Articles | Volume 15, issue 2
https://doi.org/10.5194/essd-15-1005-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1005-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Four-century history of land transformation by humans in the United States (1630–2020): annual and 1 km grid data for the HIStory of LAND changes (HISLAND-US)
Xiaoyong Li
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085,
China
Schiller Institute for Integrated Science and Society, Department of
Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467,
USA
International Center for Climate and Global Change Research, College
of Forestry, Wildlife and Environment, Auburn University, Auburn, AL 36849,
USA
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Hanqin Tian
CORRESPONDING AUTHOR
Schiller Institute for Integrated Science and Society, Department of
Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467,
USA
Chaoqun Lu
Department of Ecology, Evolution, and Organismal Biology, Iowa State
University, Ames, IA 50011, USA
Shufen Pan
International Center for Climate and Global Change Research, College
of Forestry, Wildlife and Environment, Auburn University, Auburn, AL 36849,
USA
Schiller Institute for Integrated Science and Society, Department of
Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467,
USA
Related authors
Binyuan Xu, Hanqin Tian, Shufen Pan, Xiaoyong Li, Ran Meng, Óscar Melo, Anne McDonald, María de los Ángeles Picone, Xiao-Peng Song, Edson Severnini, Katharine G. Young, and Feng Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-527, https://doi.org/10.5194/essd-2024-527, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
This study focuses on land use change in South America, reconstructing the historical dynamics of four major crops (soybean, maize, wheat, and rice) from 1950 to 2020 by integrating multiple data sources. The results reveal a significant expansion in cropland, particularly for soybean, leading to a substantial reduction in natural vegetation such as forests and grasslands. The datasets can be used to assess the impacts of cropland expansion on carbon and nitrogen cycles in South America.
Wenhui Kuang, Shu Zhang, Xiaoyong Li, and Dengsheng Lu
Earth Syst. Sci. Data, 13, 63–82, https://doi.org/10.5194/essd-13-63-2021, https://doi.org/10.5194/essd-13-63-2021, 2021
Short summary
Short summary
We propose a hierarchical principle for remotely sensed urban land use and land cover change for mapping intra-urban structure and component dynamics. China’s Land Use/cover Dataset (CLUD) is updated, delineating the imperviousness and green surface conditions in cities from 2000 to 2018. The newly developed datasets can be used to enhance our understanding of urbanization impacts on ecological and regional climatic conditions and on urban dwellers' environments.
Binyuan Xu, Hanqin Tian, Shufen Pan, Xiaoyong Li, Ran Meng, Óscar Melo, Anne McDonald, María de los Ángeles Picone, Xiao-Peng Song, Edson Severnini, Katharine G. Young, and Feng Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-527, https://doi.org/10.5194/essd-2024-527, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
This study focuses on land use change in South America, reconstructing the historical dynamics of four major crops (soybean, maize, wheat, and rice) from 1950 to 2020 by integrating multiple data sources. The results reveal a significant expansion in cropland, particularly for soybean, leading to a substantial reduction in natural vegetation such as forests and grasslands. The datasets can be used to assess the impacts of cropland expansion on carbon and nitrogen cycles in South America.
Peiyu Cao, Bo Yi, Franco Bilotto, Carlos Gonzalez Fischer, Mario Herrero, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 4557–4572, https://doi.org/10.5194/essd-16-4557-2024, https://doi.org/10.5194/essd-16-4557-2024, 2024
Short summary
Short summary
This article presents a spatially explicit time series dataset reconstructing crop-specific phosphorus fertilizer application rates, timing, and methods at a 4 km × 4 km resolution in the United States from 1850 to 2022. We comprehensively characterized the spatio-temporal dynamics of P fertilizer management over the last 170 years by considering cross-crop variations. This dataset will greatly contribute to the field of agricultural sustainability assessment and Earth system modeling.
Shuchao Ye, Peiyu Cao, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 3453–3470, https://doi.org/10.5194/essd-16-3453-2024, https://doi.org/10.5194/essd-16-3453-2024, 2024
Short summary
Short summary
We reconstructed annual cropland density and crop type maps, including nine major crop types (corn, soybean, winter wheat, spring wheat, durum wheat, cotton, sorghum, barley, and rice), from 1850 to 2021 at 1 km × 1 km resolution. We found that the US total crop acreage has increased by 118 × 106 ha (118 Mha), mainly driven by corn (30 Mha) and soybean (35 Mha). Additionally, the US cropping diversity experienced an increase in the 1850s–1960s, followed by a decline over the past 6 decades.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Hanqin Tian, Zihao Bian, Hao Shi, Xiaoyu Qin, Naiqing Pan, Chaoqun Lu, Shufen Pan, Francesco N. Tubiello, Jinfeng Chang, Giulia Conchedda, Junguo Liu, Nathaniel Mueller, Kazuya Nishina, Rongting Xu, Jia Yang, Liangzhi You, and Bowen Zhang
Earth Syst. Sci. Data, 14, 4551–4568, https://doi.org/10.5194/essd-14-4551-2022, https://doi.org/10.5194/essd-14-4551-2022, 2022
Short summary
Short summary
Nitrogen is one of the critical nutrients for growth. Evaluating the change in nitrogen inputs due to human activity is necessary for nutrient management and pollution control. In this study, we generated a historical dataset of nitrogen input to land at the global scale. This dataset consists of nitrogen fertilizer, manure, and atmospheric deposition inputs to cropland, pasture, and rangeland at high resolution from 1860 to 2019.
Zihao Bian, Hanqin Tian, Qichun Yang, Rongting Xu, Shufen Pan, and Bowen Zhang
Earth Syst. Sci. Data, 13, 515–527, https://doi.org/10.5194/essd-13-515-2021, https://doi.org/10.5194/essd-13-515-2021, 2021
Short summary
Short summary
The estimation of manure nutrient production and application is critical for the efficient use of manure nutrients. This study developed four manure nitrogen and phosphorus datasets with high spatial resolution and a long time period (1860–2017) in the US. The datasets can provide useful information for stakeholders and scientists who focus on agriculture, nutrient budget, and biogeochemical cycle.
Wenhui Kuang, Shu Zhang, Xiaoyong Li, and Dengsheng Lu
Earth Syst. Sci. Data, 13, 63–82, https://doi.org/10.5194/essd-13-63-2021, https://doi.org/10.5194/essd-13-63-2021, 2021
Short summary
Short summary
We propose a hierarchical principle for remotely sensed urban land use and land cover change for mapping intra-urban structure and component dynamics. China’s Land Use/cover Dataset (CLUD) is updated, delineating the imperviousness and green surface conditions in cities from 2000 to 2018. The newly developed datasets can be used to enhance our understanding of urbanization impacts on ecological and regional climatic conditions and on urban dwellers' environments.
Peiyu Cao, Chaoqun Lu, Jien Zhang, and Avani Khadilkar
Atmos. Chem. Phys., 20, 11907–11922, https://doi.org/10.5194/acp-20-11907-2020, https://doi.org/10.5194/acp-20-11907-2020, 2020
Short summary
Short summary
In this study, we estimate monthly ammonia emission from synthetic nitrogen fertilizer use across the contiguous US from 1900 to 2015. The results indicate the important role that cropland expansion and nitrogen fertilizer enrichment played in enhancing NH3 emissions. It shows such long-term human activities have dramatically changed the spatiotemporal and seasonal patterns of NH3 emission, impacting air pollution and public health in the US.
Cited articles
Bartholome, E. and Belward, A. S.: GLC2000: a new approach to global land
cover mapping from Earth observation data, Int. J. Remote Sens., 26,
1959–1977, https://doi.org/10.1080/01431160412331291297, 2005.
Bigelow, D. P. and Borchers, A.: Major Uses of Land in the United States
2012, U.S. Department of Agriculture, Economic Research Service, https://www.ers.usda.gov/publications/pub-details/?pubid=84879 (last access: 13 February 2023), 2017.
Billington, R. A. and Ridge, M.: Westward expansion: a history of the
American frontier, University of New Mexico Press, ISBN 9780826319814, 2001.
Boryan, C., Yang, Z., Mueller, R., and Craig, M.: Monitoring US agriculture:
the US Department of Agriculture, National Agricultural Statistics Service,
Cropland Data Layer Program, Geocarto. Int., 26, 341–358, https://doi.org/10.1080/10106049.2011.562309, 2011.
Cao, B., Yu, L., Li, X., Chen, M., Li, X., Hao, P., and Gong, P.: A 1 km global cropland dataset from 10 000 BCE to 2100 CE, Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, 2021.
Chen, G., Pan, S., Hayes, D. J., and Tian, H.: Spatial and temporal patterns of plantation forests in the United States since the 1930s: an annual and gridded data set for regional Earth system modeling, Earth Syst. Sci. Data, 9, 545–556, https://doi.org/10.5194/essd-9-545-2017, 2017.
Chen, H., Tian, H., Liu, M., Melillo, J., Pan, S., and Zhang, C.: Effect of
Land-Cover Change on Terrestrial Carbon Dynamics in the Southern United
States, J. Environ. Qual., 35, 1533–1547, https://doi.org/10.2134/jeq2005.0198, 2006.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G.,
Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover
mapping at 30 m resolution: A POK-based operational approach, ISPRS. J.
Photogramm. Remote Sens., 103, 7–27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.
Clawson, M.: Forests in the long sweep of American history, Science, 204,
1168–1174, https://doi.org/10.1126/science.204.4398.1168, 1979.
Cole, K. L., Davis, M. B., Stearns, F., Guntenspergen, G., and Walker, K.:
Historical landcover changes in the Great Lakes region, U.S. Geological Survey, Biological Resources Division, https://hdl.handle.net/11299/165997 (last access: 13 February 2023), 1998.
Coulson, D. P. and Joyce, L.: United States state-level population estimates:
Colonization to 1999, U.S. Department of Agriculture, Forest Service, Rocky
Mountain Research Station, https://doi.org/10.2737/RMRS-GTR-111, 2003.
Crossley, M. S.: County-level crop area in the USA 1840–2017,
Inter-university Consortium for Political and Social Research, Ann Arbor, MI, https://doi.org/10.3886/E115795V3, 2020.
Crossley, M. S., Burke, K. D., Schoville, S. D., and Radeloff, V. C.: Recent
collapse of crop belts and declining diversity of US agriculture since 1840,
Glob. Change Biol., 27, 151–164, https://doi.org/10.1111/gcb.15396, 2021.
Dangal, S. R. S., Felzer, B. S., and Hurteau, M. D.: Effects of agriculture and
timber harvest on carbon sequestration in the eastern US forests, J.
Geophys. Res.-Biogeo., 119, 35–54, https://doi.org/10.1002/2013JG002409, 2014.
Domke, G. M., Oswalt, S. N., Walters, B. F., and Morin, R. S.: Tree planting
has the potential to increase carbon sequestration capacity of forests in
the United States, P. Natl. Acad. Sci. USA, 117, 24649–24651,
https://doi.org/10.1073/pnas.2010840117, 2020.
Drummond, M. A. and Loveland, T. R.: Land-use pressure and a transition to
forest-cover loss in the eastern United States, BioScience, 60, 286–298,
https://doi.org/10.1525/bio.2010.60.4.7, 2010.
Ellis, E. C., Gauthier, N., Klein Goldewijk, K., Bliege Bird, R., Boivin, N., Díaz, S., Fuller, D. Q., Grill J. L., Kaplan, J. O., Kingston, N., Locke, H., McMichael, C. N. H., Ranco, D., Rick, T. C., Shaw, R. M., Stephens, L., Svenning, J., and Watson, J. E. M.: People have shaped most of terrestrial nature for at least 12,000 years, P. Natl. Acad. Sci. USA, 118, e2023483118, https://doi.org/10.1073/pnas.2023483118, 2021.
Fang, Y. and Jawitz, J. W.: High-resolution reconstruction of the United
States human population distribution, 1790 to 2010, Sci. Data, 5, 180067, https://doi.org/10.1038/sdata.2018.67, 2018.
Foster, D. R.: Land-Use History (1730–1990) and Vegetation Dynamics in
Central New-England, USA, J. Ecol., 80, 753–772, https://doi.org/10.2307/2260864, 1992.
Foster, D. R., Motzkin, G., and Slater, B.: Land-use history as long-term
broad-scale disturbance: regional forest dynamics in central New England,
Ecosystems, 1, 96–119, https://doi.org/10.1007/s100219900008,
1998.
Fretwell, J. D., Williams, J. S., and Redman, P. J.: National water summary
on wetland resources, U.S. Government Printing Office, https://doi.org/10.3133/wsp2425, 1996.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens. Environ.,
114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Fuchs, R., Herold, M., Verburg, P. H., and Clevers, J. G. P. W.: A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe, Biogeosciences, 10, 1543–1559, https://doi.org/10.5194/bg-10-1543-2013, 2013.
Garrison, C. E.: Forestry and Tree Planting in Virginia, Reforestation, Nurseries, and Genetic Resources (RNGR), https://rngr.net/publications/tpn/55-2/forestry-and-tree-planting-in-virginia (last access: 13 February 2023), 2012.
Grassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., and
Penman, J.: The key role of forests in meeting climate targets requires
science for credible mitigation, Nature Clim. Change, 7, 220–226, https://doi.org/10.1038/nclimate3227, 2017.
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva,
D. A., Schlesinger, W. H., Shoch, D., Siikamaki, J. V., Smith, P., Woodbury,
P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C.,
Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J.,
Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S.,
Potapov, P., Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E., and
Fargione, J.: Natural climate solutions, P. Natl. Acad. Sci. USA,
114, 11645–11650, https://doi.org/10.1073/pnas.1710465114,
2017.
Hagenauer, J. and Helbich, M.: A geographically weighted artificial neural
network, Int. J. Geogr. Inform. Sci., 36,
215–235, https://doi.org/10.1080/13658816.2021.1871618, 2022.
Haines, M., Fishback, P., and Rhode, P.: United States Agriculture Data,
1840–2012, Inter-university Consortium for Political and Social Research,
https://doi.org/10.3886/ICPSR35206.v4, 2018.
Hall, B., Motzkin, G., Foster, D. R., Syfert, M., and Burk, J.: Three
hundred years of forest and land-use change in Massachusetts, USA, J.
Biogeogr., 29, 1319–1335, https://doi.org/10.1046/j.1365-2699.2002.00790.x, 2002.
Hanberry, B. B., Kabrick, J. M., He, H. S., and Palik, B. J.: Historical
trajectories and restoration strategies for the Mississippi River Alluvial
Valley, For. Eco. Manag., 280, 103–111, https://doi.org/10.1016/j.foreco.2012.05.033, 2012.
Heimlich, R. E. and Daugherty, A. B.: America's cropland: Where does it come from,
United States Department of Agriculture, 3–9, https://handle.nal.usda.gov/10113/IND20394000 (last access: 13 February 2023), 1991.
Hart, J. F.: Loss and abandonment of cleared farm land in the Eastern United
States, An. Assoc. Am. Geogr., 58, 417–440, 1968.
He, F., Li, S., and Zhang, X.: A spatially explicit reconstruction of forest
cover in China over 1700–2000, Glob. Planet. Change, 131, 73–81, https://doi.org/10.1016/j.gloplacha.2015.05.008, 2015.
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass,
L., Funk, M., Wickham, J., Stehman, S., Auch, R., and Riitters, K.:
Conterminous United States land cover change patterns 2001–2016 from the
2016 National Land Cover Database, ISPRS. J. Photogramm. Remote, 162,
184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020.
Houghton, R. A., Hackler, J. L., and Lawrence, K. T.: The US carbon budget:
Contributions from land-use change, Science, 285, 574–578, https://doi.org/10.1126/science.285.5427.574, 1999.
Hurt, R. D.: American agriculture: A brief history, Purdue University Press,
2002.
Hurtt, G. C., Frolking, S., Fearon, M. G., Moore, B., Shevliakova, E.,
Malyshev, S., Pacala, S. W., and Houghton, R. A.: The underpinnings of
land-use history: three centuries of global gridded land-use transitions,
wood-harvest activity, and resulting secondary lands, Glob. Change Biol.,
12, 1208–1229, https://doi.org/10.1111/j.1365-2486.2006.01150.x, 2006.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020.
Jeon, S. B., Olofsson, P., and Woodcock, C. E.: Land use change in New
England: a reversal of the forest transition, J. Land Use Sci., 9, 105–130,
https://doi.org/10.1080/1747423X.2012.754962, 2014.
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017.
Lark, T. J., Mueller, R. M., Johnson, D. M., and Gibbs, H. K.: Measuring
land-use and land-cover change using the US department of agriculture's
cropland data layer: Cautions and recommendations, Int. J. Appl. Earth Obs.
Geoinf., 62, 224–235, https://doi.org/10.1016/j.jag.2017.06.007, 2017.
Lark, T. J., Spawn, S. A., Bougie, M., and Gibbs, H. K.: Cropland expansion
in the United States produces marginal yields at high costs to wildlife,
Nat. Commun., 11, 1–11, https://doi.org/10.1038/s41467-020-18045-z, 2020.
Lark, T. J., Schelly, I. H., and Gibbs, H. K.: Accuracy, Bias, and
Improvements in Mapping Crops and Cropland across the United States Using
the USDA Cropland Data Layer, Remote Sens., 13, 968, https://doi.org/10.3390/rs13050968, 2021.
Leyk, S. and Uhl, J. H.: HISDAC-US, historical settlement data compilation
for the conterminous United States over 200 years, Sci. Data, 5, 1–14,
https://doi.org/10.1038/sdata.2018.175, 2018.
Leyk, S., Uhl, J. H., Connor, D. S., Braswell, A. E., Mietkiewicz, N.,
Balch, J. K., and Gutmann, M.: Two centuries of settlement and urban
development in the United States, Sci. Adv., 6, eaba2937, https://doi.org/10.1126/sciadv.aba2937, 2020.
Li, S., He, F., and Zhang, X.: A spatially explicit reconstruction of
cropland cover in China from 1661 to 1996, Regional Environmental Change,
16, 417–428, https://doi.org/10.1007/s10113-014-0751-4, 2016.
Li, X., Yu, L., Sohl, T., Clinton, N., Li, W., Zhu, Z., Liu, X., and Gong,
P.: A cellular automata downscaling based 1 km global land use datasets
(2010–2100), Sci. Bull., 61, 1651–1661,
https://doi.org/10.1007/s11434-016-1148-1, 2016.
Li, X., Tian, H., Pan, S., and Lu, C.: Land use and land cover changes in
the contiguous United States from 1630 to 2020 (v2.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7055086, 2022.
Liu, M. and Tian, H.: China's land cover and land use change from 1700 to
2005: Estimations from high-resolution satellite data and historical
archives, Global Biogeochem. Cy., 24, GB3003, https://doi.org/10.1029/2009gb003687, 2010.
Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., and
Pei, F.: A future land use simulation model (FLUS) for simulating multiple
land use scenarios by coupling human and natural effects, Landsc. Urban
Plan., 168, 94–116, https://doi.org/10.1016/j.landurbplan.2017.09.019, 2017.
MacCleery, D. W.: American forests: a history of resiliency and recovery,
U.S. Department of Agriculture, Forest History Society, ISBN 0890300488, 2011.
Meinig, D. W.: The Shaping of America: A Geographical Perspective on 500
Years of History, vol. 2: Continental America, 1800–1867, Yale University Press, https://www.jstor.org/stable/j.ctt5hk0p1 (last access: 13 February 2023), 1993.
Mergener, R., Botti, W., and Heyd, R.: Forestry and Tree Planting in
Michigan, Reforestation, Nurseries, and Genetic Resources (RNGR), https://rngr.net/publications/tpn/57-1/forestry-and-tree-planting-in-michigan (last access: 13 February 2023), 2014.
Olmstead, A. L. and Rhode, P. W.: A history of California agriculture, Giannini
Foundation of Agricultural Economics, University of California, https://giannini.ucop.edu/ (last access: 13 February 2023), 2017.
Oswalt, S. N., Smith, W. B., Miles, P. D. and Pugh, Scott, A.: Forest
Resources of the United States, 2012: a technical document supporting the
Forest Service 2010 update of the RPA Assessment, U.S. Department of
Agriculture, Forest Service, Washington Office, https://doi.org/10.2737/WO-GTR-91, 2014.
Oswalt, S. N., Miles, P. D., Pugh, S. A., and Smith, W. B.: Forest
Resources of the United States, 2017: a technical document supporting the
Forest Service 2020 RPA Assessment, U.S. Department of Agriculture, Forest
Service, Washington Office, https://doi.org/10.2737/WO-GTR-97, 2019.
Peng, S., Ciais, P., Maignan, F., Li, W., Chang, J., Wang, T., and Yue, C.:
Sensitivity of land use change emission estimates to historical land use and
land cover mapping, Global Biogeochem. Cy., 31, 626–643, https://doi.org/10.1002/2015gb005360, 2017.
Reuss, L. A., Wooten, H. H., and Marschner, F. J.: Inventory of Major Land Uses in the United States, U.S.
Department of Agriculture, https://ageconsearch.umn.edu/record/314797 (last access: 13 February 2023), 1948.
Rollins, M. G.: LANDFIRE: a nationally consistent vegetation, wildland fire,
and fuel assessment, Int. J. Wildland Fire, 18, 235–249, https://doi.org/10.1071/WF08088, 2009.
Schulman, S. A.: The Lumber Industry of the Upper Cumberland River Valley, Tennessee Historical Quarterly, 32, 255–264, https://www.jstor.org/stable/42623392 (last access: 3 February 2023), 1973.
Smith, W. B., Vissage, J. S., Darr, D. R., and Sheffield, R. M.: Forest
Resources of the United States, 1997, U.S. Department of Agriculture Forest
Service, https://doi.org/10.2737/NC-GTR-219, 2001.
Sohl, T., Reker, R., Bouchard, M., Sayler, K., Dornbierer, J., Wika, S.,
Quenzer, R., and Friesz, A.: Modeled historical land use and land cover for
the conterminous United States, J. Land Use Sci., 11, 476–499, https://doi.org/10.1080/1747423X.2016.1147619, 2016.
Sohl, T. L., Sayler, K. L., Bouchard, M. A., Reker, R. R., Friesz, A. M.,
Bennett, S. L., Sleeter, B. M., Sleeter, R. R., Wilson, T., and Soulard, C.:
Spatially explicit modeling of 1992–2100 land cover and forest stand age
for the conterminous United States, Ecol. Appl., 24, 1015–1036, https://doi.org/10.1890/13-1245.1, 2014.
Stanturf, J. A., Palik, B. J., and Dumroese, R. K.: Contemporary forest
restoration: A review emphasizing function, For. Ecol. Manag., 331, 292–323,
https://doi.org/10.1016/j.foreco.2014.07.029, 2014.
Steyaert, L. T. and Knox, R. G.: Reconstructed historical land cover and
biophysical parameters for studies of land-atmosphere interactions within
the eastern United States, J. Geophys. Res.-Atmos., 113, D02101, https://doi.org/10.1029/2006jd008277, 2008.
Thompson, J. R., Carpenter, D. N., Cogbill, C. V., and Foster, D. R.: Four
Centuries of Change in Northeastern United States Forests, Plos One, 8,
e72540, https://doi.org/10.1371/journal.pone.0072540, 2013.
Tian, H., Chen, G., Zhang, C., Liu, M., Sun, G., Chappelka, A., Ren, W., Xu,
X., Lu, C., and Pan, S.: Century-scale responses of ecosystem carbon storage
and flux to multiple environmental changes in the southern United States,
Ecosystems, 15, 674–694, https://doi.org/10.1007/s10021-012-9539-x, 2012.
Tian, H., Banger, K., Tao, B., and Dadhwal, V. K.: History of land use in India
during 1880–2010: Large-scale land transformation reconstructed from
satellite data and historical achieves, Glob. Planet. Change, 121, 76–88,
https://doi.org/10.1016/j.gloplacha.2014.07.005, 2014.
Tian, H., Xu, R., Pan, S., Yao, Y., Bian, Z., Cai, W., Hopkinson, C.,
Justic, D., Lohrenz, S., Lu, C., Ren, W., and Yang, J.: Long-term trajectory of
nitrogen loading and delivery from Mississippi River Basin to the Gulf of
Mexico, Global Biogeochem. Cy., 34, e2019GB006475, https://doi.org/10.1029/2019GB006475, 2020.
Uhl, J. H., Leyk, S., McShane, C. M., Braswell, A. E., Connor, D. S., and Balk, D.: Fine-grained, spatiotemporal datasets measuring 200 years of land development in the United States, Earth Syst. Sci. Data, 13, 119–153, https://doi.org/10.5194/essd-13-119-2021, 2021.
U.S. Department of Agriculture: Summary Report: 2017 National Resources
Inventory, Natural Resources Conservation Service Washington, D.C., and Center
for Survey Statistics and Methodology, Iowa State University, Ames, Iowa, https://www.nrcs.usda.gov/nri (last access: 13 February 2023),
2020.
U.S. Department of Agriculture and Economic Research Service: Our Land and Water Resources: Current and Prospective Supplies and Uses, U.S. Government Printing Office, https://www.govinfo.gov/app/details/CZIC-s21-a46-no-1290 (last access: 13 February 2023), 1974.
Verburg, P. H. and Overmars, K. P.: Combining top-down and bottom-up
dynamics in land use modeling: exploring the future of abandoned farmlands
in Europe with the Dyna-CLUE model, Landscape Ecol., 24, 1167–1181,
https://doi.org/10.1007/s10980-009-9355-7, 2009.
Verburg, P. H., Schulp, C. J. E., Witte, N., and Veldkamp, A.: Downscaling
of land use change scenarios to assess the dynamics of European landscapes,
Agr. Ecosyst. Environ., 114, 39–56, https://doi.org/10.1016/j.agee.2005.11.024, 2006.
Waisanen, P. J. and Bliss, N. B.: Changes in population and agricultural
land in conterminous United States counties, 1790 to 1997, Global
Biogeochem. Cy., 16, 84-81–84-19, https://doi.org/10.1029/2001gb001843, 2002.
West, T. O., Page, Y. L., Huang, M., Wolf, J., and Thomson, A. M.:
Downscaling global land cover projections from an integrated assessment
model for use in regional analyses: results and evaluation for the US from
2005 to 2095, Environ. Res. Lett., 9, 064004, https://doi.org/10.1088/1748-9326/9/6/064004, 2014.
Winkler, K., Fuchs, R., Rounsevell, M., and Herold, M.: Global land use
changes are four times greater than previously estimated, Nat. Commun., 12,
1–10, https://doi.org/10.1038/s41467-021-22702-2, 2021.
Williams, M.: Americans and Their Forests: A Historical Geography, Cambridge University Press, ISBN 9780521428378, 1992.
Yang, J., Tao, B., Shi, H., Ouyang, Y., Pan, S., Ren, W., and Lu, C.:
Integration of remote sensing, county-level census, and machine learning for
century-long regional cropland distribution data reconstruction, Int. J.
Appl. Earth Obs. Geoinf., 91, 102151, https://doi.org/10.1016/j.jag.2020.102151, 2020.
Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case,
A., Costello, C., Dewitz, J., Fry, J., Funk, M., Granneman, B., Liknes, G.
C., Rigge, M., and Xian, G.: A new generation of the United States National
Land Cover Database: Requirements, research priorities, design, and
implementation strategies, ISPRS. J. Photogramm. Remote, 146, 108–123,
https://doi.org/10.1016/j.isprsjprs.2018.09.006, 2018.
Yu, Z. and Lu, C.: Historical cropland of the continental U.S. from 1850 to
2016, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.881801, 2017.
Yu, Z. and Lu, C.: Historical cropland expansion and abandonment in the
continental U.S. during 1850 to 2016, Glob. Ecol. Biogeogr., 27, 322–333,
https://doi.org/10.1111/geb.12697, 2018.
Yu, Z., Lu, C., Tian, H., and Canadell, J. G.: Largely underestimated carbon
emission from land use and land cover change in the conterminous United
States, Glob. Change Biol., 25, 3741–3752, https://doi.org/10.1111/gcb.14768, 2019.
Zumkehr, A. and Campbell, J. E.: Historical U.S. Cropland areas and the
potential for bioenergy production on abandoned croplands, Environ. Sci.
Technol., 47, 3840–3847, https://doi.org/10.1021/es3033132,
2013.
Short summary
We reconstructed land use and land cover (LULC) history for the conterminous United States during 1630–2020 by integrating multi-source data. The results show the widespread expansion of cropland and urban land and the shrinking of natural vegetation in the past four centuries. Forest planting and regeneration accelerated forest recovery since the 1920s. The datasets can be used to assess the LULC impacts on the ecosystem's carbon, nitrogen, and water cycles.
We reconstructed land use and land cover (LULC) history for the conterminous United States...
Altmetrics
Final-revised paper
Preprint