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Abstract. Snow over sea ice controls energy budgets and affects sea ice growth and melting and thus has es-
sential effects on the climate. Passive microwave radiometers can be used for basin-scale snow depth estimation
at a daily scale; however, previously published methods applied to the Antarctic clearly underestimated snow
depth, limiting their further application. Here, we estimated snow depth using passive microwave radiometers
and a newly constructed, robust method by incorporating lower frequencies, which have been available from
AMSR-E and AMSR-2 since 2002. A regression analysis using 7 years of Operation IceBridge (OIB) airborne
snow depth measurements showed that the gradient ratio (GR) calculated using brightness temperatures in verti-
cally polarized 37 and 7 GHz, i.e. GR(37/7), was optimal for deriving Antarctic snow depth, with a correlation
coefficient of −0.64. We hence derived new coefficients based on GR(37/7) to improve the current snow depth
estimation from passive microwave radiometers. Comparing the new retrieval with in situ measurements from
the Australian Antarctic Data Centre showed that this method outperformed the previously available method (i.e.
linear regression model based on GR(37/19)), with a mean difference of 5.64 cm and an RMSD of 13.79 cm,
compared to values of−14.47 and 19.49 cm, respectively. A comparison to shipborne observations from Antarc-
tic Sea Ice Processes and Climate indicated that in thin-ice regions, the proposed method performed slightly
better than the previous method (with RMSDs of 16.85 and 17.61 cm, respectively). We generated a complete
snow depth product over Antarctic sea ice from 2002 to 2020 on a daily scale, and negative trends could be
found in all sea sectors and seasons. This dataset (including both snow depth and snow depth uncertainty) can
be downloaded from the National Tibetan Plateau Data Center, Institute of Tibetan Plateau Research, Chinese
Academy of Sciences at http://data.tpdc.ac.cn/en/disallow/61ea8177-7177-4507-aeeb-0c7b653d6fc3/ (last ac-
cess: 7 February 2022) (Shen and Ke, 2021, https://doi.org/10.11888/Snow.tpdc.271653).

1 Introduction

Snow is a basic element in the Antarctic sea ice system,
and it changes the surface albedo of sea ice (Petrich et al.,
2012), controls energy exchanges between the atmosphere
and ocean (Kwok and Untersteiner, 2011), and affects sea ice
growth and melting (Maykut and Untersteiner, 1971; Sturm
et al., 2002). Thus, it has essential climatic effects (Webster
et al., 2018). Because snow depth is a fundamental property
of snow cover, knowing how it changes is crucially impor-

tant for understanding rapid changes in the Antarctic climate.
Snow depth is also an essential input for sea ice thickness
estimation (Giles et al., 2007; Kwok et al., 2020), and its ac-
curacy will greatly affect the reliability of sea ice thickness
estimates. Hence, from the perspectives of climate and sea
ice thickness estimation, basin-scale snow depth products in
the Antarctic, especially over a long time period, are urgently
needed.

Although in situ measurements of snow depth over Antarc-
tic sea ice have very high accuracy and precision, their

Published by Copernicus Publications.

http://data.tpdc.ac.cn/en/disallow/61ea8177-7177-4507-aeeb-0c7b653d6fc3/
https://doi.org/10.11888/Snow.tpdc.271653


620 X. Shen et al.: Snow depth product over Antarctic sea ice

spatial and temporal coverage are quite limited. Airborne
snow depth measurements can cover regions of thousands of
square kilometres, but they are cost intensive and represent
only limited regions. Only satellites can obtain snow depth at
the hemispheric scale, and individual and multisource satel-
lites have been applied for snow depth estimation, e.g. pas-
sive microwave radiometers (Markus and Cavalieri, 1998;
Comiso et al., 2003; Maaß et al., 2013), satellite radar altime-
ters (Guerreiro et al., 2016; Lawrence et al., 2018), satellite
laser altimeters (Kern and Ozsoy-Çiçek, 2016), and a com-
bination of satellite radar and laser altimeters (Kwok et al.,
2019; Kacimi and Kwok, 2020). Given both the basin-scale
coverage and the temporal resolution requirements, passive
microwave radiometers are the best tools to derive a long data
record of snow depth in the Antarctic with daily coverage.

The theoretical basis of snow depth estimation from pas-
sive microwave radiometers is that the volume scattering of
upper snow cover affects the radiation signal emitted from
the underlying sea ice and reduces the observed brightness
temperatures (Markus and Cavalieri, 1998). Thus, the ob-
served brightness temperatures are related to the observation
frequency and snow depth, and the snow brightness temper-
ature increases as snow depth decreases or observation fre-
quency increases. Based on this principle, Markus and Cava-
lieri (1998) used correlation analysis for the measured snow
depth and brightness temperatures observed from the Special
Sensor Microwave/Imager (SSM/I) in the Antarctic. They
found that the gradient ratio (GR) calculated from vertical
polarized brightness temperatures at 19 and 37 GHz had the
highest correlation with measured snow thickness with a cor-
relation coefficient of −0.60. An empirical linear regression
equation was then derived for snow depth estimation, and the
regression coefficients were updated for the successor pas-
sive microwave radiometer (i.e. Advanced Microwave Scan-
ning Radiometer for EOS (AMSR-E); Comiso et al., 2003).

Although this method can derive basin-scale snow depth,
due to the snow penetration depth when 37 and 19 GHz fre-
quencies (i.e. higher frequencies) are used and the strong in-
fluence liquid water in the snow layer has on the observed
radiation from passive microwave radiometers, this method
is limited to dry snow less than 50 cm thick and thus may
underestimate the snow depth in some regions of the Antarc-
tic. Given these influences, this method obviously underesti-
mates snow depth by a factor of 2.3 (Worby et al., 2008a) or
between 2 and 4 (Kern et al., 2011). Since 2002, success-
ful launches of AMSR-E and its successor Advanced Mi-
crowave Scanning Radiometer 2 (AMSR-2) have provided
a chance to estimate snow depth with lower frequencies.
Lower frequencies are sensitive to deeper ice layers, are less
affected by liquid water in the snow layer and weather condi-
tions (Rostosky et al., 2018), and have been used to improve
snow depth estimation over Arctic sea ice (Rostosky et al.,
2018; Braakmann-Folgmann et al., 2019; Kilic et al., 2019;
Winstrup et al., 2019). Compared to the Arctic, snow depth
over Antarctic sea ice is usually thicker (Kern and Ozsoy-

Çiçek, 2016), more heterogeneous (Massom et al., 2001) and
less affected by surface melting; hence, lower frequencies
tend to be more suitable for retrieving Antarctic snow depth.
However, these methods have not been tested or applied to
Antarctic snow depth estimation until now.

In the present study, we attempt to construct a new and ef-
fective method to estimate snow depth over Antarctic sea ice.
For the potential improvement of snow depth estimation us-
ing low-frequency signals, AMSR-E and AMSR-2 was used
to derive new regression coefficients in the estimation equa-
tion. A detailed introduction to these data is shown in Sect. 2.
Section 3 describes the methods for snow depth and un-
certainty estimations, and the accuracy evaluation is shown
in Sect. 4. Section 5 shows the spatio-temporal variation in
the derived Antarctic snow depth between 2002 and 2020.
Section 6 discusses the uncertainty sources of the proposed
method, Sect. 7 gives the data availability and Sect. 8 con-
cludes this paper.

2 Data

2.1 AMSR-E, AMSR-2 and SSMIS brightness
temperature observations

To generate a complete time series of snow depth data
over Antarctic sea ice, multiple passive microwave radiome-
ters were used, including AMSR-E, AMSR-2 and the Spe-
cial Sensor Microwave Imager Sounder (SSMIS). Between
1 June 2002 and 30 September 2011, AMSR-E data were
used. With an observation angle of 55◦, AMSR-E can pro-
vide daily brightness temperature observations in the whole
Arctic and Antarctic. Six frequency channels were applied,
i.e. 6.93, 10.7, 18.7, 23.8, 36.5 and 89.0 GHz, and each chan-
nel had both horizontal and vertical polarizations. Here, the
AMSR-E/Aqua Daily L3 25 km Brightness Temperature Po-
lar Grids (Version 3) product from the National Snow and
Ice Center (NSIDC) were used, and pre-processing, bias cor-
rection and quality control were all applied (Cavalieri et al.,
2014).

Between 2 July 2012 and 31 May 2020, AMSR-2 data
were used. Compared to AMSR-E, AMSR-2 has the same
observation angle and frequency channels but has an ad-
ditional frequency at 7.3 GHz. Here, the NSIDC AMSR-
E/AMSR-2 Unified L3 Daily 25 km Brightness Tempera-
ture Polar Grids (Version 1) product was used, and pre-
processing, bias correction and quality control were also ap-
plied (Markus et al., 2018).

Brightness temperature observations from SSMIS were
used to fill the gap in AMSR-E and AMSR-2 data be-
tween 1 October 2011 and 1 July 2012. The DMSP SSM/I–
SSMIS Daily Polar Gridded Brightness Temperature (Ver-
sion 4) product was used here because it has the same
spatial–temporal resolutions and spatial coverage as the
two brightness temperature products mentioned above; pre-
processing, bias correction and quality control were also ap-
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plied (Maslanik and Stroeve, 2004 ). All three passive mi-
crowave radiometers can provide the daily brightness tem-
perature observations for the whole Antarctic. The tempo-
ral coverage of this dataset is from 14 December 2006 to
31 March 2019; hence it can be used to fill the observa-
tion gap between AMSR-E and AMSR-2 data and has a
long overlapped time period with AMSR-E/2. However, SS-
MIS does not have lower-frequency channels (than 19 GHz);
hence, the corresponding snow depth estimation equation
was adjusted accordingly, as shown in Sect. 3.

To generate consistent brightness temperature observa-
tions from 2002 to 2020, a consistency correction should be
applied to the three passive microwave radiometer datasets.
The SSMIS brightness temperature observations were cali-
brated to AMSR-E data based on the method from Wentz
(2013), and we calibrated the AMSR-2 data to AMSR-E
based on the correction parameters from Du et al. (2014).
These brightness temperature observations from AMSR-E,
AMSR-2 and SSMIS were also used to obtain the full-time
(2002–2020) sea ice concentrations by using the ARTIST
Sea Ice (ASI) algorithm (Spreen et al., 2008).

2.2 Operational IceBridge airborne snow depth
measurements

The initial aim of the Operational IceBridge (OIB) airborne
mission is to fill the observation gap between ICESat and
ICESat-2. This mission provides annual measurements of
snow depth over sea ice, elevation and thickness of sea ice
and information on sea ice types in the Arctic and Antarctic.
Due to the large coverage of measurements, it was suitable
to evaluate satellite-derived parameters. In the OIB airborne
mission, Airborne Topographic Mapper (ATM), a laser al-
timeter, is used to measure the elevation of the sea ice sur-
face. Its footprint depends on the observation angle of the
pulsed laser and flight altitude. The size is approximately 1 m
(Kurtz et al., 2013), and the location and elevation measure-
ment accuracies for individual measurements are approxi-
mately 1 and 0.1 m (or better; Krabill et al., 1995; Schenk
et al., 1999), with a vertical precision of 3 cm (Martin et al.,
2012).

The measured elevations were used to derive the total
freeboard. Following Zwally et al. (2008) and Kern and
Spreen (2015), the lowest 2 % elevations in a 50 km segment
along the track were regarded as the sea surface heights, and
the mean value was calculated as the mean sea surface seg-
ment height (MSSH). Other points were taken as sea ice mea-
surement points, and the corresponding total freeboard was
calculated by subtracting the local MSSH from the sea ice
surface heights.

Snow radar is used to measure the snow depth in the OIB
airborne mission. However, for snow cover over Antarctic
sea ice, the snow–ice interface is hard to distinguish (Giles
et al., 2008; Willatt et al., 2009) due to the complicated
snow morphology often found in the Antarctic (Massom et

al., 2001). Accurate snow depth detection needs more in situ
investigations and in-depth studies. Considering these influ-
ences, snow depth was derived from the total freeboard as de-
scribed in Ozsoy-Cicek et al. (2013). The corresponding lin-
ear equations were constructed in six individual sea sectors
in the Southern Ocean, with correlation coefficients ranging
from 0.81 to 0.99. These have been widely used in previously
published studies to obtain Antarctic sea ice parameters (Xie
et al., 2013; Kern and Ozsoy-Çiçek, 2016; Li et al., 2018).

OIB ATM data collected in 2009–2014 and 2016–2018
were used, and no data could be obtained for the year of
2015. OIB data in 2011 were not used for the derivation
of snow depth estimation equation to reduce the potential
effect of the inter-mission calibration between SSMIS and
AMSR-E/2, but they were used for the independent evalua-
tion of SSMIS-derived snow depth in 2011. In each year ex-
cept 2013 the OIB ATM data were acquired in both October
and November. For the 2013 OIB campaign only measure-
ment data in November were obtained. More details about
the time information of OIB data are available via https:
//nsidc.org/data/ILATM2/versions/2 (last access: 7 February
2022). The spatial distributions of the used OIB ATM data
(after data filter; see Sect. 3.1) are shown in Fig. 1a. Most of
the OIB ATM data came from the western of Antarctic sea
ice region, and one track covered the Ross Sea sector. These
measurements covered both the thicker snow in the Weddell
Sea sector and the thinner snow in the Ross Sea sector and
provided comprehensive measurements for the development
of satellite-based snow depth estimation methods. For com-
parison purposes, the OIB snow depth measurements were
averaged in the overlapped passive microwave radiometer
grid cells (at the spatial resolution of 25 km) on the same day.
Although the sea ice is continuously drifting, the time differ-
ences between the OIB and passive microwave radiometer
data were always less than 1 d, which can cause sea ice drift
of several kilometres. Comparing to the coarse spatial res-
olution of passive microwave radiometers (i.e. 25 km), this
effect can be ignored. More details can be found in Sect. 3.1;
this processing method was also applied for other datasets as
listed in Sect. 2.3 and 2.4.

2.3 AADC in situ measurement data

We used in situ snow depth measurements from the Aus-
tralian Antarctic Data Centre (AADC) to evaluate the pro-
posed method. AADC in situ data include measurements
of sea ice and snow from 1985 to 2007. This dataset pro-
vides records of snow depth, sea ice freeboard and sea ice
thickness. Here, AADC data between September and Octo-
ber 2003 and between September and October 2007 were
used to compare our snow depth estimation results, which
were mainly located east and west of the Antarctic sea ice re-
gion (Fig. 1b, only the used AADC data (after data filter; see
Sect. 4.2) are shown). More details about the time informa-
tion of AADC data can be found via https://data.aad.gov.au/
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metadata/records/sea_ice_measurements_database (last ac-
cess: 7 February 2022). Although in situ measurements are
relatively rare, AADC has measurements of both thick and
thin ice, which provide a comprehensive and accurate evalu-
ation of estimated snow depth.

2.4 ASPeCt shipborne observation data

We also used snow depth observations from the Antarctic
Sea Ice Processes and Climate (ASPeCt) mission to evalu-
ate the estimated snow depth. These data (including obser-
vations of snow depth, sea ice thickness and ice type) were
obtained every hour within a 1 km radius of the ship. We fol-
lowed the Worby et al. (2008b) method to reduce the sam-
pling bias caused by temporal data collection and variable
ship speed by removing observations within 6 nmi of pre-
vious observations. This method ensured the independence
of each record. As the passive microwave radiometer ob-
serves both undeformed and deformed sea ice, the “aver-
aged snow depth” record was used to compare to the passive-
microwave-radiometer-derived snow depth. According to the
error analysis in Worby et al. (2008b), ±20 % bias of AS-
PeCt data is found for undeformed ice thicker than 0.3 m,
and ±30 % bias is found for deformed ice.

This dataset contains snow depth measurements from 81
cruises between 1981 and 2005. Here, we used ASPeCt data
between 2002 and 2005, which covered various types of sea
ice and most sea sectors in the Southern Ocean (Fig. 1b, only
the used ASPeCt data (after the data filter; see Sect. 4.3) are
shown). More details about the time information of ASPeCt
data are available via http://aspect.antarctica.gov.au/data (last
access: 7 February 2022).

2.5 ICESat-2 data

ICESat-2 data were used here to estimate the snow depth
over Antarctic sea ice, and the estimated snow depth was
compared to estimates from the proposed method. Kern
and Ozsoy-Çiçek (2016) found that satellite laser altimeters
can be used to estimate snow depth over Antarctic sea ice
with a low level of uncertainty, and these snow depth mea-
surements agreed closely with both shipborne and airborne
data. Considering the potential reliability of satellite-laser-
altimeter-derived snow depth, following Kern and Ozsoy-
Çiçek (2016), we estimated the Antarctic snow depth in a
complete year (January to December 2019) from ICESat-
2 using a linear equation based on total freeboard (Ozsoy-
Cicek et al., 2013). The ICESat-2 ATL10 sea ice product
(Kwok et al., 2019a), which contains total freeboard esti-
mates, was used for snow depth estimation. The along-track
resolution of the total freeboard estimates is variable and is
determined by the number of pulse footprints to aggregate
the 150 photons. For strong beams, this along-track resolu-
tion varies between ∼ 10 and 200 m, and it varies between
∼ 40 and 800 m for weak beams. An averaged bias of 2–

4 cm for ICESat-2 ATL10 total freeboard was found based
on assessment in Kwok et al. (2019b). The detailed algo-
rithm for the ICESat-2 total freeboard estimates can be found
in Kwok et al. (2019c). ICESat-2 ATL10 sea ice products for
the Antarctic sea ice between January and December 2019
were used in the present study.

3 Method

3.1 The selection of optimal frequency channels

Although lower frequencies tend to better estimate snow
depth, we used all frequencies to find the optimal frequency
channels. All available combinations were compared to the
OIB airborne snow depth measurements, and only VV com-
binations were used, since they had better performance than
the HH combinations (Rostosky et al., 2018). To reduce the
effect of uneven OIB measurement distributions within the
passive microwave radiometer grid cells caused by their res-
olution difference, on the same day, one passive microwave
radiometer grid cell (i.e. 25 km× 25 km) should contain at
least 2500 OIB measurement points. To reduce the influ-
ence of outliers, only OIB snow depth data between the 5th
and 95th percentiles were used. In order to minimize the
potential influence of sea ice concentration, only grid cells
with ≥ 75 % sea ice concentration were used. After these
data filters, OIB data in November 2010, November 2016
and October–November 2018 were removed. Since the used
OIB data were obtained in October or November each year,
air temperatures could be higher than the melting point and
cause surface melting. To reduce the influence of the snow
layer’s liquid water on brightness temperatures observed by
passive microwave radiometers, we excluded brightness tem-
peratures that were assumed to be affected by liquid water
based on the 2 m air temperature (T2m) data from ERA5 re-
analysis data. If the T2m in a single grid cell during 1 d or
during at least 5 of the 10 preceding days is higher than 0◦,
the brightness temperatures were removed (Rostosky et al.,
2018). The GR was calculated as follows (take GR(37/7) as
an example):

GR(37/7)=
Tb37−Tb7− k1(1−C)
Tb37+Tb7− k2(1−C)

, (1)

k1 = Tb37,OW−Tb7,OW, (2)
k2 = Tb37,OW+Tb7,OW, (3)

where C is the sea ice concentration, and k1 and k2 are cor-
rection terms for the open water contribution when the sea ice
concentration is below 100 %. Tb37,OW and Tb7,OW are the
brightness temperatures over open water at 37 and 7 GHz;
the brightness temperatures over open water for the different
frequencies can be found in Ivanova et al. (2015).

Table 1 shows the correlation and root mean square de-
viation (RMSD) between OIB snow depth measurements
and individual GRs (including both AMSR-E and AMSR-
2 GRs). The combination of GR(37/19) and GR(19/10) was
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Figure 1. The spatial–temporal distributions of the used OIB airborne measurements (a). AADC in situ measurements and ASPeCt shipborne
observations (b).

Table 1. The relationships (including RMSD and correlation coef-
ficient) between the OIB snow depth and different GRs.

GR RMSD Correlation Number of
(cm) coefficient grid cells

GR(37/24) 9.22 −0.61 740
GR(37/19) 9.11 −0.62
GR(37/11) 8.95 −0.64
GR(37/7) 8.92 −0.64
GR(24/19) 9.21 −0.61
GR(24/11) 9.03 −0.63
GR(24/7) 9.14 −0.62
GR(19/11) 9.15 −0.62
GR(19/7) 9.46 −0.58
GR(11/7) 10.62 −0.41
GR(37/19)+GR(19/10)

2 8.96 −0.64

also applied here, since it was considered optimal for Arc-
tic snow depth estimation (Markus et al., 2006). Different
weightings (i.e. 3 : 2 and 2 : 3) had no obvious influence on
the estimation result, and a weighting of 1 : 1 was used here.

Except for GR(11/7), most GRs had good correlations
with OIB snow depth, with correlation coefficients of
> 0.57 and RMSDs of < 10 cm. GR(37/7), GR(37/11) and
GR(37/19)+GR(19/10)

2 had better performances, and GR(37/7)
performed optimally across all evaluation indices; thus, in
the following section, we used GR(37/7) to construct a new
snow depth estimation equation.

3.2 The derivation of new snow depth estimation
equation

Figure 2a shows the scatter plot between the OIB snow depth
and GR(37/7). Detailed temporal information for these data

can be found in Sects. 2.2 and 3.1. The spatial coverage is
shown in Fig. 1a. The corresponding regression equation can
be derived as follows:

SDGR(37/7)(cm)= 26.7− 411 ·GR(37/7). (4)

SSMIS frequencies were not as low as those of AMSR-E/2,
meaning GR(37/7) could not be used with SSMIS data. Be-
cause of this, we used GR(37/19), which was the best com-
bination among frequencies no less than 19 GHz, as shown
in Table 1. The corresponding equation is listed as follows
(Fig. 2b; the same data for the derivation of Eq. (4) were
used):

SDGR(37/19) (cm)= 23.5−601 ·GR(37/19). (5)

To maintain the consistency of snow depth estimates based
on the two equations above, we compared their snow depth
estimates during the OIB period (the same data for the deriva-
tions of Eqs. 4 and 5 were used). The snow depth estima-
tions derived from the two equations agreed well and had an
RMSD of 1.89 cm, and we corrected their original difference
based on an empirical linear regression equation:

SDGR(37/7)(cm)= SDGR(37/19)(cm) − 0.03. (6)

The snow depth from 1 October 2011 to 1 July 2012 was
estimated based on Eqs. (5) and (6), and the snow depth for
the remaining time periods was estimated from Eq. (4). Only
valid snow depth estimates (> 0 cm) were allowed.

3.3 The estimation of snow depth uncertainty

The snow depth uncertainty was estimated from the un-
certainty of individual input variables using Gaussian error
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Figure 2. The scatter diagrams between the OIB snow depth and two GRs, i.e. GR(37/7) (a) and GR(37/19) (b).

propagation. Brightness temperature and sea ice concentra-
tion uncertainties were assumed to be 0.5 K and 5 % (Ros-
tosky et al., 2018). Uncertainties of the intercept and slope
for Eqs. (4), (5) and (6) were 0.44 and 18.09, 0.57 and 27.95,
0.65 and 0.02, respectively. In addition, uncertainty due to
the limited sample size of the OIB data should also be con-
sidered. A sensitivity analysis was performed to quantify the
interannual variability (caused from the limited sample size)
of the regression coefficients (see Sect. 4.1). The standard
deviation of the regression coefficients deriving from differ-
ent samples were assumed as the uncertainty value. These
were ±3.23 cm for intercept and ±158.69 for slope. The
uncertainties in the regression coefficients were summed to
combine the uncertainties from linear fitting and limited OIB
samples. Detailed calculation steps can be found in Rostosky
et al. (2018).

Figure 3 shows the spatial distributions of averaged snow
depth uncertainty from 2002 to 2020 during four seasons:
spring (October–December), summer (January–March), au-
tumn (April–June) and winter (July–September) (Zwally et
al., 2002). The snow depth uncertainty in summer (an aver-
age of 32.50 cm) was larger than that in the other seasons
due to the effect of liquid water in the snow layer. In autumn,
winter and spring, the average snow depth uncertainties were
approximately 20.76, 17.85 and 23.79 cm, respectively. The
averaged annual snow depth uncertainty was 23.73 cm. Spa-
tially, smaller snow depth uncertainties were found in the sea
ice interior, while larger uncertainties were found in the sea
ice marginal region. As the sea ice concentration is the dom-
inant factor affecting the observed brightness temperatures
(and thus the GRs; Markus and Cavalieri, 1998), the influ-
ence of the open water is greater in the sea ice marginals and
thus causes larger snow depth uncertainties.

4 Accuracy evaluation

4.1 Self-evaluation of the proposed method

To prove the robustness of the proposed method, we calcu-
lated seven pairs of regression coefficients (for Eq. 4) based

Figure 3. The spatial distributions of averaged snow depth un-
certainty in different seasons from 2002 to 2020. Only grid cells
with sea ice concentration ≥ 75 % are shown here; grid resolution
is 25 km.

on each 6-year combination of OIB snow depth data between
2009 and 2018 (Table 2). Only regression coefficients calcu-
lated from more than 80 matched points were used for sen-
sitivity analysis to ensure reliability. The uncertainty of the
individual coefficient was estimated as its standard devia-
tion. The estimated slope ranged from −474 to −349 with
an uncertainty of 42.85, which caused a bias of < 1 cm for
the snow depth estimation; furthermore, the intercept varied
from 25.4 to 28.3 with an uncertainty of 1.14. No obvious
interannual variations could be found for either the slope or
the intercept values.
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Table 2. The regression coefficients of snow depth estimation equa-
tions based on OIB snow depth data in different years.

Excluded Intercept Slope Number of
year grid cells

2009 25.4 −417 161
2010 27.2 −445 88
2012 28.3 −349 147
2013 23.8 −707 40
2014 25.4 −394 103
2016 27.3 −474 134
2017 33.8 −176 68
All data 26.7 −411 740

Table 3. The comparisons between the OIB snow depth and the
snow depth estimates from our method and the Comiso method in
October 2016. MD: mean difference; MAD: mean absolute differ-
ence.

MD MAD RMSD Correlation
(cm) (cm) (cm) coefficient

Proposed method −1.55 6.84 9.23 0.62
Comiso method −19.15 19.15 21.26 0.60

Here, the OIB snow depth data in October 2016 were used
to self-evaluate the snow depth estimation based on the equa-
tion derived from data in the remaining years (equation co-
efficients are shown in Table 2). The method proposed in
Comiso et al. (2003) (hereafter called the Comiso method)
was also applied for comparison. This is the commonly used
snow depth algorithm for Antarctic sea ice by using pas-
sive microwave radiometers, which modified the algorithm
coefficients of the Markus and Cavalieri (1998) method to
match the frequencies of AMSR-E. Data from October 2016
were chosen randomly, and the large size of this dataset en-
sured that the evaluation was comprehensive. In addition, the
OIB data in individual years were independent, which also
ensured the evaluation’s objectivity. The result showed that
the proposed method obviously outperformed the Comiso
method with a mean difference of approximately −1.55 cm,
while the latter had an average difference of −19.15 cm,
which greatly underestimated the snow depth (Table 3).

In addition, the snow depth derived from the proposed
method had a narrower numerical distribution when com-
pared to the OIB data (Fig. 4a). A peak of 30 cm could
be found in both the proposed method and the OIB snow
depth distributions; however, the Comiso method had a peak
of 10 cm. This result confirms the conclusion of Worby et
al. (2008a) that the Comiso method underestimates snow
depth by a factor of 2.3. The snow depth estimated from the
proposed method ranged from 20 to 60 cm, which was gener-
ally consistent with the OIB distribution. However, the OIB
data had more snow depth values of < 20 cm (Fig. 4a). A

Table 4. The comparisons between the OIB snow depth and the
snow depth estimates from the proposed method and the Comiso
method in October and November 2011. MD: mean difference;
MAD: mean absolute difference.

MD MAD RMSD Correlation
(cm) (cm) (cm) coefficient

Proposed method −7.93 10.63 13.81 0.27
Comiso method −24.65 24.65 24.48 0.32

quadratic fitting equation was assumed to improve this situa-
tion; however, the uncertainties of the derived equation coef-
ficients were usually larger (Rostosky et al., 2018).

Approximately 79 % of the snow depth differences be-
tween the proposed method and OIB data had absolute dif-
ferences of < 10 cm, while the Comiso method showed that
only 15 % of the absolute differences were less than 10 cm,
and 80 % of the absolute differences were greater than 10 cm
(Fig. 4b). Although the snow depths estimated from the pro-
posed method and the Comiso method had almost the same
variation pattern as the OIB snow depth data (here, Eq. 4
was used), the Comiso method obviously underestimated
the snow depth by a mean difference of −17.3 cm at the
interannual scale, nearly equal to the minimum OIB snow
depth (Fig. 4c). Hence, compared to OIB snow depth mea-
surements, the proposed method not only had a closer snow
depth distribution but also showed a consistent temporal vari-
ation pattern, which demonstrated its reliability for estimat-
ing Antarctic snow depth.

Here the OIB snow depth data in October and November
2011 were also used to evaluate the snow depth estimates.
On the one hand, OIB data in 2011 were not used for equa-
tion derivation (i.e. Eq. 4) and thus were suitable for an inde-
pendent accuracy evaluation. On the other hand, in this case
SSMIS-derived snow depth can be evaluated, which provides
a reference for the performance evaluation of the Eqs. (5)
and (6). The result showed that the proposed method still
outperformed the Comiso method with a mean difference
of −7.93 cm, while the latter still underestimated the snow
depth with a mean difference of −24.65 cm (Table 4).

4.2 Comparison to AADC in situ measurements

As mentioned previously, liquid water in the snow layer af-
fects observed brightness temperatures and causes larger un-
certainties in estimated snow depths. The proposed method
was thus mainly used for snow depth derivation in cold sea-
sons, i.e. autumn, winter and spring. In this subsection, we
focus on evaluating the performance of the proposed method
in winter and spring. A total of 1418 AADC snow depth
measurement points were used for evaluation, and all AADC
snow depth measurements within one passive microwave ra-
diometer grid cell were averaged and compared to passive-
microwave-radiometer-derived snow depth (from the pro-
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Figure 4. Comparisons of OIB snow depth to the snow depth estimates from both the proposed method and Comiso method. (a) The
distributions of snow depth estimates in October 2016, (b) the probability density functions (PDFs) of differences between different snow
depth estimates in October 2016 (red: the proposed method – OIB; green: Comiso method – OIB) and (c) the temporal variations in averaged
snow depth estimates from 2009 to 2017 (red: the proposed method; green: Comiso method; black: OIB data). The black dashed lines in (c)
show the variations in the maximum and minimum snow depth estimates from OIB.

posed method and the Comiso method) on the same day.
Each grid cell contained approximately 95± 36 AADC mea-
surement points. The used AADC data were collected be-
tween September and October 2003 and between September
and October 2007 (Fig. 1b).

The result showed that the proposed method performed
better than the Comiso method across all evaluation in-
dices (Table 5) with a mean difference of 5.64 cm, which
was clearly less than the 14.47 cm value obtained using the
Comiso method. Although the number of AADC measure-
ments was limited, the high accuracy and uneven distribution
ensured the accuracy assessment was reliable and objective.

4.3 Comparison to ASPeCt shipboard observations

Although the AADC in situ data were more accurate, their
amount was still limited. To evaluate the methods at larger
spatial and temporal scales, ASPeCt shipboard observations
were used for evaluation. All ASPeCt snow depth observa-
tions within one passive microwave radiometer grid cell were
averaged and compared to passive microwave radiometer-
derived snow depth (from the proposed method and Comiso
method) on the same day. The operational periods of used
ASPeCt data are listed in Table 6. No data can be obtained
in the missing periods. All ASPeCt data as listed in Ta-
ble 6 were used here, and the spatial distribution is shown
in Fig. 1b.

Overall, the proposed method performed slightly better
than the Comiso method, which was clearly different when
compared to AADC data (Table 5). ASPeCt snow depth data
are usually obtained from thin-ice regions, as ships tend to
avoid thick ice; hence, the observed snow depth was with
modal depths ranging between 0 and 10 cm (Worby et al.,
2008b). In addition, the snow depth estimation equation from
the Comiso method was derived from ASPeCt data, which
might be unfair for the proposed method. Nevertheless, the
proposed method still outperformed the Comiso method, and
the similar performance demonstrated the reliability of the
proposed method to estimate thin snow depth.

To show how the methods performed in different seasons,
in Fig. 5 we compared the passive microwave radiometer-
derived snow depth to the ASPeCt snow depth observations
during four seasons. The performances of the two methods
during the four seasons were different. The proposed method
was most accurate during autumn with an RMSD of 0.10 m
(13 grid cells, the same hereinafter), followed by summer
with an RMSD of 0.15 m (73), winter with an RMSD of
0.18 m (65) and spring with an RMSD of 0.18 m (113), which
were nearly comparable. For the Comiso method, accuracy
was highest during winter with an RMSD of 0.10 m (65),
followed by autumn with an RMSD of 0.14 m (11), summer
with an RMSD of 0.15 m (77) and spring with an RMSD of
0.22 m (119). A larger bias was found in spring than in the
other seasons. Overall, the proposed method was better than
or comparable to the Comiso method during spring, summer
and autumn.

A clear overestimation for the proposed method can be
found by comparing to the ASPeCt data in all seasons
(Fig. 5), we attribute this to the underestimation of ASPeCt
snow depth observations. The thickness of level ice and snow
cover and estimates of surface ridging were recorded in the
ASPeCt data. The latter was used to correct the level ice
thickness based on the mass of ice in ridges (Worby et al.,
2008b). However, this correction was not applied to snow
depth observations; hence the ASPeCt snow depth data were
only representative for the level portions of ice floes (Worby
et al., 2008a), and deformed ice with thicker snow cover was
not included (Worby et al., 2008b). As only thinner snow
cover on level ice was included, it is obvious that these data
underestimated the true snow depth (Worby et al., 2008a),
which explains why the snow depth estimates from the pro-
posed method were overall higher than these from ASPeCt
data. In addition, the proposed method also tends to overes-
timate the snow depth, as discussed in Sects. 4.4 and 5.

Tables 7 and 8 show the seasonal evaluation of the men-
tioned two methods in Antarctic six sea sectors (Weddell
West: 300–315◦; Weddell East: 315–20◦; Indian Ocean:
20–90◦; Pacific sector: 90–160◦; Ross Sea: 160–230◦;
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Table 5. The comparisons between the snow depth estimates from the proposed method and Comiso method and in situ measurements from
AADC and ASPeCt. MD: mean difference; MAD: mean absolute difference. The results of the evaluation by comparing to the ASPeCt data
in the overlapped regions where both valid snow depth estimates from the proposed method and Comiso method can be found are provided
in brackets.

Comparison to AADC data Comparison to ASPeCt data

Proposed method Comiso method Proposed method Comiso method

MD (cm) 5.64 −14.47 8.62 (8.94) −9.96 (−10.16)
MAD (cm) 10.77 17.08 13.80 (13.91) 13.11 (13.20)
RMSD (cm) 13.79 19.49 16.85 (16.85) 17.61 (17.61)
Correlation coefficient 0.42 0.40 0.13 (0.13) 0.19 (0.19)
Number of grid cells 15 15 264 (257) 273 (257)

Table 6. The operational periods of used ASPeCt data in this study.

Year Month

2002 August, September, December
2003 January, March, April, September, October
2004 March, April, October, November
2005 January, March, August, September

Bellingshausen–Amundsen Sea: 230–300◦). It should be
noted that in some sea sectors, we could not construct the
evaluations during all four seasons, due to the limited dis-
tribution of ASPeCt data. Both methods have lower accu-
racies in the Weddell West sector, which may be due to
the thicker snow there, as the Weddell West is dominated
by multiyear sea ice, and it has similar emission signals to
snow cover. Comparatively, the Comiso method underesti-
mated snow depth in all sea sectors and seasons. Some neg-
ative correlation coefficients in Tables 7 and 8 can be found
even in areas with comparably many grid cells. This is due
to the observation bias of the ASPeCt data (±20 % bias was
found for undeformed ice thicker than 0.3 m and ±30 % bias
for deformed ice; Worby et al., 2008b). Due to the limited
accuracy of ASPeCt samples, the evaluation may be biased,
but ASPeCt shipborne data can still be assumed as a proxy
for performance evaluation due to its large spatial–temporal
coverage.

4.4 Comparison to satellite-laser-altimeter-derived snow
depth data on both spatial and temporal scales

Following Kern and Ozsoy-Çiçek (2016), we estimated the
Antarctic snow depth in a complete year (January to Decem-
ber 2019) from ICESat-2 using linear equations based on to-
tal freeboard. Monthly snow depth estimates from ICESat-2
were then posted onto the 25 km grid cells. Then the results
were compared to estimates from the proposed method, as
shown in Figs. 6 and 7. Generally, the spatial distribution
patterns of snow depths estimated by the proposed method
agreed closely with those derived from laser altimeters. Both

snow depth datasets showed deeper snow cover mainly in the
Weddell West and Bellingshausen–Amundsen Sea sectors.

As satellite laser altimetry is independent of the snow
properties, satellite laser altimeters can better reveal snow
depth evolution. Figure 8 shows the monthly snow depth
evolution in 2019 based on the two methods. Overall, the
two snow depth time series were highly consistent and have
an RMSD of 3 cm and a correlation coefficient of 0.86. Al-
though the snow depth ranges from the two datasets still have
some differences, the overall variation patterns were similar
(except in summer). The existing differences in snow depth
range and variation pattern were due to sensor and method
differences. In cold seasons (i.e. spring, autumn and winter),
high consistency between the two datasets on both spatial
and temporal scales implies the reliability of the proposed
method.

An obvious snow depth overestimation for the proposed
method can be found comparing to those from ICESat-2
in all months of 2019. Empirical linear regression mod-
els were used to compute snow depth from ICESat-2 total
freeboard measurements. These empirical models were con-
structed based on the local sea ice measurements from 15
cruises in the Southern Ocean over a time period of about
22 years (1986–2007). The limited coverage of this dataset
and the variable nature of snow cover over sea ice reduce the
representativeness of this dataset, which may contribute to
the underestimation of snow depth estimates from ICESat-2.
More local sea ice observation data (including snow depth,
sea ice freeboard and sea ice thickness) are needed to im-
prove the snow depth estimates from ICESat-2 in recent
years (e.g. 2019).

Snow depth retrieval based on passive microwave ra-
diometers is sensitive to grain size (Markus and Cavalieri,
1998) and ice type. For example, at microwave frequencies
multiyear ice has a similar influence on the brightness tem-
peratures as snow cover (Rostosky et al., 2018), and thus
the snow depth over multiyear ice is overestimated in this
case; in late winter–spring the grain size growth leads to a
stronger reflected radiation and a reduction of the brightness
temperature (Markus and Cavalieri, 1998). Both of these can
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Figure 5. The probability density functions (PDFs) of snow depth estimate differences of the proposed method (a) and the Comiso method
(b) by comparing to ASPeCt shipborne data in four seasons.

Table 7. The comparisons between the snow depth estimates from the proposed method and in situ measurements from ASPeCt in different
sea sectors and seasons. MD: mean difference; MAD: mean absolute difference.

Season MD MAD RMSD Correlation Number of
(cm) (cm) (cm) coefficient grid cells

Weddell West Spring −0.07 −0.13 0.19 0.30 21
Summer 0.15 0.19 0.23 −0.03 10

Weddell East Spring 0.13 0.17 0.19 −0.37 48
Summer −0.10 0.10 0.10 1 1
Winter 0.14 0.14 0.14 −0.39 16

Indian Ocean Spring 0.12 0.12 0.12 0.49 3

Pacific sector Spring −0.05 0.15 0.20 −0.16 26
Autumn −0.08 0.08 0.08 1 1
Winter 0.13 0.14 0.14 0.14 10

Ross Sea Spring 0.02 0.05 0.06 0.31 15
Summer 0.10 0.12 0.14 0.07 62
Autumn 0.09 0.09 0.10 0.43 12

Bellingshausen–Amundsen Sea Winter 0.17 0.17 0.19 0.20 39

influence the GRs and then increase the snow depth esti-
mates. Meanwhile satellite laser altimeters are independent
of the snow properties and thus suffer less from the variable
snow properties than passive microwave radiometers. Thus,
the difference between snow depth estimates from the pas-
sive microwave radiometers and ICESat-2 is due to their sen-
sor and methodology difference. More observations of snow
cover (including thickness, ice freeboard and snow proper-
ties) are needed to quantitatively explain the difference be-
tween these two snow depth estimates.

5 Spatio-temporal variation in Antarctic snow depth
from 2002 to 2020

Although the proposed method was initially applied for snow
depth estimation during the cold seasons (i.e. autumn, win-
ter and spring), comparable performances were still found
during summer; hence, we estimated the snow depth for all

seasons from 2002 to 2020 and analysed the spatio-temporal
variation pattern. The averaged Antarctic snow depth distri-
butions from 2002 to 2020 showed obvious seasonal patterns
(Fig. 9). In all four seasons, thin snow covers were seen in the
marginal sea ice, and thicker snow was located in the Wed-
dell West and Bellingshausen–Amundsen Sea sectors, which
was more obvious in summer. In winter, sea ice expands, and
thicker snow cover could be found.

In the Antarctic, cyclical thaw–freeze events can occur
at all times (even in winter; Markus and Cavalieri, 1998);
in summer due to this event the microwave signal changes
rapidly within 1 d, and thus the brightness temperatures have
large diurnal variations (Wankiewicz, 1993). This biases the
snow depth estimates when daily averaged brightness tem-
peratures are input to the snow algorithm. In summer the
Antarctic is dominated by multiyear sea ice. Markus and
Cavalieri (1998) found that in the western Weddell Sea where
perennial ice was present, daily variations in snow depth
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Table 8. The comparisons between the snow depth estimates from the Comiso method and in situ measurements from ASPeCt in different
sea sectors and seasons. MD: mean difference; MAD: mean absolute difference.

Season MD MAD RMSD Correlation Number of
(cm) (cm) (cm) coefficient grid cells

Weddell West Spring −0.24 0.24 0.29 0.34 22
Summer −0.06 0.15 0.18 0.45 11

Weddell East Spring −0.02 0.11 0.15 −0.31 49
Summer −0.16 0.16 0.17 1 2
Winter −0.08 0.08 0.09 −0.50 16

Indian Ocean Spring −0.03 0.05 0.07 0.85 4

Pacific sector Spring −0.27 0.27 0.33 −0.16 24
Winter −0.08 0.08 0.10 0.34 10

Ross Sea Spring −0.12 0.13 0.15 0.28 20
Summer −0.10 0.11 0.14 0.03 65
Autumn −0.13 0.13 0.14 0.14 11

Bellingshausen–Amundsen Sea Winter −0.03 0.08 0.10 0.24 39

were higher in summer (January–February). As the thaw–
freeze event can lead to larger grain sizes of snow cover,
which can further result in an overestimation of snow depth,
this event can cause large temporal variations in the snow
depth estimates (Comiso et al., 2003). Due to the larger fluc-
tuations of snow depth estimates in summer (Markus and
Cavalieri, 1998), we infer that the thaw–freeze event fre-
quently occurs in summer and thus causes higher snow depth
estimates in summer than in spring. This explains why snow
depth increased from spring to summer during a melting pe-
riod and also explains why the thickest snow depth for the
East Antarctic and Bellingshausen–Amundsen Sea is (where
there is a large amount of multiyear ice) in summer.

In addition, the emission signal of multiyear sea ice in the
microwave region is quite similar to those from snow (Ros-
tosky et al., 2018). Hence the snow depth on multiyear ice
estimated from passive microwave radiometers is indetermi-
nate, and this algorithm is more suitable for dry snow condi-
tions (Comiso et al., 2003). Considering this, we suggest cau-
tion when applying the proposed method for summer snow
depth.

In particular, we find that the snow depth in the Weddell
West sector decreased from autumn to winter during a grow-
ing period. As we mentioned before, the variability of grain
size affects the brightness temperatures. In winter the grain
size increases and thus results in a stronger radiation scat-
tering. This effect can cause a reduced brightness tempera-
ture (Markus and Cavalieri, 1998) and is stronger for higher
frequencies (Rostosky et al., 2018), which leads to the over-
estimation of snow depth. The regression coefficients in the
proposed method were based on snow depth measurements
in October and November (i.e. winter). Considering the in-
fluence of the grain size on the microwave emission (Ros-

tosky et al., 2018), these could lead to an overestimation of
snow depth in autumn with smaller grain sizes. In the other
sea sectors, this effect was not obvious. Hence the proposed
method still has the capability of estimating the snow depth
distribution in autumn. The above discussion indicates that in
order to accurately retrieve snow depth over Antarctic sea ice
in all seasons, more in situ observations of snow cover (in-
cluding thickness and properties) with comprehensive spatio-
temporal representativeness are needed to derive a more ro-
bust snow depth algorithm based on passive microwave ra-
diometers. In the meantime detailed understanding of the in-
fluences of snow properties (e.g. grain size and wetness) on
brightness temperatures is also needed.

Antarctic snow depth showed a decreasing trend from
2002 to 2020 (Fig. 10a). This snow depth trend of Antarctic
sea ice is the combined result from the six sea sectors, and the
trend of snow depth may be “enhanced” or “offset”. Hence,
it is necessary to analyse the trend for individual sea sectors.
All six sea sectors showed decreasing trends (Fig. 10), and
these trends were decreasing across all four seasons.

The spatial distributions of snow depth variation trends
during four seasons from 2002 to 2020 are shown in Fig. 11.
During spring, except for the marginal sea ice in the west-
ern Antarctic sea ice region, the snow depth in other regions
showed clear decreasing trends. During summer and autumn,
negative trends could be found in the Weddell West sector.
During winter, a positive trend was found in the marginal sea
ice of the Weddell West sector and western Ross Sea, while
a decreasing trend was found in other sea sectors. In general,
decreasing trends dominated the snow cover over Antarctic
sea ice.
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Figure 6. The spatial distributions of monthly snow depth estimates
(January to June 2019) from this study (a) and ICESat-2 (b) together
with the number (N ) of valid grid cells in the bottom left corner of
each image. (c) The probability density functions (PDFs) from (a)
(red) and (b) (green). Numerical values in the top right corner of (c)
show the mean and standard deviation of the monthly snow depth
estimates from (a) (red) and (b) (green).

6 Discussions

6.1 The uncertainty from estimation methods

Growth and melting of the snow layer will change the ob-
served brightness temperatures; hence, the numerical rela-
tionship between brightness temperatures and snow depth is
not fixed. When the snow layer starts to melt, its emissiv-
ity greatly differs from that of dry snow, which causes some
biases in the snow depth estimation (Willmes et al., 2014).

Figure 7. The spatial distributions of monthly snow depth estimates
(July to December 2019) from this study (a) and ICESat-2 (b) to-
gether with the number (N ) of valid grid cells in the bottom left
corner of each image. (c) The probability density functions (PDFs)
from (a) (red) and (b) (green). Numerical values in the top right
corner of (c) show the mean and standard deviation of the monthly
snow depth estimates from (a) (red) and (b) (green).

Hence, it is suggested that the proposed method in this study
is limited to cold seasons (i.e., autumn, winter and spring).
Although the used lower frequency suffers less from the vol-
ume scattering caused by the seasonal variation in the snow
layer (such as densification or grain size increase; Rostosky
et al., 2018), it is less sensitive to thin snow, and there may
be some biases for snow depth in early winter. This result
explains why the proposed method performed only slightly
better than the Comiso method when compared with thinner
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Figure 8. (a) Time series of the snow depth based on the proposed
method in this study (red) and ICESat-2 (green) between January
and December 2019. (b) Scatter diagrams of snow depth estimated
from the proposed method and ICESat-2 on the grid scale. The line
which fits to the scatter points is shown in red, and the evaluation
indices are also shown in the bottom right corner. MD: mean differ-
ence; MAD: mean absolute difference; R: correlation coefficient.

Figure 9. The spatial distributions of averaged snow depth in dif-
ferent seasons from 2002 to 2020. Only grid cells with sea ice con-
centration ≥ 75 % are shown here; grid resolution is 25 km.

ASPeCt snow depth. Since the snow depth over Antarctic sea
ice is thicker than that in the Arctic and lower frequencies are
more sensitive to thicker snow (Rostosky et al., 2018), this
influence is assumed to be limited.

In addition, at the end of winter or early spring, the top
snow layer melts during the day and refreezes at night. This
forms an ice layer in the upper layer of snow cover. These
ice layers usually have large grains which can contribute to
the increase in scattering and thus lead to overestimated snow

depth (Markus and Cavalieri, 1998). In the Antarctic, the ice-
covered snow layer may be covered by new snow (Willatt et
al., 2009), and this melt–refreeze cycle will result in further
overestimation. In addition, the relationship between bright-
ness temperatures and snow depth is affected by snow den-
sity, snow grain size, flooded sea ice and weather conditions.
However, because in situ measurements of these snow and
ice properties are infrequently collected, their influences can-
not be quantified and are thus not considered in the existing
method. This issue can be solved with future in situ mea-
surements. Lower frequencies are less affected by these fac-
tors and are more sensitive to deeper snow. Thus, they can
improve the current Antarctic snow depth estimation. How-
ever, they are also more sensitive to roughness on the sea
ice surface (Stroeve et al., 2006), and the spatial differences
in snow emissivity derived from snow metamorphism in the
Antarctic are rather small (Willmes et al., 2014). Neverthe-
less, similar performances of estimated snow depth as those
derived from ICESat-2 at both spatial and temporal scales
still demonstrate the reliability of the proposed method and
imply that the snow depth uncertainties caused by the factors
mentioned above are acceptable, as satellite laser altimeters
are independent of snow properties.

Although the inclusion of low frequencies can reduce
these influences, the linear regression equation may be too
simple for some situations, e.g. very thin or thick snow.
Some complex methods, e.g. polynomial fitting equations
(Kilic et al., 2019), random forest regression models (Win-
strup et al., 2019) and neural network models (Braakmann-
Folgmann and Donlon, 2019), may improve these situations.
However, all these methods require more snow depth sam-
ples and much more training data if complex machine learn-
ing or deep-learning technologies are used. Antarctic sam-
ples are quite sparse. Considering these potential limitations
and the lack of a better operational snow depth product, we
assume that the linear equation can estimate Antarctic snow
depth more robustly in the current stage.

6.2 The uncertainty from OIB data

Since the derivation of the regression coefficients in Eqs. (4)
and (5) directly depends on the applied OIB samples, the un-
certainty from the OIB data has a direct influence on snow
depth estimation. Most of the OIB airborne measurements
were taken in the western Antarctic sea ice region during Oc-
tober or November, and their spatio-temporal representative-
ness was hence limited. Nevertheless, it was the most suit-
able data source for equation derivation considering its large
spatial and temporal scales. The comparisons to ASPeCt and
AADC data both demonstrated that this equation could be
used in different seasons and sea sectors. Limited by the ex-
treme climate and oceanic conditions in the Antarctic, in situ
Antarctic sea ice measurement data are still limited. When
more in situ data can be obtained, the corresponding algo-
rithm can be further improved.
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Figure 10. Time series of the annual snow depth estimates derived from the proposed method from 2003 to 2019 for the Antarctic and six
sea sectors at the spatial resolution of 25 km.

6.3 The uncertainty from sea ice types

It is still difficult for passive microwave radiometers to es-
timate snow depth over multiyear ice because multiyear ice
scattering properties are similar to snow. On the one hand,
reliable sea ice type data in the Antarctic were not accessible
until now, and we still cannot derive snow depth estimation
equations for different ice types. On the other hand, Antarctic
sea ice is mostly young first-year ice. The amount of multi-
year ice in the Antarctic is limited. This will be further im-
proved when accurate Antarctic sea ice type data and in situ
measurements are available.

6.4 The uncertainty from applied spatial resolution

Coarser spatial resolutions cannot obtain a detailed spatial
pattern of snow depth. Although optical or SAR images have
fine spatial resolutions, they still cannot estimate Antarctic
snow depth on a daily scale. The passive microwave radiome-
ter is one of the most effective sensors for daily Antarctic
snow depth derivation. Although the current spatial resolu-
tion of the passive microwave radiometer is relatively coarse
(25–50 km), considering the relatively flat surface of Antarc-
tic sea ice and the urgent need for snow depth over Antarctic
sea ice, the uncertainty caused by the coarser resolution is
acceptable.

6.5 The uncertainty from the different spatial resolutions
of satellite, airborne, shipborne and field datasets

Since the spatial resolutions of used data in this study
are vastly different (i.e., satellite, airborne, shipborne and

field data), the scale effect needs to be considered. Zhou et
al. (2021) compared the snow depth values in various spatial
grid cell spacings using OIB data and found that the lim-
ited footprint of airborne data still caused the offset of snow
depth values even when the coverage of these airborne mea-
surements is overall good. Hence, the difference of spatial
resolutions will further affect the comparison and evaluation
of snow depth data. As the in situ measurements (including
airborne, shipborne and field data) were not extensively ob-
tained (i.e., the spatial coverage of these data in one satellite
footprint is limited), investigation of how the spatial reso-
lution of in situ data on snow depth comparison could still
not be carried out at present. The reason is that airborne
and shipborne data were usually obtained along the tracks,
and the field measurements were spatially sparse. This effect
will be quantified in future work when much more in situ
data are obtained. However, considering the sea ice cover
in the Antarctic is relatively flat, the uncertainty caused by
datasets with different spatial resolutions should be limited
and smaller than that for Arctic sea ice.

7 Data availability

The snow depth product (including snow depth uncertainty)
over Antarctic sea ice can be downloaded from the National
Tibetan Plateau Data Center, Institute of Tibetan Plateau Re-
search, Chinese Academy of Sciences at http://data.tpdc.ac.
cn/en/disallow/61ea8177-7177-4507-aeeb-0c7b653d6fc3/
(last access: 7 February 2022) (Shen and Ke, 2021,
https://doi.org/10.11888/Snow.tpdc.271653). A short sum-
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Figure 11. The spatial distributions of snow depth trends in differ-
ent seasons from 2002 to 2020. For each grid cell, the trend was
only estimated when 12 years (or more) of snow depth estimates
were obtained. Only grid cells with sea ice concentration ≥ 75 %
are shown here; grid resolution is 25 km. The black dot means that
the trend is significant at the 95 % significance level according to
two-tailed Student’s t tests.

mary and some auxiliary information (including file naming
and required software) are also provided.

AMSR-E brightness temperature data are found at https:
//nsidc.org/data/AE_SI25/versions/3 (Cavalieri et al., 2014,
last access: 7 February 2022). AMSR-2 brightness tem-
perature data can be found at https://nsidc.org/data/AU_
SI25/versions/1 (Markus et al., 2018, last access: 7 Febru-
ary 2022). SSMIS brightness temperature data are found
at https://nsidc.org/data/NSIDC-0001/versions/4 (Maslanik
and Stroeve, 2004, last access: 7 February 2022). OIB air-
borne data can be found at https://nsidc.org/data/ILATM2/
versions/2 (Studinger, 2014, last access: 7 February 2022).
ASPeCt data are found at http://aspect.antarctica.gov.au/
data (Antarctic Sea Ice Processes and Climate program,
2022, last access: 7 February 2022). AADC in situ data
can be found at https://data.aad.gov.au/metadata/records/
sea_ice_measurements_database (Australian Antarctic Data
Centre, 2019, last access: 7 February 2022).

8 Conclusions

Our study updates the regression equation for estimating
snow depth over Antarctic sea ice using passive microwave
radiometers. By comparing 7-year OIB snow depth measure-
ments, we found that the GR calculated from both lower and
higher frequencies, i.e., GR(37/7), was best for deriving the
Antarctic snow depth. It had an RMSD of 8.92 cm and a cor-
relation coefficient of −0.64. The derived equation based on
GR(37/7) was applied to consistent brightness temperatures
from AMSR-E and AMSR-2. To fill the observation gaps be-
tween AMSR-E and AMSR-2, we used SSMIS data with a
new equation based on GR(37/19) with a correction applied
for consistent snow depth estimation. The estimated snow
depth uncertainty analysis used a Gaussian error propagation.
The mean uncertainty of the passive microwave radiometer-
derived snow depth was 23.73 cm.

The self-evaluation based on the combination of OIB data
in different years showed that no obvious interannual varia-
tions could be found in the regression coefficients. The un-
certainty of slopes from different combinations of OIB data
was 42.85, which resulted in a snow depth estimation bias of
< 1 cm. The proposed method agreed well with the OIB data,
showing a mean difference of−1.55 cm, and there was a sim-
ilar snow depth variation pattern at the interannual scale. The
Comiso method underestimated snow depth, with an average
difference of −19.15 cm.

AADC data provided a comprehensive and unbiased as-
sessment because they include measurements of both thick
and thin snow layers. In comparison to AADC in situ mea-
surements, the proposed method outperformed the Comiso
method, with a smaller mean difference of 5.64 cm and an
RMSD of 13.79 cm. The Comiso method underestimated
snow depth with a mean difference of −14.47 cm and an
RMSD of 19.49 cm.

The comparison to ASPeCt data showed that the proposed
method had slightly better performance than the Comiso
method (RMSDs of 16.85 and 17.61 cm, respectively) be-
cause the ASPeCt shipborne observations were focused on
thin ice. The evaluation may be somewhat biased due to the
observational accuracy of ASPeCt data (a mean bias of 20 %
or 30 %).

Although the proposed method had better performance
than the Comiso method, it could still be improved. We sug-
gest that the proposed method should be used for the cold
seasons, and caution should be exercised when applying for
summer snow depth. Because a sufficient operational snow
depth product is still lacking, we used our proposed method
to generate a new, updated time series product of snow depth
over Antarctic sea ice from 2002 to 2020 (including summer)
on a daily scale. A decreasing trend of snow depth could be
found in all six sectors and four seasons at the interannual
scale. In addition, this dataset can be used to re-analyse data
and acts as an input for sea ice thickness estimation.
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