.1992.tb01858.x, 1992.
Castagna, A., Amadei Martínez, L., Bogorad, M., Daveloose, I., Dasseville, R., Dierssen, H. M., Beck, M., Mortelmans, J., Lavigne, H., Dogliotti, A., Doxaran, D., Ruddick, K., Vyverman, W., and Sabbe, K.: Optical and biogeochemical properties of diverse Belgian inland and coastal waters, Earth Syst. Sci. Data, 14, 2697–2719, https://doi.org/10.5194/essd-14-2697-2022, 2022.
Chapra, S. C., Boehlert, B., Fant, C., Bierman, V. J., Henderson, J., Mills,
D., Mas, D. M. L., Rennels, L., Jantarasami, L., Martinich, J., Strzepek, K.
M., and Paerl, H. W.: Climate change impacts on harmful algal blooms in U.S.
freshwaters: A screening-level assessment, Environ. Sci. Technol., 51,
8933–8943, https://doi.org/10.1021/acs.est.7b01498, 2017.
Coble, P. G.: Characterization of marine and terrestrial DOM in seawater
using excitation-emission matrix spectroscopy, Mar. Chem., 51, 325–346,
https://doi.org/10.1016/0304-4203(95)00062-3, 1996.
Coble, P. G.: Marine optical biogeochemistry: The chemistry of ocean color,
Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350+, 2007.
da Silveira, S. B., Wasielesky, W., Andreote, A. P. D., Fiore, M. F., and
Odebrecht, C.: Morphology, phylogeny, growth rate and nodularin production
of Nodularia spumigena from Brazil, Mar. Biol. Res., 13, 1095–1107,
https://doi.org/10.1080/17451000.2017.1336587, 2017.
Dierssen, H., McManus, G. B., Chlus, A., Qiu, D., Gao, B.-C., and Lin, S.:
Space station image captures a red tide ciliate bloom at high spectral and
spatial resolution, P. Natl. Acad. Sci. USA, 112, 14783–14787,
https://doi.org/10.1073/pnas.1512538112, 2015.
Donkor, V. A. and Häder, D. P.: Effects of ultraviolet irradiation on
photosynthetic pigments in some filamentous cyanobacteria, Aquat. Microb.
Ecol., 11, 143–149, https://doi.org/10.3354/ame011143, 1996.
Francis, G.: Poisonous Australian Lake, Nature, 18, 11–12,
https://doi.org/10.1038/018011d0, 1878.
Galat, D. L., Verdin, J. P., and Sims, L. L.: Large-scale patterns of
Nodularia spumigena blooms in Pyramid Lake, Nevada, determined from Landsat
imagery: 1972–1986, Hydrobiologia, 197, 147–164, https://doi.org/10.1007/BF00026947,
1990.
Gao, Z. and Guéguen, C.: Size distribution of absorbing and fluorescing
DOM in Beaufort Sea, Canada Basin, Deep-Sea Res. Pt. I, 121, 30–37,
https://doi.org/10.1016/j.dsr.2016.12.014, 2017.
Garaba, S. and Bonthond, G.: Uncultured Nodularia sp. clone
Banta_env18 ribulose 1,5-biphosphate carboxylase large
subunit (rbcL) gene, partial cds; chaperonin-like protein (rbcX) gene,
complete cds; and ribulose 1,5-bisphosphate carboxylase small subunit (rbcS)
gene, partial cds, GenBank® nucleic acid sequence database [data set], https://www.ncbi.nlm.nih.gov, https://www.ncbi.nlm.nih.gov/nuccore/OP925098 (last access: 15 September 2023), 2022a.
Garaba, S. and Bonthond, G.: Nodularia spumigena 16S rRNA gene,
environmental sample Lake Bante. Uncultured Nodularia sp. clone 1 16S
ribosomal RNA gene, partial sequence, GenBank® nucleic acid sequence database [data set],
https://www.ncbi.nlm.nih.gov, https://www.ncbi.nlm.nih.gov/nuccore/OP918142 (last access: 15 September 2023), 2022b.
Garaba, S. P.: Spectral reflectance measurements of water sample from a
Nodularia spumigena bloom event on Lake Bante in Wilhelmshaven, Germany,
4TU.ResearchData Dataset. Avaialable on-line [https://researchdata.4tu.nl/], https://doi.org/10.4121/21814977.v1, 2023.
Garaba, S. P. and Albinus, M.: Secchi disk measurements during Nodularia
spumigena bloom on Lake Bante in Wilhemshaven, Germany, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.951239, 2022.
Garaba, S. P. and Albinus, M.: Spectral radiance measurements during a
Nodularia spumigena bloom event on Lake Bante in Wilhelmshaven, Germany,
4TU.ResearchData [Data set], https://doi.org/10.4121/21814773.v1, 2023.
Garaba, S. P. and Dierssen, H. M.: Hyperspectral ultraviolet to shortwave infrared characteristics of marine-harvested, washed-ashore and virgin plastics, Earth Syst. Sci. Data, 12, 77–86, https://doi.org/10.5194/essd-12-77-2020, 2020.
Garaba, S. P. and Zielinski, O.: Methods in reducing surface reflected
glint for shipborne above-water remote sensing, J. Eur. Opt. Soc.-Rapid,
8, 13058, https://doi.org/10.2971/jeos.2013.13058, 2013.
Garaba, S. P., Arias, M., Corradi, P., Harmel, T., de Vries, R., and
Lebreton, L.: Concentration, anisotropic and apparent colour effects on
optical reflectance properties of virgin and ocean-harvested plastics, J.
Hazard. Mater., 406, 124290, https://doi.org/10.1016/j.jhazmat.2020.124290, 2021.
Glibert, P. M., Anderson, D. M., Gentien, P., Graneli, E., and Sellner, K.
G.: The global complex phenomena of harmful algal blooms, Oceanography, 18,
136–147, 2005.
Gröndahl, F.: Removal of surface blooms of the cyanobacteria Nodularia
spumigena: A pilot project conducted in the Baltic Sea, AMBIO, 38, 79–84,
2009.
Guiry, M. D. and Guiry, G. M.: AlgaeBase, World-wide electronic
publication, https://www.algaebase.org (last access: 15 September 2023), 2021.
Hallegraeff, G. M., Anderson, D. M., and Cembella, A. D.: Manual on harmful
marine microalgae, in: Monographs on oceanographic methodology 11, UNESCO
Publishing, France, ISBN 92-3-103871-0, https://unesdoc.unesco.org/ark:/48223/pf0000131711 (last access: 15 September 2023), 2003.
Horstmann, U.: Eutrophication and mass production of blue-green algae in the
Baltic, Merentutkimuslait. Julk. Havsforskningsinst. Skr., 239 pp., 83–90,
1975.
Horváth, H., Kovács, A. W., Riddick, C., and Présing, M.:
Extraction methods for phycocyanin determination in freshwater filamentous
cyanobacteria and their application in a shallow lake, Eur. J. Phycol., 48,
278–286, https://doi.org/10.1080/09670262.2013.821525, 2013.
Hu, C.: Hyperspectral reflectance spectra of floating matters derived from Hyperspectral Imager for the Coastal Ocean (HICO) observations, Earth Syst. Sci. Data, 14, 1183–1192, https://doi.org/10.5194/essd-14-1183-2022, 2022.
Hu, C., Qi, L., Xie, Y., Zhang, S., and Barnes, B. B.: Spectral
characteristics of sea snot reflectance observed from satellites:
Implications for remote sensing of marine debris, Remote Sens. Environ.,
269, 112842, https://doi.org/10.1016/j.rse.2021.112842, 2022.
Hu, L., Hu, C., and Ming-Xia, H. E.: Remote estimation of biomass of Ulva
prolifera macroalgae in the Yellow Sea, Remote Sens. Environ., 192, 217–227,
https://doi.org/10.1016/j.rse.2017.01.037, 2017.
Hudson, N., Baker, A., and Reynolds, D.: Fluorescence analysis of dissolved
organic matter in natural, waste and polluted waters – a review, River Res.
Appl., 23, 631–649, https://doi.org/10.1002/rra.1005, 2007.
IOCCG: Observation of harmful algal blooms with ocean colour radiometry,
Reports of the International Ocean Colour Coordinating Group, No. 20, edited
by: Bernard, S., Kudela, R., Robertson Lain, L., and Pitcher, G. C.,
Dartmouth, Canada, 165 pp., https://doi.org/10.25607/OBP-1042, 2021.
Kahru, M., Horstmann, U., and Rud, O.: Satellite detection of increased
cyanobacterial blooms in Baltic Sea: Natural fluctuation or ecosystem
change?, AMBIO, 23, 469–472, 1994.
Kahru, M. and Elmgren, R.: Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea, Biogeosciences, 11, 3619–3633, https://doi.org/10.5194/bg-11-3619-2014, 2014.
Kahru, M., Brotas, V., Manzano-Sarabia, M., and Mitchell, B. G.: Are
phytoplankton blooms occurring earlier in the Arctic?, Glob. Change Biol.,
17, 1733–1739, https://doi.org/10.1111/j.1365-2486.2010.02312.x, 2011.
Kanoshina, I., Lips, U., and Leppänen, J.-M.: The influence of weather
conditions (temperature and wind) on cyanobacterial bloom development in the
Gulf of Finland (Baltic Sea), Harmful Algae, 2, 29–41,
https://doi.org/10.1016/S1568-9883(02)00085-9, 2003.
Karlberg, M. and Wulff, A.: Impact of temperature and species interaction
on filamentous cyanobacteria may be more important than salinity and
increased pCO2 levels, Mar. Biol., 160, 2063–2072,
https://doi.org/10.1007/s00227-012-2078-3, 2013.
Karlson, B., Andersen, P., Arneborg, L., Cembella, A., Eikrem, W., John, U., West, J. J., Klemm, K., Kobos, J., Lehtinen, S., Lundholm, N., Mazur-Marzec,
H., Naustvoll, L., Poelman, M., Provoost, P., De Rijcke, M., and Suikkanen,
S.: Harmful algal blooms and their effects in coastal seas of Northern
Europe, Harmful Algae, 102, 101989, https://doi.org/10.1016/j.hal.2021.101989, 2021.
Karlsson, K. M., Kankaanpää, H. T., Huttunen, M., and Meriluoto, J.:
First observation of microcystin-LR in pelagic cyanobacterial blooms in the
northern Baltic Sea, Harmful Algae, 4, 163–166,
https://doi.org/10.1016/j.hal.2004.02.002, 2005.
Khan, S. I., Zamyadi, A., Rao, N. R. H., Li, X., Stuetz, R. M., and
Henderson, R. K.: Fluorescence spectroscopic characterisation of algal
organic matter: towards improved in situ fluorometer development, Environ.
Sci. Water Res. Technol., 5, 417–432, https://doi.org/10.1039/C8EW00731D, 2019.
Kirk, J. T. O.: Point-source integrating-cavity absorption meter:
theoretical principles and numerical modeling, Appl. Optics, 36, 6123–6128,
https://doi.org/10.1364/AO.36.006123, 1997.
Kirk, J. T. O.: Light and photosynthesis in aquatic ecosystems, Cambridge
University Press, Cambridge, United Kingdom, 662 pp., ISBN 978-0-521-15175-7, 2011.
Komárek, J.: Cyanoprokaryota -3. Teil/Part 3: Heterocytous genera,
Süßwasserflora von Mitteleuropa/Freshwater Flora of Central Europe,
19/3, edited by: Büdel, B., Gärtner, G., Krienitz, L., and Schagerl,
M., Springer Spektrum, Heidelberg, Germany, XVIII, 1131 pp., ISBN 978-3-8274-0932-4, 2013.
Kwon, H. K., Kim, G., Lim, W. A., and Park, J. W.: In-situ production of
humic-like fluorescent dissolved organic matter during Cochlodinium
polykrikoides blooms, Estuar. Coast. Shelf S., 203, 119–126,
https://doi.org/10.1016/j.ecss.2018.02.013, 2018.
Lehtimaki, J., Moisander, P., Sivonen, K., and Kononen, K.: Growth, nitrogen
fixation, and nodularin production by two baltic sea cyanobacteria, Appl.
Environ. Microbiol., 63, 1647–1656, https://doi.org/10.1128/aem.63.5.1647-1656.1997,
1997.
Lehtimäki, J., Lyra, C., Suomalainen, S., Sundman, P., Rouhiainen, L.,
Paulin, L., Salkinoja-Salonen, M., and Sivonen, K.: Characterization of
Nodularia strains, cyanobacteria from brackish waters, by genotypic and
phenotypic methods, Int. J. Syst. Evol., 50, 1043–1053,
https://doi.org/10.1099/00207713-50-3-1043, 2000.
Leppänen, J.-M., Rantajärvi, E., Hällfors, S., Kruskopf, M., and
Laine, V.: Unattended monitoring of potentially toxic phytoplankton species
in the Baltic Sea in 1993, J. Plankton Res., 17, 891–902,
https://doi.org/10.1093/plankt/17.4.891, 1995.
Lin, H. and Guo, L.: Variations in colloidal DOM composition with molecular
weight within individual water samples as characterized by flow field-flow
fractionation and EEM-PARAFAC analysis, Environ. Sci. Technol., 54,
1657–1667, https://doi.org/10.1021/acs.est.9b07123, 2020.
Liutkus, A.: Scale-space peak picking: Inria, Speech Processing Team,
Inria
Nancy – Grand Est, Villers-lès-Nancy, France, https://hal.inria.fr/hal-01103123 (last access: 15 September 2023), 2015.
Lopes, R., Miranda, M. L., Schütte, H., Gassmann, S., and Zielinski, O.:
Microfluidic approach for controlled ultraviolet treatment of colored and
fluorescent dissolved organic matter, Spectrochim. Acta, 239, 118435, https://doi.org/10.1016/j.saa.2020.118435, 2020.
Mazur, H. and Pliński, M.: Nodularia spumigena blooms and the
occurrence of hepatotoxin in the Gulf of Gdańsk, Oceanologia, 45,
305–316, 2003.
McKinna, L. I. W., Furnas, M. J., and Ridd, P. V.: A simple, binary
classification algorithm for the detection of Trichodesmium spp. within the
Great Barrier Reef using MODIS imagery, Limnol. Oceanogr. Meth., 9, 50–66,
https://doi.org/10.4319/lom.2011.9.50, 2011.
Miranda, M. L., Mustaffa, N. I. H., Robinson, T. B., Stolle, C.,
Ribas-Ribas, M., Wurl, O., and Zielinski, O.: Influence of solar radiation
on biogeochemical parameters and fluorescent dissolved organic matter (FDOM)
in the sea surface microlayer of the southern coastal North Sea, Elem. Sci.
Anth., 6, 15, https://doi.org/10.1525/elementa.278, 2018.
Miranda, M. L., Osterholz, H., Giebel, H. A., Bruhnke, P., Dittmar, T., and
Zielinski, O.: Impact of UV radiation on DOM transformation on molecular
level using FT-ICR-MS and PARAFAC, Spectrochim. Acta, 230, 118027, https://doi.org/10.1016/j.saa.2020.118027, 2020.
Miranda, M. L. M. and Garaba, S. P.: Raw absorbance and fluorescence
measurements of water samples during Nodularia spumigena 2021 bloom event on
Lake Bante in Wilhelmshaven, Germany, 4TU.ResearchData [data set], https://doi.org/10.4121/21904632.v1, 2023.
Miranda, M. L. M., Albinus, M., and Garaba, S. P.: Raw absorbance and
fluorescence measurements of water samples during Nodularia spumigena bloom
event on Lake Bante in Wilhelmshaven, Germany, 4TU.ResearchData [data set],
https://doi.org/10.4121/21822051.v1, 2023.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence
spectroscopy and multi-way techniques, PARAFAC, Anal. Methods-UK, 5, 6557–6566,
https://doi.org/10.1039/C3AY41160E, 2013.
Murphy, K. R., Stedmon, C. A., Wenig, P., and Bro, R.: OpenFluor – an online
spectral library of auto-fluorescence by organic compounds in the
environment, Anal. Methods-UK, 6, 658-661, https://doi.org/10.1039/C3AY41935E, 2014.
Myśliwa-Kurdziel, B., Amirjani, M. R., Strzałka, K., and Sundqvist,
C.: Fluorescence lifetimes of protochlorophyllide in plants with different
proportions of short-wavelength and long-wavelength protochlorophyllide
spectral forms, Photochem. Photobiol., 78, 205–212,
https://doi.org/10.1562/0031-8655(2003)0780205FLOPIP2.0.CO2, 2003.
Nehring, S.: Mortality of dogs associated with a mass development of
Nodularia spumigena (Cyanophyceae) in a brackish lake at the German North
Sea coast, J. Plankton Res., 15, 867–872, https://doi.org/10.1093/plankt/15.7.867, 1993.
Olofsson, M., Suikkanen, S., Kobos, J., Wasmund, N., and Karlson, B.:
Basin-specific changes in filamentous cyanobacteria community composition
across four decades in the Baltic Sea, Harmful Algae, 91, 101685,
https://doi.org/10.1016/j.hal.2019.101685, 2020.
Osburn, C. L., Mikan, M. P., Etheridge, J. R., Burchell, M. R., and Birgand,
F.: Seasonal variation in the quality of dissolved and particulate organic
matter exchanged between a salt marsh and its adjacent estuary, J. Geophys.
Res.-Biogeo., 120, 1430–1449, https://doi.org/10.1002/2014JG002897, 2015.
Öström, B.: Fertilization of the Baltic by nitrogen fixation in the
blue-green alga Nodularia Spumigena, Remote Sens. Environ., 4, 305–310,
https://doi.org/10.1016/0034-4257(75)90026-7, 1976.
Remelli, W. and Santabarbara, S.: Excitation and emission wavelength
dependence of fluorescence spectra in whole cells of the cyanobacterium
Synechocystis sp. PPC6803: Influence on the estimation of Photosystem II
maximal quantum efficiency, Biochim. Biophys. Acta, 1859,
1207–1222, https://doi.org/10.1016/j.bbabio.2018.09.366, 2018.
Repeta, D. J.: Chapter 2 – Chemical characterization and cycling of
dissolved organic matter, in: Biogeochemistry of marine dissolved organic
matter, 2nd Edn., edited by: Hansell, D. A. and Carlson, C. A.,
Academic Press, Boston, USA, 21–63, https://doi.org/10.1016/B978-0-12-405940-5.00002-9, 2015.
Ritchie, R. J.: Universal chlorophyll equations for estimating chlorophylls
and d and total chlorophylls in natural assemblages of photosynthetic
organisms using acetone, methanol, or ethanol solvents, Photosynthetica, 46,
115–126, https://doi.org/10.1007/s11099-008-0019-7, 2008.
Rohde, S., Albinus, M., and Garaba, S. P.: Chlorophyll-a and phycocyanin
concentrations from a Nodularia spumigena bloom event on Lake Bante in
Wilhelmshaven, Germany, 4TU.ResearchData [data set],
https://doi.org/10.4121/21792665.v1, 2023.
Röttgers, R. and Doerffer, R.: Measurements of optical absorption by
chromophoric dissolved organic matter using a point-source
integrating-cavity absorption meter, Limnol. Oceanogr. Meth., 5, 126–135,
https://doi.org/10.4319/lom.2007.5.126, 2007.
Rowan, K. S.: Photosynthetic pigments of algae, Cambridge University Press,
United States of America, xiii, 334, ill. pp., ISBN 0521301769, 1989.
Seppälä, J., Ylöstalo, P., Kaitala, S., Hällfors, S.,
Raateoja, M., and Maunula, P.: Ship-of-opportunity based phycocyanin
fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in
the Baltic Sea, Estuar. Coast. Shelf S., 73, 489–500,
https://doi.org/10.1016/j.ecss.2007.02.015, 2007.
Sidler, W. A.: Phycobilisome and phycobiliprotein structures, in: The
molecular biology of cyanobacteria, edited by: Bryant, D. A., Springer
Netherlands, Dordrecht, 139–216, https://doi.org/10.1007/978-94-011-0227-8_7, 1994.
Sivonen, K., Kononen, K., Carmichael, W. W., Dahlem, A. M., Rinehart, K. L.,
Kiviranta, J., and Niemela, S. I.: Occurrence of the hepatotoxic
cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the
toxin, Appl. Environ. Microbiol., 55, 1990–1995,
https://doi.org/10.1128/aem.55.8.1990-1995.1989, 1989.
Smayda, T. J.: Harmful algal blooms: Their ecophysiology and general
relevance to phytoplankton blooms in the sea, Limnol. Oceanogr., 42,
1137–1153, https://doi.org/10.4319/lo.1997.42.5_part_2.1137, 1997.
Soja-Woźniak, M., Darecki, M., Wojtasiewicz, B., and Bradtke, K.:
Laboratory measurements of remote sensing reflectance of selected
phytoplankton species from the Baltic Sea, Oceanologia, 60, 86–96,
https://doi.org/10.1016/j.oceano.2017.08.001, 2018.
Stefan, G. H. S., Steef, W. M. P., and Gons, H. J.: Remote sensing of the
cyanobacterial pigment phycocyanin in turbid inland water, Limnol.
Oceanogr., 50, 237–245, https://doi.org/10.4319/lo.2005.50.1.0237, 2005.
Teikari, J. E., Fewer, D. P., Shrestha, R., Hou, S., Leikoski, N.,
Mäkelä, M., Simojoki, A., Hess, W. R., and Sivonen, K.: Strains of
the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade
methylphosphonate and release methane, ISME J., 12, 1619–1630,
https://doi.org/10.1038/s41396-018-0056-6, 2018.
Utermöhl, H.: Neue Wege in der quantitativen Erfassung des Plankton. (Mit
besonderer Berücksichtigung des Ultraplanktons.), SIL Proceedings,
1922–2010, Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen, 5, 567–596,
https://doi.org/10.1080/03680770.1931.11898492, 1931.
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Jackson, T., Chuprin, A., Taberner, M., Airs, R., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Borsheim, Y., Bracher, A., Brando, V., Brewin, R. J. W., Canuti, E., Chavez, F. P., Cianca, A., Claustre, H., Clementson, L., Crout, R., Ferreira, A., Freeman, S., Frouin, R., García-Soto, C., Gibb, S. W., Goericke, R., Gould, R., Guillocheau, N., Hooker, S. B., Hu, C., Kahru, M., Kampel, M., Klein, H., Kratzer, S., Kudela, R., Ledesma, J., Lohrenz, S., Loisel, H., Mannino, A., Martinez-Vicente, V., Matrai, P., McKee, D., Mitchell, B. G., Moisan, T., Montes, E., Muller-Karger, F., Neeley, A., Novak, M., O'Dowd, L., Ondrusek, M., Platt, T., Poulton, A. J., Repecaud, M., Röttgers, R., Schroeder, T., Smyth, T., Smythe-Wright, D., Sosik, H. M., Thomas, C., Thomas, R., Tilstone, G., Tracana, A., Twardowski, M., Vellucci, V., Voss, K., Werdell, J., Wernand, M., Wojtasiewicz, B., Wright, S., and Zibordi, G.: A compilation of global bio-optical in situ data for ocean colour satellite applications – version three, Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, 2022.
Wang, G., Lee, Z., Mishra, D. R., and Ma, R.: Retrieving absorption
coefficients of multiple phytoplankton pigments from hyperspectral remote
sensing reflectance measured over cyanobacteria bloom waters, Limnol.
Oceanogr. Meth., 14, 432–447, https://doi.org/10.1002/lom3.10102, 2016.
Wasmund, N.: Occurrence of cyanobacterial blooms in the baltic sea in
relation to environmental conditions, Int. Revue ges. Hydrobiol., 82,
169–184, https://doi.org/10.1002/iroh.19970820205, 1997.
Weiwei, L., Xin, Y., Keqiang, S., Baohua, Z., and Guang, G.: Unraveling the
sources and fluorescence compositions of dissolved and particulate organic
matter (DOM and POM) in Lake Taihu, China, Environ. Sci. Pollut. Res., 26,
4027–4040, https://doi.org/10.1007/s11356-018-3873-2, 2019.
Wollschläger, J., Albinus, M., and Garaba, S. P.: Absorption
measurements of Nodularia spumigena bloom from Lake Bante in Wilhelmshaven,
Germany, 4TU.ResearchData [data set], https://doi.org/10.4121/21610995.v1, 2022.
Wünsch, U. J., Murphy, K. R., and Stedmon, C. A.: Fluorescence quantum
yields of natural organic matter and organic compounds: Implications for the
fluorescence-based interpretation of organic matter composition, Front. Mar.
Sci., 2, 98, https://doi.org/10.3389/fmars.2015.00098, 2015.
Short summary
These high-quality data document a harmful algal bloom dominated by Nodularia spumigena, a cyanobacterium that has been recurring in waters around the world, using advanced water observation technologies. We also showcase the benefits of experiments of opportunity and the issues with obtaining synoptic spatio-temporal data for monitoring water quality. The dataset can be leveraged to gain more knowledge on related blooms, develop detection algorithms and optimize future monitoring efforts.
These high-quality data document a harmful algal bloom dominated by Nodularia spumigena, a...
Altmetrics
Final-revised paper
Preprint