Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Full-coverage 250 m monthly aerosol optical depth dataset (2000–2019) amended with environmental covariates by an ensemble machine learning model over arid and semi-arid areas, NW China
Xiangyue Chen
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Hongchao Zuo
CORRESPONDING AUTHOR
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Zipeng Zhang
College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Xiaoyi Cao
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Jikai Duan
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Chuanmei Zhu
College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Zhe Zhang
College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Jingzhe Wang
CORRESPONDING AUTHOR
School of Artificial Intelligence, Shenzhen Polytechnic, Shenzhen 518055 China
Related authors
No articles found.
Ying Gan, Zhe Zhang, Wen Chu, Jianli Ding, and Yuxin Ren
EGUsphere, https://doi.org/10.5194/egusphere-2025-965, https://doi.org/10.5194/egusphere-2025-965, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Central Asia's worsening dust storms, driven by three expanding desert zones, could nearly double by 2100 without climate action. Our analysis shows these storms cool the upper atmosphere but trap heat near the ground, reducing sunlight by 20 % – enough to harm crops. Spring storms near Kashgar heat air 30× faster than at protected sites like Lake Issyk-Kul.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Cited articles
Ali, M. A. and Assiri, M.: Analysis of AOD from MODIS-Merged DT–DB Products
Over the Arabian Peninsula, Earth Syst. Environ., 3, 625–636,
https://doi.org/10.1007/s41748-019-00108-x, 2019.
Ali, G., Bao, Y., Boiyo, R., Tang, W., Lu, Q., and Min, J.: Evaluating MODIS
and MISR aerosol optical depth retrievals over environmentally distinct
sites in Pakistan, J. Atmos. Solar-Terr. Phy.,
183, 19–35, https://doi.org/10.1016/j.jastp.2018.12.008, 2019.
Almazroui, M.: A comparison study between AOD data from MODIS deep blue
collections 51 and 06 and from AERONET over Saudi Arabia, Atmos.
Res., 225, 88–95, https://doi.org/10.1016/j.atmosres.2019.03.040, 2019.
Ångström, A.: The parameters of atmospheric turbidity, Tellus, 16,
64–75, https://doi.org/10.1016/0038-092X(65)90225-2, 1964.
Bilal, M., Nichol, J. E., and Wang, L.: New customized methods for
improvement of the MODIS C6 Dark Target and Deep Blue merged aerosol
product, Remote Sens. Environ., 197, 115–124,
https://doi.org/10.1016/j.rse.2017.05.028, 2017.
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140,
https://doi.org/10.1007/BF00058655, 1996.
Chen, B., Song, Z., Pan, F., and Huang, Y.: Obtaining vertical distribution
of PM2.5 from CALIOP data and machine learning algorithms, Sci.
Total Environ., 805, 150338,
https://doi.org/10.1016/j.scitotenv.2021.150338, 2022.
Chen, X., Ding, J., Wang, J., Ge, X., Raxidin, M., Liang, J., Chen, X.,
Zhang, Z., Cao, X., and Ding, Y.: Retrieval of Fine-Resolution Aerosol
Optical Depth (AOD) in Semiarid Urban Areas Using Landsat Data: A Case Study
in Urumqi, NW China, Remote Sens., 12, 467,
https://doi.org/10.3390/rs12030467, 2020.
Chen, X., Ding, J., Liu, J., Wang, J., Ge, X., Wang, R., and Zuo, H.:
Validation and comparison of high-resolution MAIAC aerosol products over
Central Asia, Atmos. Environ., 251, 118273,
https://doi.org/10.1016/j.atmosenv.2021.118273, 2021a.
Chen, X., Zuo, H., Zhang, Z., Cao, X., Duan, J., Wang, J., Zhu, C., Zhang,
Z.: High-resolution and full coverage AOD downscaling based on the bagging
model over the arid and semi-arid areas, NW China, Zenodo [data set],
https://doi.org/10.5281/zenodo.5727119, 2021b.
Ding, H. and Xingming, H.: Spatiotemporal change and drivers analysis of
desertification in the arid region of northwest China based on geographic
detector, Environ. Challenges, 4, 100082,
https://doi.org/10.1016/j.envc.2021.100082, 2021.
Duveiller, G., Filipponi, F., Walther, S., Köhler, P., Frankenberg, C., Guanter, L., and Cescatti, A.: A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity, Earth Syst. Sci. Data, 12, 1101–1116, https://doi.org/10.5194/essd-12-1101-2020, 2020.
Ebrahimi, N., Soofi, E. S., and Soyer, R.: Information Measures in
Perspective, Int. Stat. Rev., 78, 383–412,
https://doi.org/10.1111/j.1751-5823.2010.00105.x, 2010.
Fan, W., Qin, K., Cui, Y., Li, D., and Bilal, M.: Estimation of Hourly
Ground-Level PM2.5 Concentration Based on Himawari-8 Apparent
Reflectance, IEEE T. Geosci. Remote, 59, 76–85,
https://doi.org/10.1109/TGRS.2020.2990791, 2020.
Feng, F. and Wang, K.: Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China, Earth Syst. Sci. Data, 13, 907–922, https://doi.org/10.5194/essd-13-907-2021, 2021.
Ge, Y., Abuduwaili, J., Ma, L., Wu, N., and Liu, D.: Potential transport
pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid
northwest China, Atmos. Res., 178–179, 196–206,
https://doi.org/10.1016/j.atmosres.2016.04.002, 2016.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Goldberg, D. L., Gupta, P., Wang, K., Jena, C., Zhang, Y., Lu, Z., and
Streets, D. G.: Using gap-filled MAIAC AOD and WRF-Chem to estimate daily
PM2.5 concentrations at 1 km resolution in the Eastern United States,
Atmos. Environ., 199, 443–452,
https://doi.org/10.1016/j.atmosenv.2018.11.049, 2019.
González, S., García, S., Del Ser, J., Rokach, L., and Herrera, F.:
A practical tutorial on bagging and boosting based ensembles for machine
learning: Algorithms, software tools, performance study, practical
perspectives and opportunities, Information Fusion, 64, 205–237,
https://doi.org/10.1016/j.inffus.2020.07.007, 2020.
He, Q., Gu, Y., and Zhang, M.: Spatiotemporal trends of PM2.5
concentrations in central China from 2003 to 2018 based on MAIAC-derived
high-resolution data, Environ. Int., 137, 105536,
https://doi.org/10.1016/j.envint.2020.105536, 2020.
Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda,
M., Blagotic, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, Plos One, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y., and Nakajima, T.: AERONET – A
federated instrument network and data archive for aerosol characterization,
Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Huang, J., Yu, H., Dai, A., Wei, Y., and Kang, L.: Drylands face potential
threat under 2 C global warming target, Nat. Clim. Change, 7, 417–422,
https://doi.org/10.1038/nclimate3275, 2017.
Jasiewicz, J. and Stepinski, T. F.: Geomorphons – a pattern recognition
approach to classification and mapping of landforms, Geomorphology, 182,
147–156, https://doi.org/10.1016/j.geomorph.2012.11.005, 2013.
Kaufman, Y. J., Tanré, D., and Boucher, O.: A satellite view of aerosols
in the climate system, Nature, 419, 215,
https://doi.org/10.1038/nature01091, 2002.
Khaledian, Y. and Miller, B. A.: Selecting appropriate machine learning
methods for digital soil mapping, Appl. Math. Model., 81,
401–418, https://doi.org/10.1016/j.apm.2019.12.016, 2020.
Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A.,
and Ramanathan, V.: Effects of fossil fuel and total anthropogenic emission
removal on public health and climate, P. Natl. Acad.
Sci., 116, 7192–7197, https://doi.org/10.1073/pnas.1819989116, 2019.
Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399–10420, https://doi.org/10.5194/acp-10-10399-2010, 2010.
Li, K., Bai, K., Ma, M., Guo, J., Li, Z., Wang, G., and Chang, N.-B.:
Spatially gap free analysis of aerosol type grids in China: First retrieval
via satellite remote sensing and big data analytics, ISPRS J.
Photogramm. Remote Sens., 193, 45–59,
https://doi.org/10.1016/j.isprsjprs.2022.09.001, 2022.
Li, L., Lurmann, F., Habre, R., Urman, R., Rappaport, E., Ritz, B., Chen, J.
C., Gilliland, F., and Wu, J.: Constrained Mixed-Effect Models with Ensemble
Learning for Prediction of Nitrogen Oxides Concentrations at High
Spatiotemporal Resolution, Environ. Sci. Technol., 51,
9920–9929, https://doi.org/10.1021/acs.est.7b01864, 2017.
Li, L., Zhang, J., Meng, X., Fang, Y., Ge, Y., Wang, J., Wang, C., Wu, J.,
and Kan, H.: Estimation of PM2.5 concentrations at a high
spatiotemporal resolution using constrained mixed-effect bagging models with
MAIAC aerosol optical depth, Remote Sens. Environ., 217, 573–586,
https://doi.org/10.1016/j.rse.2018.09.001, 2018.
Li, L., Franklin, M., Girguis, M., Lurmann, F., Wu, J., Pavlovic, N.,
Breton, C., Gilliland, F., and Habre, R.: Spatiotemporal imputation of MAIAC
AOD using deep learning with downscaling, Remote Sens. Environ.,
237, 111584, https://doi.org/10.1016/j.rse.2019.111584, 2020.
Liang, T., Sun, L., and Li, H.: MODIS aerosol optical depth retrieval based
on random forest approach, Remote Sens. Lett., 12, 179–189,
https://doi.org/10.1080/2150704X.2020.1842540, 2021.
Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy,
R., and Reid, J. S.: Multiangle implementation of atmospheric correction
(MAIAC): 2. Aerosol algorithm, J. Geophys. Res.-Atmos.,
116, 0148–0227, https://doi.org/10.1029/2010JD014986, 2011.
Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC algorithm, Atmos. Meas. Tech., 11, 5741–5765, https://doi.org/10.5194/amt-11-5741-2018, 2018.
Ma, R., Ban, J., Wang, Q., Zhang, Y., Yang, Y., Li, S., Shi, W., Zhou, Z., Zang, J., and Li, T.: Full-coverage 1 km daily ambient PM2.5 and O3 concentrations of China in 2005–2017 based on a multi-variable random forest model, Earth Syst. Sci. Data, 14, 943–954, https://doi.org/10.5194/essd-14-943-2022, 2022.
Ma, Z., Shi, Z., Zhou, Y., Xu, J., Yu, W., and Yang, Y.: A spatial data
mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet
Plateau with the effects of systematic anomalies removed, Remote Sens.
Environ., 200, 378–395, https://doi.org/10.1016/j.rse.2017.08.023, 2017.
Miller, B. A., Koszinski, S., Wehrhan, M., and Sommer, M.: Impact of
multi-scale predictor selection for modeling soil properties, Geoderma,
239–240, 97–106, https://doi.org/10.1016/j.geoderma.2014.09.018, 2015.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Rodriguez, J. D., Perez, A., and Lozano, J. A.: Sensitivity Analysis of
k-Fold Cross Validation in Prediction Error Estimation, IEEE T.
Pattern Anal., 32, 569–575, https://doi.org/10.1109/TPAMI.2009.187, 2010.
Singh, M. K., Venkatachalam, P., and Gautam, R.: Geostatistical Methods for
Filling Gaps in Level-3 Monthly-Mean Aerosol Optical Depth Data from
Multi-Angle Imaging SpectroRadiometer, Aerosol Air Qual. Res., 17,
1963–1974, https://doi.org/10.4209/aaqr.2016.02.0084, 2017.
Sun, J., Gong, J., and Zhou, J.: Estimating hourly PM2.5 concentrations
in Beijing with satellite aerosol optical depth and a random forest
approach, Sci. Total Environ., 762, 144502,
https://doi.org/10.1016/j.scitotenv.2020.144502, 2021.
Sun, W., Song, X., Mu, X., Gao, P., Wang, F., and Zhao, G.: Spatiotemporal
vegetation cover variations associated with climate change and ecological
restoration in the Loess Plateau, Agric. Forest Meteorol.,
209–210, 87–99, https://doi.org/10.1016/j.agrformet.2015.05.002, 2015.
Szilagyi, J., Yinsheng, Z., Ning, M., and Wenbin, L.: Terrestrial
evapotranspiration dataset across China (1982–2017), National Tibetan
Plateau Data Center [data set],
https://doi.org/10.11888/AtmosPhys.tpe.249493.file, 2019.
Tao, M., Chen, L., Wang, Z., Wang, J., Che, H., Xu, X., Wang, W., Tao, J.,
Zhu, H., and Hou, C.: Evaluation of MODIS Deep Blue Aerosol Algorithm in
Desert Region of East Asia: Ground Validation and Intercomparison, J. Geophys. Res.-Atmos., 122, 10357–10368,
https://doi.org/10.1002/2017JD026976, 2017.
Waits, A., Emelyanova, A., Oksanen, A., Abass, K., and Rautio, A.: Human
infectious diseases and the changing climate in the Arctic, Environ.
Int., 121, 703–713, https://doi.org/10.1016/j.envint.2018.09.042,
2018.
Wang, Z., Deng, R., Ma, P., Zhang, Y., Liang, Y., Chen, H., Zhao, S., and
Chen, L.: 250-m Aerosol Retrieval from FY-3 Satellite in Guangzhou, Remote
Sens., 13, 920, https://doi.org/10.3390/rs13050920, 2021.
Wei, J., Peng, Y., Guo, J., and Sun, L.: Performance of MODIS Collection 6.1
Level 3 aerosol products in spatial-temporal variations over land,
Atmos. Environ., 206, 30–44,
https://doi.org/10.1016/j.atmosenv.2019.03.001, 2019.
Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., and
Cribb, M.: Reconstructing 1-km-resolution high-quality PM2.5 data
records from 2000 to 2018 in China: spatiotemporal variations and policy
implications, Remote Sens. Environ., 252, 112136,
https://doi.org/10.1016/j.rse.2020.112136, 2021.
Wei, X., Bai, K., Chang, N.-B., and Gao, W.: Multi-source hierarchical data
fusion for high-resolution AOD mapping in a forest fire event, International
Journal of Applied Earth Observation and Geoinformation, 102, 102366,
https://doi.org/10.1016/j.jag.2021.102366, 2021.
Xiao, Q., Wang, Y., Chang, H. H., Meng, X., Geng, G., Lyapustin, A., and
Liu, Y.: Full-coverage high-resolution daily PM2.5 estimation using
MAIAC AOD in the Yangtze River Delta of China, Remote Sens.
Environ., 199, 437–446, https://doi.org/10.1016/j.rse.2017.07.023, 2017.
Xue, W., Wei, J., Zhang, J., Sun, L., Che, Y., Yuan, M., and Hu, X.:
Inferring Near-Surface PM2.5 Concentrations from the VIIRS Deep Blue
Aerosol Product in China: A Spatiotemporally Weighted Random Forest Model,
Remote Sens., 13, 505, https://doi.org/10.3390/rs13030505, 2021.
Yan, X., Zang, Z., Li, Z., Luo, N., Zuo, C., Jiang, Y., Li, D., Guo, Y., Zhao, W., Shi, W., and Cribb, M.: A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physical and deep learning approaches, Earth Syst. Sci. Data, 14, 1193–1213, https://doi.org/10.5194/essd-14-1193-2022, 2022.
Yang, J. and Hu, M.: Filling the missing data gaps of daily MODIS AOD using
spatiotemporal interpolation, Sci. Total Environ., 633,
677–683, https://doi.org/10.1016/j.scitotenv.2018.03.202, 2018.
Yang, Q., Yuan, Q., Li, T., and Yue, L.: Mapping PM2.5 concentration at high
resolution using a cascade random forest based downscaling model: Evaluation
and application, J. Clean. Prod., 277, 123887,
https://doi.org/10.1016/j.jclepro.2020.123887, 2020.
Zhang, R., Di, B., Luo, Y., Deng, X., Grieneisen, M. L., Wang, Z., Yao, G.,
and Zhan, Y.: A nonparametric approach to filling gaps in
satellite-retrieved aerosol optical depth for estimating ambient PM2.5
levels, Environ. Pollut., 243, 998–1007,
https://doi.org/10.1016/j.envpol.2018.09.052, 2018.
Zhang, Z., Wu, W., Fan, M., Wei, J., Tan, Y., and Wang, Q.: Evaluation of
MAIAC aerosol retrievals over China, Atmos. Environ., 202, 8–16,
https://doi.org/10.1016/j.atmosenv.2019.01.013, 2019.
Zhang, Z., Ding, J., Zhu, C., Chen, X., Wang, J., Han, L., Ma, X., and Xu,
D.: Bivariate empirical mode decomposition of the spatial variation in the
soil organic matter content: A case study from NW China, Catena, 206,
105572, https://doi.org/10.1016/j.catena.2021.105572, 2021.
Zhao, C., Liu, Z., Wang, Q., Ban, J., Chen, N. X., and Li, T.:
High-resolution daily AOD estimated to full coverage using the random forest
model approach in the Beijing-Tianjin-Hebei region, Atmos. Environ.,
203, 70–78, https://doi.org/10.1016/j.atmosenv.2019.01.045, 2019.
Zhao, H., Gui, K., Ma, Y., Wang, Y., Wang, Y., Wang, H., Zheng, Y., Li, L.,
Zhang, L., Che, H., and Zhang, X.: Climatological variations in aerosol
optical depth and aerosol type identification in Liaoning of Northeast China
based on MODIS data from 2002 to 2019, Sci. Total Environ.,
781, 146810, https://doi.org/10.1016/j.scitotenv.2021.146810, 2021.
Zounemat-Kermani, M., Batelaan, O., Fadaee, M., and Hinkelmann, R.: Ensemble
machine learning paradigms in hydrology: A review, J. Hydrol.,
598, 126266, https://doi.org/10.1016/j.jhydrol.2021.126266, 2021.
Short summary
Arid and semi-arid areas are data-scarce aerosol areas. We provide path-breaking, high-resolution, full coverage, and long time series AOD datasets (FEC AOD) to support the atmosphere and related studies in northwestern China. The FEC AOD effectively compensates for the deficiency and constraints of in situ observations and satellite AOD products. Meanwhile, FEC AOD products demonstrate a reliable accuracy and ability to capture long-term change information.
Arid and semi-arid areas are data-scarce aerosol areas. We provide path-breaking,...
Altmetrics
Final-revised paper
Preprint