Articles | Volume 14, issue 2
Earth Syst. Sci. Data, 14, 619–636, 2022
https://doi.org/10.5194/essd-14-619-2022

Special issue: Extreme environment datasets for the three poles

Earth Syst. Sci. Data, 14, 619–636, 2022
https://doi.org/10.5194/essd-14-619-2022
Data description paper
09 Feb 2022
Data description paper | 09 Feb 2022

Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers

Xiaoyi Shen et al.

Related authors

A new digital elevation model (DEM) dataset of the entire Antarctic continent derived from ICESat-2
Xiaoyi Shen, Chang-Qing Ke, Yubin Fan, and Lhakpa Drolma
Earth Syst. Sci. Data, 14, 3075–3089, https://doi.org/10.5194/essd-14-3075-2022,https://doi.org/10.5194/essd-14-3075-2022, 2022
Short summary
Subglacial lake activity beneath the ablation zone of the Greenland Ice Sheet
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-122,https://doi.org/10.5194/tc-2022-122, 2022
Preprint under review for TC
Short summary
A new Greenland digital elevation model derived from ICESat-2 during 2018–2019
Yubin Fan, Chang-Qing Ke, and Xiaoyi Shen
Earth Syst. Sci. Data, 14, 781–794, https://doi.org/10.5194/essd-14-781-2022,https://doi.org/10.5194/essd-14-781-2022, 2022
Short summary
Estimating snow depth on Arctic sea ice based on reanalysis reconstruction and particle filter assimilation
Haili Li, Chang-Qing Ke, Qinghui Zhu, and Xiaoyi Shen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-271,https://doi.org/10.5194/tc-2021-271, 2021
Revised manuscript not accepted
Short summary
A fine-scale digital elevation model of Antarctica derived from ICESat-2
Xiaoyi Shen, Chang-Qing Ke, Yubin Fan, and Lhakpa Drolma
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-204,https://doi.org/10.5194/tc-2021-204, 2021
Manuscript not accepted for further review
Short summary

Related subject area

Snow and Sea Ice
HMRFS-TP: long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on Hidden Markov Random Field model
Yan Huang, Jiahui Xu, Jingyi Xu, Yelei Zhao, Bailang Yu, Hongxing Liu, Shujie Wang, Wanjia Xu, Jianping Wu, and Zhaojun Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-134,https://doi.org/10.5194/essd-2022-134, 2022
Revised manuscript accepted for ESSD
Short summary
Large ensemble of downscaled historical daily snowfall from an earth system model to 5.5 km resolution over Dronning Maud Land, Antarctica
Nicolas Ghilain, Stéphane Vannitsem, Quentin Dalaiden, Hugues Goosse, Lesley De Cruz, and Wenguang Wei
Earth Syst. Sci. Data, 14, 1901–1916, https://doi.org/10.5194/essd-14-1901-2022,https://doi.org/10.5194/essd-14-1901-2022, 2022
Short summary
The S2M meteorological and snow cover reanalysis over the French mountainous areas: description and evaluation (1958–2021)
Matthieu Vernay, Matthieu Lafaysse, Diego Monteiro, Pascal Hagenmuller, Rafife Nheili, Raphaëlle Samacoïts, Deborah Verfaillie, and Samuel Morin
Earth Syst. Sci. Data, 14, 1707–1733, https://doi.org/10.5194/essd-14-1707-2022,https://doi.org/10.5194/essd-14-1707-2022, 2022
Short summary
A new Greenland digital elevation model derived from ICESat-2 during 2018–2019
Yubin Fan, Chang-Qing Ke, and Xiaoyi Shen
Earth Syst. Sci. Data, 14, 781–794, https://doi.org/10.5194/essd-14-781-2022,https://doi.org/10.5194/essd-14-781-2022, 2022
Short summary
Reconstruction of a daily gridded snow water equivalent product for the land region above 45° N based on a ridge regression machine learning approach
Donghang Shao, Hongyi Li, Jian Wang, Xiaohua Hao, Tao Che, and Wenzheng Ji
Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022,https://doi.org/10.5194/essd-14-795-2022, 2022
Short summary

Cited articles

Antarctic Sea Ice Processes and Climate program: The ship-based sea ice and snow thickness data, Scientific Commission on Antarctic Research Antarctic Sea Ice Processes and Climate program [data set], http://aspect.antarctica.gov.au/data, last access: 7 February 2022. 
Australian Antarctic Data Centre: Extract of data from the sea ice measurements database – 1985–2007, Version 1, Australian Antarctic Data Centre [data set], https://doi.org/10.26179/5cecce40a20b0, 2019. 
Braakmann-Folgmann, A. and Donlon, C.: Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network, The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019, 2019. 
Cavalieri, D. J., Markus, T., and Comiso, J. C.: AMSR-E/Aqua Daily L3 25 km Brightness Temperature & Sea Ice Concentration Polar Grids, Version 3, National Snow and Ice Data Center [data set], https://doi.org/10.5067/AMSR-E/AE_SI25.003, 2014. 
Comiso, J. C., Cavalieri, D. J., and Markus, T.: Sea ice concentration, ice temperature, and snow depth using AMSR-E data, IEEE T. Geosci. Remote, 41, 243–252, https://doi.org/10.1109/TGRS.2002.808317, 2003. 
Download
Short summary
Snow over Antarctic sea ice controls energy budgets and thus has essential effects on the climate. Here, we estimated snow depth using microwave radiometers and a newly constructed, robust method by incorporating lower frequencies, which have been available from AMSR-E and AMSR-2. Comparing the new retrieval with in situ and shipborne snow depth measurements showed that this method outperformed the previously available method.