Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-619-2022
https://doi.org/10.5194/essd-14-619-2022
Data description paper
 | 
09 Feb 2022
Data description paper |  | 09 Feb 2022

Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers

Xiaoyi Shen, Chang-Qing Ke, and Haili Li

Related authors

A dataset of 190 lakes' ice phenology on the Tibetan Plateau extracted from AMSR2 data
Yu Cai, Jingjing Wang, Yao Xiao, Zifei Wang, Xiaoyi Shen, Haili Li, and Chang-Qing Ke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-441,https://doi.org/10.5194/essd-2023-441, 2024
Revised manuscript not accepted
Short summary
Subglacial lake activity beneath the ablation zone of the Greenland Ice Sheet
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere, 17, 1775–1786, https://doi.org/10.5194/tc-17-1775-2023,https://doi.org/10.5194/tc-17-1775-2023, 2023
Short summary
A new digital elevation model (DEM) dataset of the entire Antarctic continent derived from ICESat-2
Xiaoyi Shen, Chang-Qing Ke, Yubin Fan, and Lhakpa Drolma
Earth Syst. Sci. Data, 14, 3075–3089, https://doi.org/10.5194/essd-14-3075-2022,https://doi.org/10.5194/essd-14-3075-2022, 2022
Short summary
A new Greenland digital elevation model derived from ICESat-2 during 2018–2019
Yubin Fan, Chang-Qing Ke, and Xiaoyi Shen
Earth Syst. Sci. Data, 14, 781–794, https://doi.org/10.5194/essd-14-781-2022,https://doi.org/10.5194/essd-14-781-2022, 2022
Short summary
Estimating snow depth on Arctic sea ice based on reanalysis reconstruction and particle filter assimilation
Haili Li, Chang-Qing Ke, Qinghui Zhu, and Xiaoyi Shen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-271,https://doi.org/10.5194/tc-2021-271, 2021
Revised manuscript not accepted
Short summary

Related subject area

Snow and Sea Ice
Operational and experimental snow observation systems in the upper Rofental: data from 2017 to 2023
Michael Warscher, Thomas Marke, Erwin Rottler, and Ulrich Strasser
Earth Syst. Sci. Data, 16, 3579–3599, https://doi.org/10.5194/essd-16-3579-2024,https://doi.org/10.5194/essd-16-3579-2024, 2024
Short summary
SMOS-derived Antarctic thin sea ice thickness: data description and validation in the Weddell Sea
Lars Kaleschke, Xiangshan Tian-Kunze, Stefan Hendricks, and Robert Ricker
Earth Syst. Sci. Data, 16, 3149–3170, https://doi.org/10.5194/essd-16-3149-2024,https://doi.org/10.5194/essd-16-3149-2024, 2024
Short summary
A 12-year climate record of wintertime wave-affected marginal ice zones in the Atlantic Arctic based on CryoSat-2
Weixin Zhu, Siqi Liu, Shiming Xu, and Lu Zhou
Earth Syst. Sci. Data, 16, 2917–2940, https://doi.org/10.5194/essd-16-2917-2024,https://doi.org/10.5194/essd-16-2917-2024, 2024
Short summary
MODIS daily cloud-gap-filled fractional snow cover dataset of the Asian Water Tower region (2000–2022)
Fangbo Pan, Lingmei Jiang, Gongxue Wang, Jinmei Pan, Jinyu Huang, Cheng Zhang, Huizhen Cui, Jianwei Yang, Zhaojun Zheng, Shengli Wu, and Jiancheng Shi
Earth Syst. Sci. Data, 16, 2501–2523, https://doi.org/10.5194/essd-16-2501-2024,https://doi.org/10.5194/essd-16-2501-2024, 2024
Short summary
Mapping of sea ice concentration using the NASA NIMBUS 5 Electrically Scanning Microwave Radiometer data from 1972–1977
Wiebke Margitta Kolbe, Rasmus T. Tonboe, and Julienne Stroeve
Earth Syst. Sci. Data, 16, 1247–1264, https://doi.org/10.5194/essd-16-1247-2024,https://doi.org/10.5194/essd-16-1247-2024, 2024
Short summary

Cited articles

Antarctic Sea Ice Processes and Climate program: The ship-based sea ice and snow thickness data, Scientific Commission on Antarctic Research Antarctic Sea Ice Processes and Climate program [data set], http://aspect.antarctica.gov.au/data, last access: 7 February 2022. 
Australian Antarctic Data Centre: Extract of data from the sea ice measurements database – 1985–2007, Version 1, Australian Antarctic Data Centre [data set], https://doi.org/10.26179/5cecce40a20b0, 2019. 
Braakmann-Folgmann, A. and Donlon, C.: Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network, The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019, 2019. 
Cavalieri, D. J., Markus, T., and Comiso, J. C.: AMSR-E/Aqua Daily L3 25 km Brightness Temperature & Sea Ice Concentration Polar Grids, Version 3, National Snow and Ice Data Center [data set], https://doi.org/10.5067/AMSR-E/AE_SI25.003, 2014. 
Comiso, J. C., Cavalieri, D. J., and Markus, T.: Sea ice concentration, ice temperature, and snow depth using AMSR-E data, IEEE T. Geosci. Remote, 41, 243–252, https://doi.org/10.1109/TGRS.2002.808317, 2003. 
Download
Short summary
Snow over Antarctic sea ice controls energy budgets and thus has essential effects on the climate. Here, we estimated snow depth using microwave radiometers and a newly constructed, robust method by incorporating lower frequencies, which have been available from AMSR-E and AMSR-2. Comparing the new retrieval with in situ and shipborne snow depth measurements showed that this method outperformed the previously available method.
Altmetrics
Final-revised paper
Preprint