Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5253-2022
https://doi.org/10.5194/essd-14-5253-2022
Data description paper
 | 
30 Nov 2022
Data description paper |  | 30 Nov 2022

The hourly wind-bias-adjusted precipitation data set from the Environment and Climate Change Canada automated surface observation network (2001–2019)

Craig D. Smith, Eva Mekis, Megan Hartwell, and Amber Ross

Related authors

Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements
Craig D. Smith, Amber Ross, John Kochendorfer, Michael E. Earle, Mareile Wolff, Samuel Buisán, Yves-Alain Roulet, and Timo Laine
Hydrol. Earth Syst. Sci., 24, 4025–4043, https://doi.org/10.5194/hess-24-4025-2020,https://doi.org/10.5194/hess-24-4025-2020, 2020
Short summary
An improved post-processing technique for automatic precipitation gauge time series
Amber Ross, Craig D. Smith, and Alan Barr
Atmos. Meas. Tech., 13, 2979–2994, https://doi.org/10.5194/amt-13-2979-2020,https://doi.org/10.5194/amt-13-2979-2020, 2020
Short summary
The Environment and Climate Change Canada solid precipitation intercomparison data from Bratt's Lake and Caribou Creek, Saskatchewan
Craig D. Smith, Daqing Yang, Amber Ross, and Alan Barr
Earth Syst. Sci. Data, 11, 1337–1347, https://doi.org/10.5194/essd-11-1337-2019,https://doi.org/10.5194/essd-11-1337-2019, 2019
Short summary
Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018,https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Measuring precipitation with a geolysimeter
Craig D. Smith, Garth van der Kamp, Lauren Arnold, and Randy Schmidt
Hydrol. Earth Syst. Sci., 21, 5263–5272, https://doi.org/10.5194/hess-21-5263-2017,https://doi.org/10.5194/hess-21-5263-2017, 2017
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Meteorology
An upgraded high-precision gridded precipitation dataset for the Chinese mainland considering spatial autocorrelation and covariates
Jinlong Hu, Chiyuan Miao, Jiajia Su, Qi Zhang, Jiaojiao Gou, and Qiaohong Sun
Earth Syst. Sci. Data, 17, 3987–4004, https://doi.org/10.5194/essd-17-3987-2025,https://doi.org/10.5194/essd-17-3987-2025, 2025
Short summary
PL1GD-T: a high-resolution gridded daily air temperature dataset for Poland
Adam Jaczewski, Michał Marosz, and Mirosław Miętus
Earth Syst. Sci. Data, 17, 3857–3871, https://doi.org/10.5194/essd-17-3857-2025,https://doi.org/10.5194/essd-17-3857-2025, 2025
Short summary
A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data, 17, 3721–3740, https://doi.org/10.5194/essd-17-3721-2025,https://doi.org/10.5194/essd-17-3721-2025, 2025
Short summary
An updated reconstruction of Antarctic near-surface air temperatures at monthly intervals since 1958
David Bromwich, Sheng-Hung Wang, Xun Zou, and Alexandra Ensign
Earth Syst. Sci. Data, 17, 2953–2962, https://doi.org/10.5194/essd-17-2953-2025,https://doi.org/10.5194/essd-17-2953-2025, 2025
Short summary
HighResClimNevada: a high-resolution climatological dataset for a high-altitude region in southern Spain (Sierra Nevada)
Matilde García-Valdecasas Ojeda, Feliciano Solano-Farias, David Donaire-Montaño, Emilio Romero-Jiménez, Juan José Rosa-Cánovas, Yolanda Castro-Díez, Sonia R. Gámiz-Fortis, and María Jesús Esteban-Parra
Earth Syst. Sci. Data, 17, 2809–2829, https://doi.org/10.5194/essd-17-2809-2025,https://doi.org/10.5194/essd-17-2809-2025, 2025
Short summary

Cited articles

Asong, Z. E., Razavi, S., Wheater, H. S., and Wong, J. S.: Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over southern Canada against ground precipitation observations: A preliminary assessment, J. Hydrometeorol., 18, 1033–1050, 2017. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow dominated regions, Nature, 438, 303–309, 2005. 
Buisán, S. T., Smith, C. D., Ross, A., Kochendorfer, J., Collado, J. L., Alastrue, J., Wolff, M., Roulet, Y., Earle, M. E., Laine, T., Rasmussen, R., and Nitu, R.: The potential for uncertainty in Numerical Weather Prediction model verification when using solid precipitation observations, Atmos. Sci. Lett., 2, e976, https://doi.org/10.1002/asl.976, 2020. 
Devine, K. A. and Mekis, É.: Field accuracy of Canadian rain measurements, Atmosphere-Ocean, 46, 213–227, https://doi.org/10.3137/ao.460202, 2008. 
Environment and Climate Change Canada: Hourly wind-bias-adjusted precipitation data from the ECCC automated surface observation network, Government of Canada Open Data portal [data set], https://doi.org/10.18164/6b90d130-4e73-422a-9374-07a2437d7e52, 2021. 
Download
Short summary
It is well understood that precipitation gauges underestimate the measurement of solid precipitation (snow) as a result of systematic bias caused by wind. Relationships between the wind speed and gauge catch efficiency of solid precipitation have been previously established and are applied to the hourly precipitation measurements made between 2001 and 2019 in the automated Environment and Climate Change Canada observation network. The adjusted data are available for download and use.
Share
Altmetrics
Final-revised paper
Preprint