Articles | Volume 15, issue 6
https://doi.org/10.5194/essd-15-2445-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2445-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CHELSA-W5E5: daily 1 km meteorological forcing data for climate impact studies
Dirk Nikolaus Karger
CORRESPONDING AUTHOR
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903
Birmensdorf, Switzerland
Stefan Lange
Potsdam Institute for Climate Impact Research (PIK), Member of
Leibniz Association, P.O. Box 601203, 14412 Potsdam, Germany
Chantal Hari
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903
Birmensdorf, Switzerland
Wyss Academy for Nature at the University of Bern, Kochergasse 4,
3011 Bern, Switzerland
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Christopher P. O. Reyer
Potsdam Institute for Climate Impact Research (PIK), Member of
Leibniz Association, P.O. Box 601203, 14412 Potsdam, Germany
Olaf Conrad
Institute of Geography, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Niklaus E. Zimmermann
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903
Birmensdorf, Switzerland
Katja Frieler
Potsdam Institute for Climate Impact Research (PIK), Member of
Leibniz Association, P.O. Box 601203, 14412 Potsdam, Germany
Related authors
Joren Janzing, Niko Wanders, Marit van Tiel, Barry van Jaarsveld, Dirk Nikolaus Karger, and Manuela Irene Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3072, https://doi.org/10.5194/egusphere-2024-3072, 2024
Short summary
Short summary
Process representation in hyper-resolution large-scale hydrological models (LHM) limits model performance, particularly in mountain regions. Here, we update mountain process representation in an LHM and compare different meteorological forcing products. Structural and parametric changes in snow, glacier and soil processes improve discharge simulations, while meteorological forcing remains a major control on model performance. Our work can guide future development of LHMs.
Johanna Teresa Malle, Giulia Mazzotti, Dirk Nikolaus Karger, and Tobias Jonas
Earth Syst. Dynam., 15, 1073–1115, https://doi.org/10.5194/esd-15-1073-2024, https://doi.org/10.5194/esd-15-1073-2024, 2024
Short summary
Short summary
Land surface processes are crucial for the exchange of carbon, nitrogen, and energy in the Earth system. Using meteorological and land use data, we found that higher resolution improved not only the model representation of snow cover but also plant productivity and that water returned to the atmosphere. Only by combining high-resolution models with high-quality input data can we accurately represent complex spatially heterogeneous processes and improve our understanding of the Earth system.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Tobias Siegfried, Aziz Ul Haq Mujahid, Beatrice Sabine Marti, Peter Molnar, Dirk Nikolaus Karger, and Andrey Yakovlev
EGUsphere, https://doi.org/10.5194/egusphere-2023-520, https://doi.org/10.5194/egusphere-2023-520, 2023
Preprint archived
Short summary
Short summary
Our study investigates climate change impacts on water resources in Central Asia's high-mountain regions. Using new data and a stochastic soil moisture model, we found increased precipitation and higher temperatures in the future, leading to higher water discharge despite decreasing glacier melt contributions. These findings are crucial for understanding and preparing for climate change effects on Central Asia's water resources, with further research needed on extreme weather event impacts.
Dirk Nikolaus Karger, Michael P. Nobis, Signe Normand, Catherine H. Graham, and Niklaus E. Zimmermann
Clim. Past, 19, 439–456, https://doi.org/10.5194/cp-19-439-2023, https://doi.org/10.5194/cp-19-439-2023, 2023
Short summary
Short summary
Here we present global monthly climate time series for air temperature and precipitation at 1 km resolution for the last 21 000 years. The topography at all time steps is created by combining high-resolution information on glacial cover from current and Last Glacial Maximum glacier databases with the interpolation of an ice sheet model and a coupling to mean annual temperatures from a global circulation model.
Philipp Brun, Niklaus E. Zimmermann, Chantal Hari, Loïc Pellissier, and Dirk Nikolaus Karger
Earth Syst. Sci. Data, 14, 5573–5603, https://doi.org/10.5194/essd-14-5573-2022, https://doi.org/10.5194/essd-14-5573-2022, 2022
Short summary
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 119, https://doi.org/10.5194/ica-abs-3-119-2021, https://doi.org/10.5194/ica-abs-3-119-2021, 2021
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 120, https://doi.org/10.5194/ica-abs-3-120-2021, https://doi.org/10.5194/ica-abs-3-120-2021, 2021
Joren Janzing, Niko Wanders, Marit van Tiel, Barry van Jaarsveld, Dirk Nikolaus Karger, and Manuela Irene Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3072, https://doi.org/10.5194/egusphere-2024-3072, 2024
Short summary
Short summary
Process representation in hyper-resolution large-scale hydrological models (LHM) limits model performance, particularly in mountain regions. Here, we update mountain process representation in an LHM and compare different meteorological forcing products. Structural and parametric changes in snow, glacier and soil processes improve discharge simulations, while meteorological forcing remains a major control on model performance. Our work can guide future development of LHMs.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan C. Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
EGUsphere, https://doi.org/10.5194/egusphere-2024-2441, https://doi.org/10.5194/egusphere-2024-2441, 2024
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic-climate scenarios' largest effect on variance starting in 2030.
Johanna Teresa Malle, Giulia Mazzotti, Dirk Nikolaus Karger, and Tobias Jonas
Earth Syst. Dynam., 15, 1073–1115, https://doi.org/10.5194/esd-15-1073-2024, https://doi.org/10.5194/esd-15-1073-2024, 2024
Short summary
Short summary
Land surface processes are crucial for the exchange of carbon, nitrogen, and energy in the Earth system. Using meteorological and land use data, we found that higher resolution improved not only the model representation of snow cover but also plant productivity and that water returned to the atmosphere. Only by combining high-resolution models with high-quality input data can we accurately represent complex spatially heterogeneous processes and improve our understanding of the Earth system.
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
Short summary
This article describes a reconstruction of monthly coastal water levels from 1900–2015 and hourly data from 1979–2015, both with and without long-term sea level rise. The dataset is based on a combination of three datasets that are focused on different aspects of coastal water levels. Comparison with tide gauge records shows that this combination brings reconstructions closer to the observations compared to the individual datasets.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, and Luc Feyen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-41, https://doi.org/10.5194/essd-2024-41, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This article presents a reanalysis of Europe's rivers streamflow for the period 1950–2020, using a state-of-the-art hydrological simulation framework. The dataset, called HERA (Hydrological European ReAnalysis), uses detailed information about the landscape, climate, and human activities to estimate river flow. HERA can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources, flood and drought risks.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Tobias Siegfried, Aziz Ul Haq Mujahid, Beatrice Sabine Marti, Peter Molnar, Dirk Nikolaus Karger, and Andrey Yakovlev
EGUsphere, https://doi.org/10.5194/egusphere-2023-520, https://doi.org/10.5194/egusphere-2023-520, 2023
Preprint archived
Short summary
Short summary
Our study investigates climate change impacts on water resources in Central Asia's high-mountain regions. Using new data and a stochastic soil moisture model, we found increased precipitation and higher temperatures in the future, leading to higher water discharge despite decreasing glacier melt contributions. These findings are crucial for understanding and preparing for climate change effects on Central Asia's water resources, with further research needed on extreme weather event impacts.
Dirk Nikolaus Karger, Michael P. Nobis, Signe Normand, Catherine H. Graham, and Niklaus E. Zimmermann
Clim. Past, 19, 439–456, https://doi.org/10.5194/cp-19-439-2023, https://doi.org/10.5194/cp-19-439-2023, 2023
Short summary
Short summary
Here we present global monthly climate time series for air temperature and precipitation at 1 km resolution for the last 21 000 years. The topography at all time steps is created by combining high-resolution information on glacial cover from current and Last Glacial Maximum glacier databases with the interpolation of an ice sheet model and a coupling to mean annual temperatures from a global circulation model.
Philipp Brun, Niklaus E. Zimmermann, Chantal Hari, Loïc Pellissier, and Dirk Nikolaus Karger
Earth Syst. Sci. Data, 14, 5573–5603, https://doi.org/10.5194/essd-14-5573-2022, https://doi.org/10.5194/essd-14-5573-2022, 2022
Short summary
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 119, https://doi.org/10.5194/ica-abs-3-119-2021, https://doi.org/10.5194/ica-abs-3-119-2021, 2021
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 120, https://doi.org/10.5194/ica-abs-3-120-2021, https://doi.org/10.5194/ica-abs-3-120-2021, 2021
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Matthias Mengel, Simon Treu, Stefan Lange, and Katja Frieler
Geosci. Model Dev., 14, 5269–5284, https://doi.org/10.5194/gmd-14-5269-2021, https://doi.org/10.5194/gmd-14-5269-2021, 2021
Short summary
Short summary
To identify the impacts of historical climate change it is necessary to separate the effect of the different impact drivers. To address this, one needs to compare historical impacts to a counterfactual world with impacts that would have been without climate change. We here present an approach that produces counterfactual climate data and can be used in climate impact models to simulate counterfactual impacts. We make these data available through the ISIMIP project.
Petra Lasch-Born, Felicitas Suckow, Christopher P. O. Reyer, Martin Gutsch, Chris Kollas, Franz-Werner Badeck, Harald K. M. Bugmann, Rüdiger Grote, Cornelia Fürstenau, Marcus Lindner, and Jörg Schaber
Geosci. Model Dev., 13, 5311–5343, https://doi.org/10.5194/gmd-13-5311-2020, https://doi.org/10.5194/gmd-13-5311-2020, 2020
Short summary
Short summary
The process-based model 4C has been developed to study climate impacts on forests and is now freely available as an open-source tool. This paper provides a comprehensive description of the 4C version (v2.2) for scientific users of the model and presents an evaluation of 4C. The evaluation focused on forest growth, carbon water, and heat fluxes. We conclude that 4C is widely applicable, reliable, and ready to be released to the scientific community to use and further develop the model.
Marco Cucchi, Graham P. Weedon, Alessandro Amici, Nicolas Bellouin, Stefan Lange, Hannes Müller Schmied, Hans Hersbach, and Carlo Buontempo
Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, https://doi.org/10.5194/essd-12-2097-2020, 2020
Short summary
Short summary
WFDE5 is a novel meteorological forcing dataset for running land surface and global hydrological models. It has been generated using the WATCH Forcing Data methodology applied to surface meteorological variables from the ERA5 reanalysis. It is publicly available, along with its source code, through the C3S Climate Data Store at ECMWF. Results of the evaluations described in the paper highlight the benefits of using WFDE5 compared to both ERA5 and its predecessor WFDEI.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Damiano Righetti, Meike Vogt, Niklaus E. Zimmermann, Michael D. Guiry, and Nicolas Gruber
Earth Syst. Sci. Data, 12, 907–933, https://doi.org/10.5194/essd-12-907-2020, https://doi.org/10.5194/essd-12-907-2020, 2020
Short summary
Short summary
Phytoplankton sustain marine life, as they are the principal primary producers in the global ocean. Despite their ecological importance, their distribution and diversity patterns are poorly known, mostly due to data limitations. We present a global dataset that synthesizes over 1.3 million occurrences of phytoplankton from public archives. It is easily extendable. This dataset can be used to characterize phytoplankton distribution and diversity in current and future oceans.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Stefan Lange
Geosci. Model Dev., 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, https://doi.org/10.5194/gmd-12-3055-2019, 2019
Short summary
Short summary
Compared to their predecessors, the new Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) methods for bias adjustment and statistical downscaling allow for a more robust adjustment of extreme values and spatial variability, preserve trends more accurately across quantiles, and facilitate a clearer separation of bias adjustment and statistical downscaling.
Jakob Zscheischler, Erich M. Fischer, and Stefan Lange
Earth Syst. Dynam., 10, 31–43, https://doi.org/10.5194/esd-10-31-2019, https://doi.org/10.5194/esd-10-31-2019, 2019
Short summary
Short summary
Many climate models have biases in different variables throughout the world. Adjusting these biases is necessary for estimating climate impacts. Here we demonstrate that widely used univariate bias adjustment methods do not work well for multivariate impacts. We illustrate this problem using fire risk and heat stress as impact indicators. Using an approach that adjusts not only biases in the individual climate variables but also biases in the correlation between them can resolve these problems.
Martin Rückamp, Ulrike Falk, Katja Frieler, Stefan Lange, and Angelika Humbert
Earth Syst. Dynam., 9, 1169–1189, https://doi.org/10.5194/esd-9-1169-2018, https://doi.org/10.5194/esd-9-1169-2018, 2018
Short summary
Short summary
Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 °C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change. The projected sea-level rise ranges between 21–38 mm by 2100
and 36–85 mm by 2300. Our results indicate that uncertainties in the projections stem from the underlying climate data.
Fahad Saeed, Ingo Bethke, Stefan Lange, Ludwig Lierhammer, Hideo Shiogama, Dáithí A. Stone, Tim Trautmann, and Carl-Friedrich Schleussner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-107, https://doi.org/10.5194/gmd-2018-107, 2018
Revised manuscript has not been submitted
Stefan Lange
Earth Syst. Dynam., 9, 627–645, https://doi.org/10.5194/esd-9-627-2018, https://doi.org/10.5194/esd-9-627-2018, 2018
Short summary
Short summary
The bias correction of surface downwelling longwave and shortwave radiation using parametric quantile mapping methods is shown to be more effective (i) at the daily than at the monthly timescale, (ii) if the spatial resolution gap between the reference data and the data to be corrected is bridged in a more suitable manner than by bilinear interpolation, and (iii) if physical upper limits are taken into account during the adjustment of either radiation component.
Sebastian Ostberg, Jacob Schewe, Katelin Childers, and Katja Frieler
Earth Syst. Dynam., 9, 479–496, https://doi.org/10.5194/esd-9-479-2018, https://doi.org/10.5194/esd-9-479-2018, 2018
Short summary
Short summary
It has been shown that regional temperature and precipitation changes in future climate change scenarios often scale quasi-linearly with global mean temperature change (∆GMT). We show that an important consequence of these physical climate changes, namely changes in agricultural crop yields, can also be described in terms of ∆GMT to a large extent. This makes it possible to efficiently estimate future crop yield changes for different climate change scenarios without need for complex models.
Michael Bock, Olaf Conrad, Andreas Günther, Ernst Gehrt, Rainer Baritz, and Jürgen Böhner
Geosci. Model Dev., 11, 1641–1652, https://doi.org/10.5194/gmd-11-1641-2018, https://doi.org/10.5194/gmd-11-1641-2018, 2018
Short summary
Short summary
We introduce the Soil and
Landscape Evolution Model (SaLEM) for the prediction of soil parent material evolution following a lithologically differentiated approach. The GIS tool is working within the software framework SAGA GIS. Weathering, erosion and transport functions are calibrated using extrinsic and intrinsic parameter data. First results indicate that our approach shows evidence for the spatiotemporal prediction of soil parental material properties.
Tobias Geiger, Katja Frieler, and David N. Bresch
Earth Syst. Sci. Data, 10, 185–194, https://doi.org/10.5194/essd-10-185-2018, https://doi.org/10.5194/essd-10-185-2018, 2018
Short summary
Short summary
Tropical cyclones (TCs) pose a major risk to societies worldwide but very limited data exist on their socioeconomic impacts. Here, we apply a common wind field model to comprehensively and consistently estimate the number of people and the sum of assets exposed by all TCs between 1950 and 2015. This information is crucial to assess changes in societal vulnerabilites, to calibrate TC damage functions, and to make risk data more accessible to non-experts and stakeholders.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Alex C. Ruane, Claas Teichmann, Nigel W. Arnell, Timothy R. Carter, Kristie L. Ebi, Katja Frieler, Clare M. Goodess, Bruce Hewitson, Radley Horton, R. Sari Kovats, Heike K. Lotze, Linda O. Mearns, Antonio Navarra, Dennis S. Ojima, Keywan Riahi, Cynthia Rosenzweig, Matthias Themessl, and Katharine Vincent
Geosci. Model Dev., 9, 3493–3515, https://doi.org/10.5194/gmd-9-3493-2016, https://doi.org/10.5194/gmd-9-3493-2016, 2016
Short summary
Short summary
The Vulnerability, Impacts, Adaptation, and Climate Services (VIACS) Advisory Board for CMIP6 was created to improve communications between communities that apply climate model output for societal benefit and the climate model centers. This manuscript describes the establishment of the VIACS Advisory Board as a coherent avenue for communication utilizing leading networks, experts, and programs; results of initial interactions during the development of CMIP6; and its potential next activities.
Carl-Friedrich Schleussner, Tabea K. Lissner, Erich M. Fischer, Jan Wohland, Mahé Perrette, Antonius Golly, Joeri Rogelj, Katelin Childers, Jacob Schewe, Katja Frieler, Matthias Mengel, William Hare, and Michiel Schaeffer
Earth Syst. Dynam., 7, 327–351, https://doi.org/10.5194/esd-7-327-2016, https://doi.org/10.5194/esd-7-327-2016, 2016
Short summary
Short summary
We present for the first time a comprehensive assessment of key climate impacts for the policy relevant warming levels of 1.5 °C and 2 °C above pre-industrial levels. We report substantial impact differences in intensity and frequency of extreme weather events, regional water availability and agricultural yields, sea-level rise and risk of coral reef loss. The increase in climate impacts is particularly pronounced in tropical and sub-tropical regions.
K. Frieler, M. Mengel, and A. Levermann
Earth Syst. Dynam., 7, 203–210, https://doi.org/10.5194/esd-7-203-2016, https://doi.org/10.5194/esd-7-203-2016, 2016
Short summary
Short summary
Sea level will continue to rise for centuries. We investigate the option of delaying sea-level rise by pumping ocean water onto Antarctica. Due to wave propagation ice is discharged much faster back into the ocean than expected from pure advection. A millennium-scale storage of > 80 % of the additional ice requires a distance of > 700 km from the coastline. The pumping energy required to elevate ocean water to mitigate a sea-level rise of 3 mm yr−1 exceeds 7 % of current global primary energy supply.
Zhen Zhang, Niklaus E. Zimmermann, Jed O. Kaplan, and Benjamin Poulter
Biogeosciences, 13, 1387–1408, https://doi.org/10.5194/bg-13-1387-2016, https://doi.org/10.5194/bg-13-1387-2016, 2016
Short summary
Short summary
This study investigates improvements and uncertainties associated with estimating global inundated area and wetland CH4 emissions using TOPMODEL. Different topographic information and catchment aggregation schemes are evaluated against seasonal and permanently inundated wetland observations. Reducing uncertainty in prognostic wetland dynamics modeling must take into account forcing data as well as topographic scaling schemes.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
O. Conrad, B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner
Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, https://doi.org/10.5194/gmd-8-1991-2015, 2015
Short summary
Short summary
The System for Automated Geoscientific Analyses (SAGA) is a comprehensive and globally established open source geographic information system (GIS) for scientific analysis and modeling. The current version 2.1.4 offers more than 700 tools that represent the broad scopes of SAGA in numerous fields of geoscientific endeavor. In this paper, we inform about the system’s architecture and functionality and highlight the wide spectrum of scientific applications of SAGA in a review of published studies.
D. R. Schmatz, J. Luterbacher, N. E. Zimmermann, and P. B. Pearman
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-2585-2015, https://doi.org/10.5194/cpd-11-2585-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Global climate model output for the Last Glacial Maximum (LGM) is downscaled to a very high resolution using the change factor method. We develop two new methods to extend current baseline climate to the LGM coastline so that the final data cover all terrestrial area at LGM. Results are gridded data for temperature, precipitation and 19 bioclimatic variables which are often used in studies on climate change impact on biological diversity, glacial refugia or migration during Holocene warming.
A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Meinshausen, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler
Earth Syst. Dynam., 5, 271–293, https://doi.org/10.5194/esd-5-271-2014, https://doi.org/10.5194/esd-5-271-2014, 2014
J. Heinke, S. Ostberg, S. Schaphoff, K. Frieler, C. Müller, D. Gerten, M. Meinshausen, and W. Lucht
Geosci. Model Dev., 6, 1689–1703, https://doi.org/10.5194/gmd-6-1689-2013, https://doi.org/10.5194/gmd-6-1689-2013, 2013
S. Hempel, K. Frieler, L. Warszawski, J. Schewe, and F. Piontek
Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, https://doi.org/10.5194/esd-4-219-2013, 2013
M. Perrette, F. Landerer, R. Riva, K. Frieler, and M. Meinshausen
Earth Syst. Dynam., 4, 11–29, https://doi.org/10.5194/esd-4-11-2013, https://doi.org/10.5194/esd-4-11-2013, 2013
Related subject area
Domain: ESSD – Atmosphere | Subject: Meteorology
The PAZ polarimetric radio occultation research dataset for scientific applications
Water vapor Raman lidar observations from multiple sites in the framework of WaLiNeAs
SARAH-3 – satellite-based climate data records of surface solar radiation
A database of deep convective systems derived from the intercalibrated meteorological geostationary satellite fleet and the TOOCAN algorithm (2012–2020)
Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data
A New High-Resolution Multi-Drought Indices Dataset for Mainland China
Special Observing Period (SOP) data for the Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP)
Dataset of spatially extensive long-term quality-assured land–atmosphere interactions over the Tibetan Plateau
Multifrequency radar observations of marine clouds during the EPCAPE campaign
Data collected using small uncrewed aircraft systems during the TRacking Aerosol Convection interactions ExpeRiment (TRACER)
LGHAP v2: a global gap-free aerosol optical depth and PM2.5 concentration dataset since 2000 derived via big Earth data analytics
Reanalysis of multi-year high-resolution X-band weather radar observations in Hamburg
The 2023 National Offshore Wind data set (NOW-23)
Dataset of stable isotopes of precipitation in the Eurasian continent
A 7-year record of vertical profiles of radar measurements and precipitation estimates at Dumont d'Urville, Adélie Land, East Antarctica
Long-term monthly 0.05° terrestrial evapotranspiration dataset (1982–2018) for the Tibetan Plateau
High-resolution (1 km) all-sky net radiation over Europe enabled by the merging of land surface temperature retrievals from geostationary and polar-orbiting satellites
Atmospheric and surface observations during the Saint John River Experiment on Cold Season Storms (SAJESS)
Year-long buoy-based observations of the air–sea transition zone off the US west coast
The historical Greenland Climate Network (GC-Net) curated and augmented level-1 dataset
Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: a comprehensive long-term dataset of remote sensing observations
CHESS-SCAPE: high-resolution future projections of multiple climate scenarios for the United Kingdom derived from downscaled United Kingdom Climate Projections 2018 regional climate model output
Quality-controlled meteorological datasets from SIGMA automatic weather stations in northwest Greenland, 2012–2020
A dataset of energy, water vapor, and carbon exchange observations in oasis–desert areas from 2012 to 2021 in a typical endorheic basin
Derivation and compilation of lower-atmospheric properties relating to temperature, wind, stability, moisture, and surface radiation budget over the central Arctic sea ice during MOSAiC
CLARA-A3: The third edition of the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023
An integrated and homogenized global surface solar radiation dataset and its reconstruction based on a convolutional neural network approach
IWIN: the Isfjorden Weather Information Network
A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations
A 16-year global climate data record of total column water vapour generated from OMI observations in the visible blue spectral range
The EUPPBench postprocessing benchmark dataset v1.0
Database of the Italian disdrometer network
East Asia Reanalysis System (EARS)
Data rescue of historical wind observations in Sweden since the 1920s
LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond
EURADCLIM: the European climatological high-resolution gauge-adjusted radar precipitation dataset
Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica
Combined wind lidar and cloud radar for high-resolution wind profiling
An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020
TPHiPr: a long-term (1979–2020) high-accuracy precipitation dataset (1∕30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations
The AntAWS dataset: a compilation of Antarctic automatic weather station observations
HiTIC-Monthly: a monthly high spatial resolution (1 km) human thermal index collection over China during 2003–2020
A long-term 1 km monthly near-surface air temperature dataset over the Tibetan glaciers by fusion of station and satellite observations
A global dataset of daily maximum and minimum near-surface air temperature at 1 km resolution over land (2003–2020)
Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
The hourly wind-bias-adjusted precipitation data set from the Environment and Climate Change Canada automated surface observation network (2001–2019)
Enhanced automated meteorological observations at the Canadian Arctic Weather Science (CAWS) supersites
Quality control and correction method for air temperature data from a citizen science weather station network in Leuven, Belgium
Combined high-resolution rainfall and wind data collected for 3 months on a wind farm 110 km southeast of Paris (France)
Sub-mesoscale observations of convective cold pools with a dense station network in Hamburg, Germany
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan-Peter Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data, 16, 5643–5663, https://doi.org/10.5194/essd-16-5643-2024, https://doi.org/10.5194/essd-16-5643-2024, 2024
Short summary
Short summary
This dataset provides, for the first time, combined observations of clouds and precipitation with coincident retrievals of atmospheric thermodynamics obtained from the same space-based instrument. Furthermore, it provides the locations of the ray trajectories of the observations along various precipitation-related products interpolated into them with the aim of fostering the use of such dataset in scientific and operational applications.
Frédéric Laly, Patrick Chazette, Julien Totems, Jérémy Lagarrigue, Laurent Forges, and Cyrille Flamant
Earth Syst. Sci. Data, 16, 5579–5602, https://doi.org/10.5194/essd-16-5579-2024, https://doi.org/10.5194/essd-16-5579-2024, 2024
Short summary
Short summary
We present a dataset of water vapor mixing ratio profiles acquired during the Water Vapor Lidar Network Assimilation campaign in fall and winter 2022 and summer 2023, using three lidar systems deployed on the western Mediterranean coastline. This innovative campaign provides access to lower-tropospheric water vapor variability to constrain meteorological forecasting models. The scientific objective is to improve forecasting of heavy-precipation events that lead to flash floods and landslides.
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 16, 5243–5265, https://doi.org/10.5194/essd-16-5243-2024, https://doi.org/10.5194/essd-16-5243-2024, 2024
Short summary
Short summary
The energy reaching Earth's surface from the Sun is a quantity of great importance for the climate system and for many applications. SARAH-3 is a satellite-based climate data record of surface solar radiation parameters. It is generated and distributed by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF). SARAH-3 covers more than 4 decades and provides a high spatial and temporal resolution, and its validation shows good accuracy and stability.
Thomas Fiolleau and Rémy Roca
Earth Syst. Sci. Data, 16, 4021–4050, https://doi.org/10.5194/essd-16-4021-2024, https://doi.org/10.5194/essd-16-4021-2024, 2024
Short summary
Short summary
This paper presents a database of tropical deep convective systems over the 2012–2020 period, built from a cloud-tracking algorithm called TOOCAN, which has been applied to homogenized infrared observations from a fleet of geostationary satellites. This database aims to analyze the tropical deep convective systems, the evolution of their associated characteristics over their life cycle, their organization, and their importance in the hydrological and energy cycle.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Qi Zhang, Chiyuan Miao, Jiajia Su, Jiaojiao Gou, Jinlong Hu, Xi Zhao, and Ye Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-270, https://doi.org/10.5194/essd-2024-270, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our study introduces CHM_Drought, an advanced meteorological drought dataset covering mainland China, offering detailed insights from 1961 to 2022 at a spatial resolution of 0.1°. This dataset incorporates six key drought indices, including multi-scale versions, facilitating early detection and monitoring of droughts. Through the provision of consistent and reliable data, CHM_Drought enhances our understanding of drought patterns, aiding in effective water management and agricultural planning.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, Robert M. Beauchamp, and Arturo Umeyama
Earth Syst. Sci. Data, 16, 2701–2715, https://doi.org/10.5194/essd-16-2701-2024, https://doi.org/10.5194/essd-16-2701-2024, 2024
Short summary
Short summary
This paper describes multifrequency radar observations of clouds and precipitation during the EPCAPE campaign. The data sets were obtained from CloudCube, a Ka-, W-, and G-band atmospheric profiling radar, to demonstrate synergies between multifrequency retrievals. This data collection provides a unique opportunity to study hydrometeors with diameters in the millimeter and submillimeter size range that can be used to better understand the drop size distribution within clouds and precipitation.
Francesca Lappin, Gijs de Boer, Petra Klein, Jonathan Hamilton, Michelle Spencer, Radiance Calmer, Antonio R. Segales, Michael Rhodes, Tyler M. Bell, Justin Buchli, Kelsey Britt, Elizabeth Asher, Isaac Medina, Brian Butterworth, Leia Otterstatter, Madison Ritsch, Bryony Puxley, Angelina Miller, Arianna Jordan, Ceu Gomez-Faulk, Elizabeth Smith, Steven Borenstein, Troy Thornberry, Brian Argrow, and Elizabeth Pillar-Little
Earth Syst. Sci. Data, 16, 2525–2541, https://doi.org/10.5194/essd-16-2525-2024, https://doi.org/10.5194/essd-16-2525-2024, 2024
Short summary
Short summary
This article provides an overview of the lower-atmospheric dataset collected by two uncrewed aerial systems near the Gulf of Mexico coastline south of Houston, TX, USA, as part of the TRacking Aerosol Convection interactions ExpeRiment (TRACER) campaign. The data were collected through boundary layer transitions, through sea breeze circulations, and in the pre- and near-storm environment to understand how these processes influence the coastal environment.
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 16, 2425–2448, https://doi.org/10.5194/essd-16-2425-2024, https://doi.org/10.5194/essd-16-2425-2024, 2024
Short summary
Short summary
A global gap-free high-resolution air pollutant dataset (LGHAP v2) was generated to provide spatially contiguous AOD and PM2.5 concentration maps with daily 1 km resolution from 2000 to 2021. This gap-free dataset has good data accuracies compared to ground-based AOD and PM2.5 concentration observations, which is a reliable database to advance aerosol-related studies and trigger multidisciplinary applications for environmental management, health risk assessment, and climate change analysis.
Finn Burgemeister, Marco Clemens, and Felix Ament
Earth Syst. Sci. Data, 16, 2317–2332, https://doi.org/10.5194/essd-16-2317-2024, https://doi.org/10.5194/essd-16-2317-2024, 2024
Short summary
Short summary
Knowledge of small-scale rainfall variability is needed for hydro-meteorological applications in urban areas. Therefore, we present an open-access data set covering reanalyzed radar reflectivities and rainfall estimates measured by a weather radar at high spatio-temporal resolution in the urban environment of Hamburg between 2013 and 2021. We describe the data reanalysis, outline the measurement’s performance for long time periods, and discuss open issues and limitations of the data set.
Nicola Bodini, Mike Optis, Stephanie Redfern, David Rosencrans, Alex Rybchuk, Julie K. Lundquist, Vincent Pronk, Simon Castagneri, Avi Purkayastha, Caroline Draxl, Raghavendra Krishnamurthy, Ethan Young, Billy Roberts, Evan Rosenlieb, and Walter Musial
Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024, https://doi.org/10.5194/essd-16-1965-2024, 2024
Short summary
Short summary
This article presents the 2023 National Offshore Wind data set (NOW-23), an updated resource for offshore wind information in the US. It replaces the Wind Integration National Dataset (WIND) Toolkit, offering improved accuracy through advanced weather prediction models. The data underwent regional tuning and validation and can be accessed at no cost.
Longhu Chen, Qinqin Wang, Guofeng Zhu, Xinrui Lin, Dongdong Qiu, Yinying Jiao, Siyu Lu, Rui Li, Gaojia Meng, and Yuhao Wang
Earth Syst. Sci. Data, 16, 1543–1557, https://doi.org/10.5194/essd-16-1543-2024, https://doi.org/10.5194/essd-16-1543-2024, 2024
Short summary
Short summary
We have compiled data regarding stable precipitation isotopes from 842 sampling points throughout the Eurasian continent since 1961, accumulating a total of 51 753 data records. The collected data have undergone pre-processing and statistical analysis. We also analysed the spatiotemporal distribution of stable precipitation isotopes across the Eurasian continent and their interrelationships with meteorological elements.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Ling Yuan, Xuelong Chen, Yaoming Ma, Cunbo Han, Binbin Wang, and Weiqiang Ma
Earth Syst. Sci. Data, 16, 775–801, https://doi.org/10.5194/essd-16-775-2024, https://doi.org/10.5194/essd-16-775-2024, 2024
Short summary
Short summary
Accurately monitoring and understanding the spatial–temporal variability of evapotranspiration (ET) components over the Tibetan Plateau (TP) remains difficult. Here, 37 years (1982–2018) of monthly ET component data for the TP was produced, and the data are consistent with measurements. The annual average ET for the TP was about 0.93 (± 0.037) × 103 Gt yr−1. The rate of increase of the ET was around 0.96 mm yr−1. The increase in the ET can be explained by warming and wetting of the climate.
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Hadleigh D. Thompson, Julie M. Thériault, Stephen J. Déry, Ronald E. Stewart, Dominique Boisvert, Lisa Rickard, Nicolas R. Leroux, Matteo Colli, and Vincent Vionnet
Earth Syst. Sci. Data, 15, 5785–5806, https://doi.org/10.5194/essd-15-5785-2023, https://doi.org/10.5194/essd-15-5785-2023, 2023
Short summary
Short summary
The Saint John River experiment on Cold Season Storms was conducted in northwest New Brunswick, Canada, to investigate the types of precipitation that can lead to ice jams and flooding along the river. We deployed meteorological instruments, took precipitation measurements and photographs of snowflakes, and launched weather balloons. These data will help us to better understand the atmospheric conditions that can affect local communities and townships downstream during the spring melt season.
Raghavendra Krishnamurthy, Gabriel García Medina, Brian Gaudet, William I. Gustafson Jr., Evgueni I. Kassianov, Jinliang Liu, Rob K. Newsom, Lindsay M. Sheridan, and Alicia M. Mahon
Earth Syst. Sci. Data, 15, 5667–5699, https://doi.org/10.5194/essd-15-5667-2023, https://doi.org/10.5194/essd-15-5667-2023, 2023
Short summary
Short summary
Our understanding and ability to observe and model air–sea processes has been identified as a principal limitation to our ability to predict future weather. Few observations exist offshore along the coast of California. To improve our understanding of the air–sea transition zone and support the wind energy industry, two buoys with state-of-the-art equipment were deployed for 1 year. In this article, we present details of the post-processing, algorithms, and analyses.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Emma L. Robinson, Chris Huntingford, Valyaveetil Shamsudheen Semeena, and James M. Bullock
Earth Syst. Sci. Data, 15, 5371–5401, https://doi.org/10.5194/essd-15-5371-2023, https://doi.org/10.5194/essd-15-5371-2023, 2023
Short summary
Short summary
CHESS-SCAPE is a suite of high-resolution climate projections for the UK to 2080, derived from United Kingdom Climate Projections 2018 (UKCP18), designed to support climate impact modelling. It contains four realisations of four scenarios of future greenhouse gas levels (RCP2.6, 4.5, 6.0 and 8.5), with and without bias correction to historical data. The variables are available at 1 km resolution and a daily time step, with monthly, seasonal and annual means and 20-year mean-monthly time slices.
Motoshi Nishimura, Teruo Aoki, Masashi Niwano, Sumito Matoba, Tomonori Tanikawa, Tetsuhide Yamasaki, Satoru Yamaguchi, and Koji Fujita
Earth Syst. Sci. Data, 15, 5207–5226, https://doi.org/10.5194/essd-15-5207-2023, https://doi.org/10.5194/essd-15-5207-2023, 2023
Short summary
Short summary
We presented the method of data quality checks and the dataset for two ground weather observations in northwest Greenland. We found that the warm and clear weather conditions in the 2015, 2019, and 2020 summers caused the snowmelt and the decline in surface reflectance of solar radiation at a low-elevated site (SIGMA-B; 944 m), but those were not seen at the high-elevated site (SIGMA-A; 1490 m). We hope that our data management method and findings will help climate scientists.
Shaomin Liu, Ziwei Xu, Tao Che, Xin Li, Tongren Xu, Zhiguo Ren, Yang Zhang, Junlei Tan, Lisheng Song, Ji Zhou, Zhongli Zhu, Xiaofan Yang, Rui Liu, and Yanfei Ma
Earth Syst. Sci. Data, 15, 4959–4981, https://doi.org/10.5194/essd-15-4959-2023, https://doi.org/10.5194/essd-15-4959-2023, 2023
Short summary
Short summary
We present a suite of observational datasets from artificial and natural oases–desert systems that consist of long-term turbulent flux and auxiliary data, including hydrometeorological, vegetation, and soil parameters, from 2012 to 2021. We confirm that the 10-year, long-term dataset presented in this study is of high quality with few missing data, and we believe that the data will support ecological security and sustainable development in oasis–desert areas.
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023, https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Short summary
Observations from the MOSAiC expedition relating to lower-atmospheric temperature, wind, stability, moisture, and surface radiation budget from radiosondes, a meteorological tower, radiation station, and ceilometer were compiled to create a dataset which describes the thermodynamic and kinematic state of the central Arctic lower atmosphere between October 2019 and September 2020. This paper describes the methods used to develop this lower-atmospheric properties dataset.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Boyang Jiao, Yucheng Su, Qingxiang Li, Veronica Manara, and Martin Wild
Earth Syst. Sci. Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023, https://doi.org/10.5194/essd-15-4519-2023, 2023
Short summary
Short summary
This paper develops an observational integrated and homogenized global-terrestrial (except for Antarctica) SSRIH station. This is interpolated into a 5° × 5° SSRIH grid and reconstructed into a long-term (1955–2018) global land (except for Antarctica) 5° × 2.5° SSR anomaly dataset (SSRIH20CR) by an improved partial convolutional neural network deep-learning method. SSRIH20CR yields trends of −1.276 W m−2 per decade over the dimming period and 0.697 W m−2 per decade over the brightening period.
Lukas Frank, Marius Opsanger Jonassen, Teresa Remes, Florina Roana Schalamon, and Agnes Stenlund
Earth Syst. Sci. Data, 15, 4219–4234, https://doi.org/10.5194/essd-15-4219-2023, https://doi.org/10.5194/essd-15-4219-2023, 2023
Short summary
Short summary
The Isfjorden Weather Information Network (IWIN) provides continuous meteorological near-surface observations from Isfjorden in Svalbard. The network combines permanent automatic weather stations on lighthouses along the coast line with mobile stations on board small tourist cruise ships regularly trafficking the fjord during spring to autumn. All data are available online in near-real time. Besides their scientific value, IWIN data crucially enhance the safety of field activities in the region.
Jingya Han, Chiyuan Miao, Jiaojiao Gou, Haiyan Zheng, Qi Zhang, and Xiaoying Guo
Earth Syst. Sci. Data, 15, 3147–3161, https://doi.org/10.5194/essd-15-3147-2023, https://doi.org/10.5194/essd-15-3147-2023, 2023
Short summary
Short summary
Constructing a high-quality, long-term daily precipitation dataset is essential to current hydrometeorology research. This study aims to construct a long-term daily precipitation dataset with different spatial resolutions based on 2839 gauge observations. The constructed precipitation dataset shows reliable quality compared with the other available precipitation products and is expected to facilitate the advancement of drought monitoring, flood forecasting, and hydrological modeling.
Christian Borger, Steffen Beirle, and Thomas Wagner
Earth Syst. Sci. Data, 15, 3023–3049, https://doi.org/10.5194/essd-15-3023-2023, https://doi.org/10.5194/essd-15-3023-2023, 2023
Short summary
Short summary
This study presents a long-term data set of monthly mean total column water vapour (TCWV) based on measurements of the Ozone Monitoring Instrument (OMI) covering the time range from January 2005 to December 2020. We describe how the TCWV values are retrieved from UV–Vis satellite spectra and demonstrate that the OMI TCWV data set is in good agreement with various different reference data sets. Moreover, we also show that it fulfills typical stability requirements for climate data records.
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023, https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary
Short summary
A benchmark dataset is proposed to compare different statistical postprocessing methods used in forecasting centers to properly calibrate ensemble weather forecasts. This dataset is based on ensemble forecasts covering a portion of central Europe and includes the corresponding observations. Examples on how to download and use the data are provided, a set of evaluation methods is proposed, and a first benchmark of several methods for the correction of 2 m temperature forecasts is performed.
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Jinfang Yin, Xudong Liang, Yanxin Xie, Feng Li, Kaixi Hu, Lijuan Cao, Feng Chen, Haibo Zou, Feng Zhu, Xin Sun, Jianjun Xu, Geli Wang, Ying Zhao, and Juanjuan Liu
Earth Syst. Sci. Data, 15, 2329–2346, https://doi.org/10.5194/essd-15-2329-2023, https://doi.org/10.5194/essd-15-2329-2023, 2023
Short summary
Short summary
A collection of regional reanalysis datasets has been produced. However, little attention has been paid to East Asia, and there are no long-term, physically consistent regional reanalysis data available. The East Asia Reanalysis System was developed using the WRF model and GSI data assimilation system. A 39-year (1980–2018) reanalysis dataset is available for the East Asia region, at a high temporal (of 3 h) and spatial resolution (of 12 km), for mesoscale weather and regional climate studies.
John Erik Engström, Lennart Wern, Sverker Hellström, Erik Kjellström, Chunlüe Zhou, Deliang Chen, and Cesar Azorin-Molina
Earth Syst. Sci. Data, 15, 2259–2277, https://doi.org/10.5194/essd-15-2259-2023, https://doi.org/10.5194/essd-15-2259-2023, 2023
Short summary
Short summary
Newly digitized wind speed observations provide data from the time period from around 1920 to the present, enveloping one full century of wind measurements. The results of this work enable the investigation of the historical variability and trends in surface wind speed in Sweden for
the last century.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse
Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023, https://doi.org/10.5194/essd-15-1441-2023, 2023
Short summary
Short summary
EURADCLIM is a new precipitation dataset covering a large part of Europe. It is based on weather radar data to provide local precipitation information every hour and combined with rain gauge data to obtain good precipitation estimates. EURADCLIM provides a much better reference for validation of weather model output and satellite precipitation datasets. It also allows for climate monitoring and better evaluation of extreme precipitation events and their impact (landslides, flooding).
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023, https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
Short summary
This article presents the datasets collected between November 2019 and February 2020 in the vicinity of the Belgian research base Princess Elisabeth Antarctica. Five meteorological radars, a multi-angle snowflake camera, three weather stations, and two radiometers have been deployed at five sites, up to a maximum distance of 30 km from the base. Their varied locations allow the study of spatial variability in snowfall and its interaction with the complex terrain in the region.
José Dias Neto, Louise Nuijens, Christine Unal, and Steven Knoop
Earth Syst. Sci. Data, 15, 769–789, https://doi.org/10.5194/essd-15-769-2023, https://doi.org/10.5194/essd-15-769-2023, 2023
Short summary
Short summary
This paper describes a dataset from a novel experimental setup to retrieve wind speed and direction profiles, combining cloud radars and wind lidar. This setup allows retrieving profiles from near the surface to the top of clouds. The field campaign occurred in Cabauw, the Netherlands, between September 13th and October 3rd 2021. This paper also provides examples of applications of this dataset (e.g. studying atmospheric turbulence, validating numerical atmospheric models).
Peng Yuan, Geoffrey Blewitt, Corné Kreemer, William C. Hammond, Donald Argus, Xungang Yin, Roeland Van Malderen, Michael Mayer, Weiping Jiang, Joseph Awange, and Hansjörg Kutterer
Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023, https://doi.org/10.5194/essd-15-723-2023, 2023
Short summary
Short summary
We developed a 5 min global integrated water vapour (IWV) product from 12 552 ground-based GPS stations in 2020. It contains more than 1 billion IWV estimates. The dataset is an enhanced version of the existing operational GPS IWV dataset from the Nevada Geodetic Laboratory. The enhancement is reached by using accurate meteorological information from ERA5 for the GPS IWV retrieval with a significantly higher spatiotemporal resolution. The dataset is recommended for high-accuracy applications.
Yaozhi Jiang, Kun Yang, Youcun Qi, Xu Zhou, Jie He, Hui Lu, Xin Li, Yingying Chen, Xiaodong Li, Bingrong Zhou, Ali Mamtimin, Changkun Shao, Xiaogang Ma, Jiaxin Tian, and Jianhong Zhou
Earth Syst. Sci. Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023, https://doi.org/10.5194/essd-15-621-2023, 2023
Short summary
Short summary
Our work produces a long-term (1979–2020) high-resolution (1/30°, daily) precipitation dataset for the Third Pole (TP) region by merging an advanced atmospheric simulation with high-density rain gauge (more than 9000) observations. Validation shows that the produced dataset performs better than the currently widely used precipitation datasets in the TP. This dataset can be used for hydrological, meteorological and ecological studies in the TP.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Hui Zhang, Ming Luo, Yongquan Zhao, Lijie Lin, Erjia Ge, Yuanjian Yang, Guicai Ning, Jing Cong, Zhaoliang Zeng, Ke Gui, Jing Li, Ting On Chan, Xiang Li, Sijia Wu, Peng Wang, and Xiaoyu Wang
Earth Syst. Sci. Data, 15, 359–381, https://doi.org/10.5194/essd-15-359-2023, https://doi.org/10.5194/essd-15-359-2023, 2023
Short summary
Short summary
We generate the first monthly high-resolution (1 km) human thermal index collection (HiTIC-Monthly) in China over 2003–2020, in which 12 human-perceived temperature indices are generated by LightGBM. The HiTIC-Monthly dataset has a high accuracy (R2 = 0.996, RMSE = 0.693 °C, MAE = 0.512 °C) and describes explicit spatial variations for fine-scale studies. It is freely available at https://zenodo.org/record/6895533 and https://data.tpdc.ac.cn/disallow/036e67b7-7a3a-4229-956f-40b8cd11871d.
Jun Qin, Weihao Pan, Min He, Ning Lu, Ling Yao, Hou Jiang, and Chenghu Zhou
Earth Syst. Sci. Data, 15, 331–344, https://doi.org/10.5194/essd-15-331-2023, https://doi.org/10.5194/essd-15-331-2023, 2023
Short summary
Short summary
To enrich a glacial surface air temperature (SAT) product of a long time series, an ensemble learning model is constructed to estimate monthly SATs from satellite land surface temperatures at a spatial resolution of 1 km, and long-term glacial SATs from 1961 to 2020 are reconstructed using a Bayesian linear regression. This product reveals the overall warming trend and the spatial heterogeneity of warming on TP glaciers and helps to monitor glacier warming, analyze glacier evolution, etc.
Tao Zhang, Yuyu Zhou, Kaiguang Zhao, Zhengyuan Zhu, Gang Chen, Jia Hu, and Li Wang
Earth Syst. Sci. Data, 14, 5637–5649, https://doi.org/10.5194/essd-14-5637-2022, https://doi.org/10.5194/essd-14-5637-2022, 2022
Short summary
Short summary
We generated a global 1 km daily maximum and minimum near-surface air temperature (Tmax and Tmin) dataset (2003–2020) using a novel statistical model. The average root mean square errors ranged from 1.20 to 2.44 °C for Tmax and 1.69 to 2.39 °C for Tmin. The gridded global air temperature dataset is of great use in a variety of studies such as the urban heat island phenomenon, hydrological modeling, and epidemic forecasting.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Craig D. Smith, Eva Mekis, Megan Hartwell, and Amber Ross
Earth Syst. Sci. Data, 14, 5253–5265, https://doi.org/10.5194/essd-14-5253-2022, https://doi.org/10.5194/essd-14-5253-2022, 2022
Short summary
Short summary
It is well understood that precipitation gauges underestimate the measurement of solid precipitation (snow) as a result of systematic bias caused by wind. Relationships between the wind speed and gauge catch efficiency of solid precipitation have been previously established and are applied to the hourly precipitation measurements made between 2001 and 2019 in the automated Environment and Climate Change Canada observation network. The adjusted data are available for download and use.
Zen Mariani, Laura Huang, Robert Crawford, Jean-Pierre Blanchet, Shannon Hicks-Jalali, Eva Mekis, Ludovick Pelletier, Peter Rodriguez, and Kevin Strawbridge
Earth Syst. Sci. Data, 14, 4995–5017, https://doi.org/10.5194/essd-14-4995-2022, https://doi.org/10.5194/essd-14-4995-2022, 2022
Short summary
Short summary
Environment and Climate Change Canada (ECCC) commissioned two supersites in Iqaluit (64°N, 69°W) and Whitehorse (61°N, 135°W) to provide new and enhanced automated and continuous altitude-resolved meteorological observations as part of the Canadian Arctic Weather Science (CAWS) project. These observations are being used to test new technologies, provide recommendations to the optimal Arctic observing system, and evaluate and improve the performance of numerical weather forecast systems.
Eva Beele, Maarten Reyniers, Raf Aerts, and Ben Somers
Earth Syst. Sci. Data, 14, 4681–4717, https://doi.org/10.5194/essd-14-4681-2022, https://doi.org/10.5194/essd-14-4681-2022, 2022
Short summary
Short summary
This paper presents crowdsourced data from the Leuven.cool network, a citizen science network of around 100 low-cost weather stations distributed across Leuven, Belgium. The temperature data have undergone a quality control (QC) and correction procedure. The procedure consists of three levels that remove implausible measurements while also correcting for between-station and station-specific temperature biases.
Auguste Gires, Jerry Jose, Ioulia Tchiguirinskaia, and Daniel Schertzer
Earth Syst. Sci. Data, 14, 3807–3819, https://doi.org/10.5194/essd-14-3807-2022, https://doi.org/10.5194/essd-14-3807-2022, 2022
Short summary
Short summary
The Hydrology Meteorology and Complexity laboratory of École des Ponts ParisTech (https://hmco.enpc.fr) has made a data set of high-resolution atmospheric measurements (rainfall, wind, temperature, pressure, and humidity) available. It comes from a campaign carried out on a meteorological mast located on a wind farm in the framework of the Rainfall Wind Turbine or Turbulence project (RW-Turb; supported by the French National Research Agency – ANR-19-CE05-0022).
Bastian Kirsch, Cathy Hohenegger, Daniel Klocke, Rainer Senke, Michael Offermann, and Felix Ament
Earth Syst. Sci. Data, 14, 3531–3548, https://doi.org/10.5194/essd-14-3531-2022, https://doi.org/10.5194/essd-14-3531-2022, 2022
Short summary
Short summary
Conventional observation networks are too coarse to resolve the horizontal structure of kilometer-scale atmospheric processes. We present the FESST@HH field experiment that took place in Hamburg (Germany) during summer 2020 and featured a dense network of 103 custom-built, low-cost weather stations. The data set is capable of providing new insights into the structure of convective cold pools and the nocturnal urban heat island and variations of local temperature fluctuations.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The version-2 global precipitation
climatology project (GPCP) monthly precipitation analysis (1979–present),
J. Hydrometeorol., 4, 1147–1167, 2003.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B.,
Hirschi, M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model:
Verification from Field Site to Terrestrial Water Storage and Impact in the
Integrated Forecast System, J. Hydrometeorol., 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009.
Balsamo, G., Boussetta, S., Lopez, P., and Ferranti, L.: Evaluation of
ERA-Interim and ERA-Interim-GPCP-rescaled precipitation over the U.S.A.,
ECMWF, Shinfield Park, Reading, 2010.
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi,
M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D.,
Berthou, S., Brisson, E., Cardoso, R. M., Chan, S. C., Christensen, O. B.,
Fernández, J., Fita, L., Frisius, T., Gašparac, G., Giorgi, F.,
Goergen, K., Haugen, J. E., Hodnebrog, Ø., Kartsios, S., Katragkou, E.,
Kendon, E. J., Keuler, K., Lavin-Gullon, A., Lenderink, G., Leutwyler, D.,
Lorenz, T., Maraun, D., Mercogliano, P., Milovac, J., Panitz, H.-J., Raffa,
M., Remedio, A. R., Schär, C., Soares, P. M. M., Srnec, L., Steensen, B.
M., Stocchi, P., Tölle, M. H., Truhetz, H., Vergara-Temprado, J., de
Vries, H., Warrach-Sagi, K., Wulfmeyer, V., and Zander, M. J.: The first
multi-model ensemble of regional climate simulations at kilometer-scale
resolution, part I: evaluation of precipitation, Clim. Dynam., 57, 275–302,
https://doi.org/10.1007/s00382-021-05708-w, 2021.
Barton, M. G., Clusella-Trullas, S., and Terblanche, J. S.: Spatial scale,
topography and thermoregulatory behaviour interact when modelling species'
thermal niches, Ecography, 42, 376–389, https://doi.org/10.1111/ecog.03655,
2019.
Böhner, J. and Antonic, O.:
Land-Surface Parameters Specific to Topo-Climatology, in:
Geomorphometry: Concepts, Software, Applications, edited by: Hengl, T. and Reuter, H.
I., Elsevier Science,
195–226, https://doi.org/10.1016/S0166-2481(08)00008-1, 2009.
Brasseur, G. P. and Gallardo, L.: Climate services: Lessons learned and
future prospects, Earth's Future, 4, 79–89,
https://doi.org/10.1002/2015EF000338, 2016.
Chang, J., Ciais, P., Wang, X., Piao, S., Asrar, G., Betts, R., Chevallier,
F., Dury, M., François, L., Frieler, K., Ros, A. G. C., Henrot, A.-J.,
Hickler, T., Ito, A., Morfopoulos, C., Munhoven, G., Nishina, K., Ostberg,
S., Pan, S., Peng, S., Rafique, R., Reyer, C., Rödenbeck, C., Schaphoff,
S., Steinkamp, J., Tian, H., Viovy, N., Yang, J., Zeng, N., and Zhao, F.:
Benchmarking carbon fluxes of the ISIMIP2a biome models, Environ. Res.
Lett., 12, 045002, https://doi.org/10.1088/1748-9326/aa63fa, 2017.
Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, 2020.
Daly, C., Neilson, R. P., and Phillips, D. L.: A Statistical-Topographic
Model for Mapping Climatological Precipitation over Mountainous Terrain, J.
Appl. Meteor., 33, 140–158,
https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2, 1994.
Daly, C., Taylor, G. H., and Gibson, W. P.: The PRISM approach to mapping
precipitation and temperature, Proc. 10th AMS Conf. on Applied Climatology,
20–23, 1997.
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation
data 2010 (GMTED2010), US Geological Survey, Open-File Report 2011–1073, 26 p., 2011.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011?
Fiddes, J. and Gruber, S.: TopoSCALE v.1.0: downscaling gridded climate data in complex terrain, Geosci. Model Dev., 7, 387–405, https://doi.org/10.5194/gmd-7-387-2014, 2014.
Gerlitz, L., Conrad, O., and Böhner, J.: Large-scale atmospheric forcing and topographic modification of precipitation rates over High Asia – a neural-network-based approach, Earth Syst. Dynam., 6, 61–81, https://doi.org/10.5194/esd-6-61-2015, 2015.
Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate information
needs at the regional level: the CORDEX framework, WMO Bulletin, 58,
175–183, 2009.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 1–18, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.
de, Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hewitt, C., Mason, S., and Walland, D.: The Global Framework for Climate
Services, Nat. Clim. Change, 2, 831–832,
https://doi.org/10.1038/nclimate1745, 2012.
Huang, S., Kumar, R., Flörke, M., Yang, T., Hundecha, Y., Kraft, P.,
Gao, C., Gelfan, A., Liersch, S., Lobanova, A., Strauch, M., van Ogtrop, F.,
Reinhardt, J., Haberlandt, U., and Krysanova, V.: Evaluation of an ensemble
of regional hydrological models in 12 large-scale river basins worldwide,
Climatic Change, 141, 381–397, https://doi.org/10.1007/s10584-016-1841-8,
2017.
Huber, V., Krummenauer, L., Peña-Ortiz, C., Lange, S., Gasparrini, A.,
Vicedo-Cabrera, A. M., Garcia-Herrera, R., and Frieler, K.:
Temperature-related excess mortality in German cities at 2 ∘C and
higher degrees of global warming, Environ. Res., 186, 109447,
https://doi.org/10.1016/j.envres.2020.109447, 2020.
Huber, V., Ortiz, C. P., Puyol, D. G., Lange, S., and Sera, F.: Evidence of
rapid adaptation integrated into projections of temperature-related excess
mortality, Environ. Res. Lett., 17, 044075,
https://doi.org/10.1088/1748-9326/ac5dee, 2022.
IPCC: Climate change 2022: impacts, adaptation and vulnerability, edited by:
Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K.,
Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V.,
Okem, A., and Rama, B., Cambridge University Press, Cambridge University Press, Cambridge, UK and New York, NY, USA,
3056 pp., https://doi.org/10.1017/9781009325844, 2022.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:
Climatologies at high resolution for the earth's land surface areas,
Sci. Data, 4, 170122, https://doi.org/10.1038/sdata.2017.122, 2017.
Karger, D. N., Schmatz, D. R., Dettling, G., and Zimmermann, N. E.:
High-resolution monthly precipitation and temperature time series from 2006
to 2100, Sci. Data, 7, 248,
https://doi.org/10.1038/s41597-020-00587-y, 2020.
Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E., and Jetz, W.:
Global daily 1 km land surface precipitation based on cloud cover-informed
downscaling, Sci. Data, 8, 307, https://doi.org/10.1038/s41597-021-01084-6,
2021.
Karger, D. N., Lange, S., Hari, C., Reyer, C. P. O., and Zimmermann, N. E.:
CHELSA-W5E5 v1.0: W5E5 v1.0 downscaled with CHELSA v2.0, ISIMIP Repository [data set],
https://doi.org/10.48364/ISIMIP.836809.3, 2022.
Karger, D. N., Lange, S., Hari, C., Reyer, C. P. O., Conrad, O., Zimmermann, N. E., and Frieler, K.: CHELSA-W5E5: V1.0. In Earth System Science Data (V1.0), Zenodo [code], https://doi.org/10.5281/zenodo.8010301, 2023a.
Karger, D. N., Lange, S., Hari, C., Reyer, C. P. O., Conrad, O., Zimmermann, N. E., and Frieler, K.: CHELSA-W5E5-validation: V1.0. In Earth System Science Data (V1.0), Zenodo [code], https://doi.org/10.5281/zenodo.8010710, 2023b
Kasten, F. and Czeplak, G.: Solar and terrestrial radiation dependent on the
amount and type of cloud, Sol. Energy, 24, 177–189,
https://doi.org/10.1016/0038-092X(80)90391-6, 1980.
Krysanova, V. and Hattermann, F. F.: Intercomparison of climate change
impacts in 12 large river basins: overview of methods and summary of
results, Climatic Change, 141, 363–379,
https://doi.org/10.1007/s10584-017-1919-y, 2017.
Lange, S.: WFDE5 over land merged with ERA5 over the ocean (W5E5) (1.0), GFZ Data Services,
https://doi.org/10.5880/PIK.2019.023, 2019.
Lanzante, J. R., Dixon, K. W., Nath, M. J., Whitlock, C. E., and
Adams-Smith, D.: Some Pitfalls in Statistical Downscaling of Future Climate,
B. Am. Meteorol. Soc., 99, 791–803,
https://doi.org/10.1175/BAMS-D-17-0046.1, 2018.
Liersch, S., Drews, M., Pilz, T., Salack, S., Sietz, D., Aich, V., Larsen,
M. A. D., Gädeke, A., s, K. H., Thiery, W., Huang, S., Lobanova, A.,
Koch, H., and Hattermann, F. F.: One simulation, different conclusions – the
baseline period makes the difference!, Environ. Res. Lett., 15, 104014,
https://doi.org/10.1088/1748-9326/aba3d7, 2020.
Linacre, E.: Climate Data and Resources: A reference and guide, Routledge,
London, 384 pp., https://doi.org/10.4324/9780203412152, 1992.
List, R. J.: Smithsonian meteorological tables, sixth revised edition.,
Smithsonian Institution Press, City of Washington, 521 pp., 1968.
Lourenço, T. C., Swart, R., Goosen, H., and Street, R.: The rise of
demand-driven climate services, Nat. Clim. Change, 6, 13–14,
https://doi.org/10.1038/nclimate2836, 2016.
Maraun, D. and Widmann, M.: Statistical Downscaling and Bias Correction for
Climate Research, Cambridge University Press, Cambridge,
https://doi.org/10.1017/9781107588783, 2018.
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D.,
Gutiérrez, J. M., Hagemann, S., Richter, I., Soares, P. M. M., Hall, A.,
and Mearns, L. O.: Towards process-informed bias correction of climate
change simulations, Nat. Clim. Change, 7, 764–773,
https://doi.org/10.1038/nclimate3418, 2017.
Mengel, M., Treu, S., Lange, S., and Frieler, K.: ATTRICI v1.1 – counterfactual climate for impact attribution, Geosci. Model Dev., 14, 5269–5284, https://doi.org/10.5194/gmd-14-5269-2021, 2021.
Menne, M. J., Bryant, J. A., Korzeniewski, S. M., Kristy, T., Xungang, Y.,
Anthony, S., Ray, R., Vose, R. S., Gleason, B. E., and Houston, T. G.:
Global Historical Climatology Network – Daily (GHCN-Daily), Version 3, NOAA
National Climatic Data Center [data set], https://doi.org/10.7289/V5D21VHZ,
2018.
Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M., and Döll, P.: Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration, Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, 2014.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Rasmussen, R. and Liu, C.: High Resolution WRF Simulations of the Current
and Future Climate of North America, Research Data Archive at the National
Center for Atmospheric Research, Computational and Information Systems
Laboratory [data set], https://doi.org/10.5065/D6V40SXP, 2017.
Reyer, C. P. O., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T. G. M., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., Collalti, A., Trotta, C., Matteucci, G., D'Andrea, E., Foltýnová, L., Krejza, J., Ibrom, A., Pilegaard, K., Loustau, D., Bonnefond, J.-M., Berbigier, P., Picart, D., Lafont, S., Dietze, M., Cameron, D., Vieno, M., Tian, H., Palacios-Orueta, A., Cicuendez, V., Recuero, L., Wiese, K., Büchner, M., Lange, S., Volkholz, J., Kim, H., Horemans, J. A., Bohn, F., Steinkamp, J., Chikalanov, A., Weedon, G. P., Sheffield, J., Babst, F., Vega del Valle, I., Suckow, F., Martel, S., Mahnken, M., Gutsch, M., and Frieler, K.: The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests, Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, 2020.
Roe, G. H.: Orographic Precipitation, Annu. Rev. Earth Pl.
Sc., 33, 645–671,
https://doi.org/10.1146/annurev.earth.33.092203.122541, 2005.
Ruane, A. C., Goldberg, R., and Chryssanthacopoulos, J.: Climate forcing
datasets for agricultural modeling: Merged products for gap-filling and
historical climate series estimation, Agr. Forest Meteorol.,
200, 233–248, https://doi.org/10.1016/j.agrformet.2014.09.016, 2015.
Ruane, A. C., Phillips, M., Müller, C., Elliott, J., Jägermeyr, J.,
Arneth, A., Balkovic, J., Deryng, D., Folberth, C., Iizumi, T., Izaurralde,
R. C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M.,
Rosenzweig, C., Sakurai, G., Schmid, E., Sultan, B., Wang, X., de Wit, A.,
and Yang, H.: Strong regional influence of climatic forcing datasets on
global crop model ensembles, Agr. Forest Meteorol., 300,
108313, https://doi.org/10.1016/j.agrformet.2020.108313, 2021.
Sayre, R., Noble, S., Hamann, S., Smith, R., Wright, D., Breyer, S., Butler,
K., Graafeiland, K. V., Frye, C., Karagulle, D., Hopkins, D., Stephens, D.,
Kelly, K., Basher, Z., Burton, D., Cress, J., Atkins, K., Sistine, D. P. V.,
Friesen, B., Allee, R., Allen, T., Aniello, P., Asaad, I., Costello, M. J.,
Goodin, K., Harris, P., Kavanaugh, M., Lillis, H., Manca, E., Muller-Karger,
F., Nyberg, B., Parsons, R., Saarinen, J., Steiner, J., and Reed, A.: A new
30 meter resolution global shoreline vector and associated global islands
database for the development of standardized ecological coastal units,
J. Oper. Oceanogr., 12, S47–S56,
https://doi.org/10.1080/1755876X.2018.1529714, 2019.
Scambos, T. A., Haran, T. M., Fahnestock, M. A., Painter, T. H., and
Bohlander, J.: MODIS-based Mosaic of Antarctica (MOA) data sets:
Continent-wide surface morphology and snow grain size, Remote Sens.
Environ., 111, 242–257, https://doi.org/10.1016/j.rse.2006.12.020, 2007.
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di
Girolamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D.,
Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L.,
Schulthess, T., Sprenger, M., Ubbiali, S., and Wernli, H.: Kilometer-scale
climate models: Prospects and challenges, B. Am. Meteorol. Soc., 101, E567–E587,
https://doi.org/10.1175/BAMS-D-18-0167.1, 2019.
Schneider, U., Becker, A., Fingler, A., Meyer-Christoffer, A., and Ziese,
M.: GPCC Full Data Monthly Product Version 2018 at 0.5∘: Monthly
Land-Surface Precipitation from Rain-Gauges built on GTS-based and
Historical Data, DWD [data set], https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_050, 2018.
Shi, H., Tian, H., Lange, S., Yang, J., Pan, S., Fu, B., and Reyer, C. P.
O.: Terrestrial biodiversity threatened by increasing global aridity
velocity under high-level warming, P. Natl. Acad.
Sci., 118, e2015552118, https://doi.org/10.1073/pnas.2015552118, 2021.
Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Liu, Z., Berner, J., Wang,
W., Powers, G., Duda, G., Barker, D., and Huang, X.: A Description of the
Advanced Research WRF Model Version 4, OpenSky,
https://doi.org/10.5065/1dfh-6p97, 2019.
Sørland, S. L., Brogli, R., Pothapakula, P. K., Russo, E., Van de Walle, J., Ahrens, B., Anders, I., Bucchignani, E., Davin, E. L., Demory, M.-E., Dosio, A., Feldmann, H., Früh, B., Geyer, B., Keuler, K., Lee, D., Li, D., van Lipzig, N. P. M., Min, S.-K., Panitz, H.-J., Rockel, B., Schär, C., Steger, C., and Thiery, W.: COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review, Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, 2021.
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E.,
Österle, H., Adam, J. C., Bellouin, N., Boucher, O., and Best, M.:
Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional
Reference Crop Evaporation over Land during the Twentieth Century, J.
Hydrometeorol., 12, 823–848, https://doi.org/10.1175/2011JHM1369.1,
2011.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour.
Res., 50, 7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res.-Sol.
Ea., 101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996.
Whiteman, C. D.: Breakup of Temperature Inversions in Deep Mountain Valleys:
Part I. Observations, J. Appl. Meteorol. Climatol., 21,
270–289, https://doi.org/10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2, 1982.
Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C.,
Main, J., and Wilks, D. S.: Statistical downscaling of general circulation
model output: A comparison of methods, Water Resour. Res., 34, 2995–3008,
https://doi.org/10.1029/98WR02577, 1998.
Wild, M., Ohmura, A., Schär, C., Müller, G., Folini, D., Schwarz, M., Hakuba, M. Z., and Sanchez-Lorenzo, A.: The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes, Earth Syst. Sci. Data, 9, 601–613, https://doi.org/10.5194/essd-9-601-2017, 2017.
Wilson, J. P. and Gallant, J. C.: Terrain Analysis: Principles and
Applications, 1st Edn., Wiley, New York, 479 pp., 2000.
Zscheischler, J., Fischer, E. M., and Lange, S.: The effect of univariate bias adjustment on multivariate hazard estimates, Earth Syst. Dynam., 10, 31–43, https://doi.org/10.5194/esd-10-31-2019, 2019.
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
We present the first 1 km, daily, global climate dataset for climate impact studies. We show...
Altmetrics
Final-revised paper
Preprint