Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5233-2022
https://doi.org/10.5194/essd-14-5233-2022
Data description paper
 | 
30 Nov 2022
Data description paper |  | 30 Nov 2022

Full-coverage 250 m monthly aerosol optical depth dataset (2000–2019) amended with environmental covariates by an ensemble machine learning model over arid and semi-arid areas, NW China

Xiangyue Chen, Hongchao Zuo, Zipeng Zhang, Xiaoyi Cao, Jikai Duan, Chuanmei Zhu, Zhe Zhang, and Jingzhe Wang

Related authors

Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang
Atmos. Chem. Phys., 14, 13175–13188, https://doi.org/10.5194/acp-14-13175-2014,https://doi.org/10.5194/acp-14-13175-2014, 2014
Ozone production in four major cities of China: sensitivity to ozone precursors and heterogeneous processes
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-27243-2013,https://doi.org/10.5194/acpd-13-27243-2013, 2013
Revised manuscript not accepted

Related subject area

Domain: ESSD – Atmosphere | Subject: Atmospheric chemistry and physics
A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
Melisa Diaz Resquin, Pablo Lichtig, Diego Alessandrello, Marcelo De Oto, Darío Gómez, Cristina Rössler, Paula Castesana, and Laura Dawidowski
Earth Syst. Sci. Data, 15, 189–209, https://doi.org/10.5194/essd-15-189-2023,https://doi.org/10.5194/essd-15-189-2023, 2023
Short summary
Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023,https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
World Wide Lightning Location Network (WWLLN) Global Lightning Climatology (WGLC) and time series, 2022 update
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 14, 5665–5670, https://doi.org/10.5194/essd-14-5665-2022,https://doi.org/10.5194/essd-14-5665-2022, 2022
Short summary
Long-term ash dispersal dataset of the Sakurajima Taisho eruption for ashfall disaster countermeasure
Haris Rahadianto, Hirokazu Tatano, Masato Iguchi, Hiroshi L. Tanaka, Tetsuya Takemi, and Sudip Roy
Earth Syst. Sci. Data, 14, 5309–5332, https://doi.org/10.5194/essd-14-5309-2022,https://doi.org/10.5194/essd-14-5309-2022, 2022
Short summary
The polar mesospheric cloud dataset of the Balloon Lidar Experiment (BOLIDE)
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data, 14, 4923–4934, https://doi.org/10.5194/essd-14-4923-2022,https://doi.org/10.5194/essd-14-4923-2022, 2022
Short summary

Cited articles

Ali, M. A. and Assiri, M.: Analysis of AOD from MODIS-Merged DT–DB Products Over the Arabian Peninsula, Earth Syst. Environ., 3, 625–636, https://doi.org/10.1007/s41748-019-00108-x, 2019. 
Ali, G., Bao, Y., Boiyo, R., Tang, W., Lu, Q., and Min, J.: Evaluating MODIS and MISR aerosol optical depth retrievals over environmentally distinct sites in Pakistan, J. Atmos. Solar-Terr. Phy., 183, 19–35, https://doi.org/10.1016/j.jastp.2018.12.008, 2019. 
Almazroui, M.: A comparison study between AOD data from MODIS deep blue collections 51 and 06 and from AERONET over Saudi Arabia, Atmos. Res., 225, 88–95, https://doi.org/10.1016/j.atmosres.2019.03.040, 2019. 
Ångström, A.: The parameters of atmospheric turbidity, Tellus, 16, 64–75, https://doi.org/10.1016/0038-092X(65)90225-2, 1964. 
Bilal, M., Nichol, J. E., and Wang, L.: New customized methods for improvement of the MODIS C6 Dark Target and Deep Blue merged aerosol product, Remote Sens. Environ., 197, 115–124, https://doi.org/10.1016/j.rse.2017.05.028, 2017. 
Download
Short summary
Arid and semi-arid areas are data-scarce aerosol areas. We provide path-breaking, high-resolution, full coverage, and long time series AOD datasets (FEC AOD) to support the atmosphere and related studies in northwestern China. The FEC AOD effectively compensates for the deficiency and constraints of in situ observations and satellite AOD products. Meanwhile, FEC AOD products demonstrate a reliable accuracy and ability to capture long-term change information.