Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Full-coverage 250 m monthly aerosol optical depth dataset (2000–2019) amended with environmental covariates by an ensemble machine learning model over arid and semi-arid areas, NW China
Xiangyue Chen
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Hongchao Zuo
CORRESPONDING AUTHOR
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Zipeng Zhang
College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Xiaoyi Cao
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Jikai Duan
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Chuanmei Zhu
College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Zhe Zhang
College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Jingzhe Wang
CORRESPONDING AUTHOR
School of Artificial Intelligence, Shenzhen Polytechnic, Shenzhen 518055 China
Related authors
No articles found.
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang
Atmos. Chem. Phys., 14, 13175–13188, https://doi.org/10.5194/acp-14-13175-2014, https://doi.org/10.5194/acp-14-13175-2014, 2014
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-27243-2013, https://doi.org/10.5194/acpd-13-27243-2013, 2013
Revised manuscript not accepted
Related subject area
Domain: ESSD – Atmosphere | Subject: Atmospheric chemistry and physics
A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements
World Wide Lightning Location Network (WWLLN) Global Lightning Climatology (WGLC) and time series, 2022 update
Long-term ash dispersal dataset of the Sakurajima Taisho eruption for ashfall disaster countermeasure
The polar mesospheric cloud dataset of the Balloon Lidar Experiment (BOLIDE)
Multiyear emissions of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue as well as their key driving forces in China
Crowdsourced Doppler Measurements of Time Standard Stations Demonstrating Ionospheric Variability
Global Ozone Monitoring Experiment-2 (GOME-2) Daily and Monthly Level 3 Products of Atmospheric Trace Gas Columns
Impacts of the proposal of the CNG2020 strategy on aircraft emissions of China–foreign routes
Northern hemispheric atmospheric ethane trends in the upper troposphere and lower stratosphere (2006–2016) with reference to methane and propane
New contributions of measurements in Europe to the global inventory of the stable isotopic composition of methane
International Monitoring System infrasound data products for atmospheric studies and civilian applications
A benchmark dataset of diurnal- and seasonal-scale radiation, heat, and CO2 fluxes in a typical East Asian monsoon region
Attenuated atmospheric backscatter profiles measured by the CO2 Sounder lidar in the 2017 ASCENDS/ABoVE airborne campaign
Climatology of aerosol component concentrations derived from multi-angular polarimetric POLDER-3 observations using GRASP algorithm
Reconstructing 6-hourly PM2.5 datasets from 1960 to 2020 in China
A 10-year global monthly averaged terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO2 retrievals (GCAS2021)
A merged continental planetary boundary layer height dataset based on high-resolution radiosonde measurements, ERA5 reanalysis, and GLDAS
Melisa Diaz Resquin, Pablo Lichtig, Diego Alessandrello, Marcelo De Oto, Darío Gómez, Cristina Rössler, Paula Castesana, and Laura Dawidowski
Earth Syst. Sci. Data, 15, 189–209, https://doi.org/10.5194/essd-15-189-2023, https://doi.org/10.5194/essd-15-189-2023, 2023
Short summary
Short summary
We explored the performance of the random forest algorithm to predict CO, NOx, PM10, SO2, and O3 air quality concentrations and comparatively assessed the monitored and modeled concentrations during the COVID-19 lockdown phases. We provide the first long-term O3 and SO2 observational dataset for an urban–residential area of Buenos Aires in more than a decade and study the responses of O3 to the reduction in the emissions of its precursors because of its relevance regarding emission control.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023, https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
Short summary
Sulfur dioxide (SO2) measurements from three satellite instruments were used to update and extend the previously developed global catalogue of large SO2 emission sources. This version 2 of the global catalogue covers the period of 2005–2021 and includes a total of 759 continuously emitting point sources. The catalogue data show an approximate 50 % decline in global SO2 emissions between 2005 and 2021, although emissions were relatively stable during the last 3 years.
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 14, 5665–5670, https://doi.org/10.5194/essd-14-5665-2022, https://doi.org/10.5194/essd-14-5665-2022, 2022
Short summary
Short summary
Global lightning strokes are recorded continuously by a network of ground-based stations. We consolidated these point observations into a map form and provide these as electronic datasets for research purposes. Here we extend our dataset to include lightning observations from 2021.
Haris Rahadianto, Hirokazu Tatano, Masato Iguchi, Hiroshi L. Tanaka, Tetsuya Takemi, and Sudip Roy
Earth Syst. Sci. Data, 14, 5309–5332, https://doi.org/10.5194/essd-14-5309-2022, https://doi.org/10.5194/essd-14-5309-2022, 2022
Short summary
Short summary
We simulated the Taisho (1914) eruption of Sakurajima volcano under various weather conditions to show how a similar eruption would affect contemporary Japan in a worst-case scenario. We provide the dataset of projected airborne ash concentration and deposit over all of Japan to support risk assessment and planning for disaster management. Our work extends previous analyses of local risks to cover distal locations in Japan where a large population could be exposed to devastating impacts.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data, 14, 4923–4934, https://doi.org/10.5194/essd-14-4923-2022, https://doi.org/10.5194/essd-14-4923-2022, 2022
Short summary
Short summary
We measured polar mesospheric clouds (PMCs), our Earth’s highest clouds at the edge of space, with a Rayleigh lidar from a stratospheric balloon. We describe how we derive the cloud’s brightness and discuss the stability of the gondola pointing and the sensitivity of our measurements. We present our high-resolution PMC dataset that is used to study dynamical processes in the upper mesosphere, e.g. regarding gravity waves, mesospheric bores, vortex rings, and Kelvin–Helmholtz instabilities.
Yi Cheng, Shaofei Kong, Liquan Yao, Huang Zheng, Jian Wu, Qin Yan, Shurui Zheng, Yao Hu, Zhenzhen Niu, Yingying Yan, Zhenxing Shen, Guofeng Shen, Dantong Liu, Shuxiao Wang, and Shihua Qi
Earth Syst. Sci. Data, 14, 4757–4775, https://doi.org/10.5194/essd-14-4757-2022, https://doi.org/10.5194/essd-14-4757-2022, 2022
Short summary
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
Kristina Collins, John Gibbons, Nathaniel Frissell, Aidan Montare, David Kazdan, Darren Kalmbach, David Swartz, Robert Benedict, Veronica Romanek, Rachel Boedicker, William Liles, William Engelke, David G. McGaw, James Farmer, Gary Mikitin, Joseph Hobart, and George Kavanagh
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-303, https://doi.org/10.5194/essd-2022-303, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper summarizes radio data collected by citizen scientists, which can be used to analyze the charged part of Earth’s upper atmosphere. The data is collected from several independent stations. We show ways to look at the data from one station or multiple stations over different periods of time, and how it can be combined with data from other sources as well. The code provided to make these visualizations will still work if some data is missing, or when more data is added in the future.
Ka Lok Chan, Pieter Valks, Klaus-Peter Heue, Ronny Lutz, Pascal Hedelt, Diego Loyola, Gaia Pinardi, Michel Van Roozendael, François Hendrick, Thomas Wagner, Vinod Kumar, Alkis Bais, Ankie Piters, Hitoshi Irie, Yugo Kanaya, Hisahiro Takashima, Yongjoo Choi, Kihong Park, Jihyo Chong, Alexander Cede, Udo Frieß, Andreas Richter, Jianzhong Ma, Nuria Benavent, Robert Holla, Oleg Postylyakov, Claudia Rivera Cárdenas, and Mark Wenig
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-315, https://doi.org/10.5194/essd-2022-315, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper is to present the theoretical basis as well as the verification and validation of the GOME-2 daily and monthly level 3 products.
Qiang Cui, Yilin Lei, and Bin Chen
Earth Syst. Sci. Data, 14, 4419–4433, https://doi.org/10.5194/essd-14-4419-2022, https://doi.org/10.5194/essd-14-4419-2022, 2022
Short summary
Short summary
This paper calculates the emissions of six kinds of emissions from China’s foreign routes from 2014 to 2019, enriching the existing database. This paper applies the improved BFFM2-FOA-FPM method and ICAO method to calculate the emissions, which can combine CO2 and non-CO2 emissions calculations and calculate the aircraft types' emission intensity.
Mengze Li, Andrea Pozzer, Jos Lelieveld, and Jonathan Williams
Earth Syst. Sci. Data, 14, 4351–4364, https://doi.org/10.5194/essd-14-4351-2022, https://doi.org/10.5194/essd-14-4351-2022, 2022
Short summary
Short summary
We present a northern hemispheric airborne measurement dataset of atmospheric ethane, propane and methane and temporal trends for the time period 2006–2016 in the upper troposphere and lower stratosphere. The growth rates of ethane, methane, and propane in the upper troposphere are -2.24, 0.33, and -0.78 % yr-1, respectively, and in the lower stratosphere they are -3.27, 0.26, and -4.91 % yr-1, respectively, in 2006–2016.
Malika Menoud, Carina van der Veen, Dave Lowry, Julianne M. Fernandez, Semra Bakkaloglu, James L. France, Rebecca E. Fisher, Hossein Maazallahi, Mila Stanisavljević, Jarosław Nęcki, Katarina Vinkovic, Patryk Łakomiec, Janne Rinne, Piotr Korbeń, Martina Schmidt, Sara Defratyka, Camille Yver-Kwok, Truls Andersen, Huilin Chen, and Thomas Röckmann
Earth Syst. Sci. Data, 14, 4365–4386, https://doi.org/10.5194/essd-14-4365-2022, https://doi.org/10.5194/essd-14-4365-2022, 2022
Short summary
Short summary
Emission sources of methane (CH4) can be distinguished with measurements of CH4 stable isotopes. We present new measurements of isotope signatures of various CH4 sources in Europe, mainly anthropogenic, sampled from 2017 to 2020. The present database also contains the most recent update of the global signature dataset from the literature. The dataset improves CH4 source attribution and the understanding of the global CH4 budget.
Patrick Hupe, Lars Ceranna, Alexis Le Pichon, Robin S. Matoza, and Pierrick Mialle
Earth Syst. Sci. Data, 14, 4201–4230, https://doi.org/10.5194/essd-14-4201-2022, https://doi.org/10.5194/essd-14-4201-2022, 2022
Short summary
Short summary
Sound waves with frequencies below the human hearing threshold can travel long distances through the atmosphere. A global network of sensors records such infrasound to detect clandestine nuclear tests in the atmosphere. These data are generally not public. This study provides four data products based on global infrasound signal detections to make infrasound data available to a broad community. This will advance the use of infrasound observations for scientific studies and civilian applications.
Zexia Duan, Zhiqiu Gao, Qing Xu, Shaohui Zhou, Kai Qin, and Yuanjian Yang
Earth Syst. Sci. Data, 14, 4153–4169, https://doi.org/10.5194/essd-14-4153-2022, https://doi.org/10.5194/essd-14-4153-2022, 2022
Short summary
Short summary
Land–atmosphere interactions over the Yangtze River Delta (YRD) in China are becoming more varied and complex, as the area is experiencing rapid land use changes. In this paper, we describe a dataset of microclimate and eddy covariance variables at four sites in the YRD. This dataset has potential use cases in multiple research fields, such as boundary layer parametrization schemes, evaluation of remote sensing algorithms, and development of climate models in typical East Asian monsoon regions.
Xiaoli Sun, Paul T. Kolbeck, James B. Abshire, Stephan R. Kawa, and Jianping Mao
Earth Syst. Sci. Data, 14, 3821–3833, https://doi.org/10.5194/essd-14-3821-2022, https://doi.org/10.5194/essd-14-3821-2022, 2022
Short summary
Short summary
We describe the measurement and data processing of the atmospheric backscatter profile data by our CO2 Sounder lidar from the 2017 ASCENDS/ABoVE airborne campaign. It is an additional data set from the column average CO2 mixing ratio measurements from laser sounding. It not only helps to interpret the CO2 mixing ratio measurement but also give a standalone data set for atmosphere backscattering study at 1572 nm wavelength.
Lei Li, Yevgeny Derimian, Cheng Chen, Xindan Zhang, Huizheng Che, Gregory L. Schuster, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Christian Matar, Fabrice Ducos, Yana Karol, Benjamin Torres, Ke Gui, Yu Zheng, Yuanxin Liang, Yadong Lei, Jibiao Zhu, Lei Zhang, Junting Zhong, Xiaoye Zhang, and Oleg Dubovik
Earth Syst. Sci. Data, 14, 3439–3469, https://doi.org/10.5194/essd-14-3439-2022, https://doi.org/10.5194/essd-14-3439-2022, 2022
Short summary
Short summary
A climatology of aerosol composition concentration derived from POLDER-3 observations using GRASP/Component is presented. The conceptual specifics of the GRASP/Component approach are in the direct retrieval of aerosol speciation without intermediate retrievals of aerosol optical characteristics. The dataset of satellite-derived components represents scarce but imperative information for validation and potential adjustment of chemical transport models.
Junting Zhong, Xiaoye Zhang, Ke Gui, Jie Liao, Ye Fei, Lipeng Jiang, Lifeng Guo, Liangke Liu, Huizheng Che, Yaqiang Wang, Deying Wang, and Zijiang Zhou
Earth Syst. Sci. Data, 14, 3197–3211, https://doi.org/10.5194/essd-14-3197-2022, https://doi.org/10.5194/essd-14-3197-2022, 2022
Short summary
Short summary
Historical long-term PM2.5 records with high temporal resolution are essential but lacking for research and environmental management. Here, we reconstruct site-based and gridded PM2.5 datasets at 6-hour intervals from 1960 to 2020 that combine visibility, meteorological data, and emissions based on a machine learning model with extracted spatial features. These two PM2.5 datasets will lay the foundation of research studies associated with air pollution, climate change, and aerosol reanalysis.
Fei Jiang, Weimin Ju, Wei He, Mousong Wu, Hengmao Wang, Jun Wang, Mengwei Jia, Shuzhuang Feng, Lingyu Zhang, and Jing M. Chen
Earth Syst. Sci. Data, 14, 3013–3037, https://doi.org/10.5194/essd-14-3013-2022, https://doi.org/10.5194/essd-14-3013-2022, 2022
Short summary
Short summary
A 10-year (2010–2019) global monthly terrestrial NEE dataset (GCAS2021) was inferred from the GOSAT ACOS v9 XCO2 product. It shows strong carbon sinks over eastern N. America, the Amazon, the Congo Basin, Europe, boreal forests, southern China, and Southeast Asia. It has good quality and can reflect the impacts of extreme climates and large-scale climate anomalies on carbon fluxes well. We believe that this dataset can contribute to regional carbon budget assessment and carbon dynamics research.
Jianping Guo, Jian Zhang, Tianmeng Chen, Kaixu Bai, Jia Shao, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-150, https://doi.org/10.5194/essd-2022-150, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
A global continental merged high-resolution (PBLH) dataset with a good accuracy compared to radiosonde is generated via machine learning algorithms, covering a time period from 2011 to 2021 with a 3-hour and 0.25º resolution in space and time. The machine learning model takes parameters derived from the ERA5 reanalysis and GLDAS product as input while PBLH biases between radiosonde and ERA5 as the learning targets. The merged PBLH is the sum of the predicted PBLH bias and the PBLH from ERA5.
Cited articles
Ali, M. A. and Assiri, M.: Analysis of AOD from MODIS-Merged DT–DB Products
Over the Arabian Peninsula, Earth Syst. Environ., 3, 625–636,
https://doi.org/10.1007/s41748-019-00108-x, 2019.
Ali, G., Bao, Y., Boiyo, R., Tang, W., Lu, Q., and Min, J.: Evaluating MODIS
and MISR aerosol optical depth retrievals over environmentally distinct
sites in Pakistan, J. Atmos. Solar-Terr. Phy.,
183, 19–35, https://doi.org/10.1016/j.jastp.2018.12.008, 2019.
Almazroui, M.: A comparison study between AOD data from MODIS deep blue
collections 51 and 06 and from AERONET over Saudi Arabia, Atmos.
Res., 225, 88–95, https://doi.org/10.1016/j.atmosres.2019.03.040, 2019.
Ångström, A.: The parameters of atmospheric turbidity, Tellus, 16,
64–75, https://doi.org/10.1016/0038-092X(65)90225-2, 1964.
Bilal, M., Nichol, J. E., and Wang, L.: New customized methods for
improvement of the MODIS C6 Dark Target and Deep Blue merged aerosol
product, Remote Sens. Environ., 197, 115–124,
https://doi.org/10.1016/j.rse.2017.05.028, 2017.
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140,
https://doi.org/10.1007/BF00058655, 1996.
Chen, B., Song, Z., Pan, F., and Huang, Y.: Obtaining vertical distribution
of PM2.5 from CALIOP data and machine learning algorithms, Sci.
Total Environ., 805, 150338,
https://doi.org/10.1016/j.scitotenv.2021.150338, 2022.
Chen, X., Ding, J., Wang, J., Ge, X., Raxidin, M., Liang, J., Chen, X.,
Zhang, Z., Cao, X., and Ding, Y.: Retrieval of Fine-Resolution Aerosol
Optical Depth (AOD) in Semiarid Urban Areas Using Landsat Data: A Case Study
in Urumqi, NW China, Remote Sens., 12, 467,
https://doi.org/10.3390/rs12030467, 2020.
Chen, X., Ding, J., Liu, J., Wang, J., Ge, X., Wang, R., and Zuo, H.:
Validation and comparison of high-resolution MAIAC aerosol products over
Central Asia, Atmos. Environ., 251, 118273,
https://doi.org/10.1016/j.atmosenv.2021.118273, 2021a.
Chen, X., Zuo, H., Zhang, Z., Cao, X., Duan, J., Wang, J., Zhu, C., Zhang,
Z.: High-resolution and full coverage AOD downscaling based on the bagging
model over the arid and semi-arid areas, NW China, Zenodo [data set],
https://doi.org/10.5281/zenodo.5727119, 2021b.
Ding, H. and Xingming, H.: Spatiotemporal change and drivers analysis of
desertification in the arid region of northwest China based on geographic
detector, Environ. Challenges, 4, 100082,
https://doi.org/10.1016/j.envc.2021.100082, 2021.
Duveiller, G., Filipponi, F., Walther, S., Köhler, P., Frankenberg, C., Guanter, L., and Cescatti, A.: A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity, Earth Syst. Sci. Data, 12, 1101–1116, https://doi.org/10.5194/essd-12-1101-2020, 2020.
Ebrahimi, N., Soofi, E. S., and Soyer, R.: Information Measures in
Perspective, Int. Stat. Rev., 78, 383–412,
https://doi.org/10.1111/j.1751-5823.2010.00105.x, 2010.
Fan, W., Qin, K., Cui, Y., Li, D., and Bilal, M.: Estimation of Hourly
Ground-Level PM2.5 Concentration Based on Himawari-8 Apparent
Reflectance, IEEE T. Geosci. Remote, 59, 76–85,
https://doi.org/10.1109/TGRS.2020.2990791, 2020.
Feng, F. and Wang, K.: Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China, Earth Syst. Sci. Data, 13, 907–922, https://doi.org/10.5194/essd-13-907-2021, 2021.
Ge, Y., Abuduwaili, J., Ma, L., Wu, N., and Liu, D.: Potential transport
pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid
northwest China, Atmos. Res., 178–179, 196–206,
https://doi.org/10.1016/j.atmosres.2016.04.002, 2016.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Goldberg, D. L., Gupta, P., Wang, K., Jena, C., Zhang, Y., Lu, Z., and
Streets, D. G.: Using gap-filled MAIAC AOD and WRF-Chem to estimate daily
PM2.5 concentrations at 1 km resolution in the Eastern United States,
Atmos. Environ., 199, 443–452,
https://doi.org/10.1016/j.atmosenv.2018.11.049, 2019.
González, S., García, S., Del Ser, J., Rokach, L., and Herrera, F.:
A practical tutorial on bagging and boosting based ensembles for machine
learning: Algorithms, software tools, performance study, practical
perspectives and opportunities, Information Fusion, 64, 205–237,
https://doi.org/10.1016/j.inffus.2020.07.007, 2020.
He, Q., Gu, Y., and Zhang, M.: Spatiotemporal trends of PM2.5
concentrations in central China from 2003 to 2018 based on MAIAC-derived
high-resolution data, Environ. Int., 137, 105536,
https://doi.org/10.1016/j.envint.2020.105536, 2020.
Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda,
M., Blagotic, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, Plos One, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y., and Nakajima, T.: AERONET – A
federated instrument network and data archive for aerosol characterization,
Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Huang, J., Yu, H., Dai, A., Wei, Y., and Kang, L.: Drylands face potential
threat under 2 C global warming target, Nat. Clim. Change, 7, 417–422,
https://doi.org/10.1038/nclimate3275, 2017.
Jasiewicz, J. and Stepinski, T. F.: Geomorphons – a pattern recognition
approach to classification and mapping of landforms, Geomorphology, 182,
147–156, https://doi.org/10.1016/j.geomorph.2012.11.005, 2013.
Kaufman, Y. J., Tanré, D., and Boucher, O.: A satellite view of aerosols
in the climate system, Nature, 419, 215,
https://doi.org/10.1038/nature01091, 2002.
Khaledian, Y. and Miller, B. A.: Selecting appropriate machine learning
methods for digital soil mapping, Appl. Math. Model., 81,
401–418, https://doi.org/10.1016/j.apm.2019.12.016, 2020.
Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A.,
and Ramanathan, V.: Effects of fossil fuel and total anthropogenic emission
removal on public health and climate, P. Natl. Acad.
Sci., 116, 7192–7197, https://doi.org/10.1073/pnas.1819989116, 2019.
Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399–10420, https://doi.org/10.5194/acp-10-10399-2010, 2010.
Li, K., Bai, K., Ma, M., Guo, J., Li, Z., Wang, G., and Chang, N.-B.:
Spatially gap free analysis of aerosol type grids in China: First retrieval
via satellite remote sensing and big data analytics, ISPRS J.
Photogramm. Remote Sens., 193, 45–59,
https://doi.org/10.1016/j.isprsjprs.2022.09.001, 2022.
Li, L., Lurmann, F., Habre, R., Urman, R., Rappaport, E., Ritz, B., Chen, J.
C., Gilliland, F., and Wu, J.: Constrained Mixed-Effect Models with Ensemble
Learning for Prediction of Nitrogen Oxides Concentrations at High
Spatiotemporal Resolution, Environ. Sci. Technol., 51,
9920–9929, https://doi.org/10.1021/acs.est.7b01864, 2017.
Li, L., Zhang, J., Meng, X., Fang, Y., Ge, Y., Wang, J., Wang, C., Wu, J.,
and Kan, H.: Estimation of PM2.5 concentrations at a high
spatiotemporal resolution using constrained mixed-effect bagging models with
MAIAC aerosol optical depth, Remote Sens. Environ., 217, 573–586,
https://doi.org/10.1016/j.rse.2018.09.001, 2018.
Li, L., Franklin, M., Girguis, M., Lurmann, F., Wu, J., Pavlovic, N.,
Breton, C., Gilliland, F., and Habre, R.: Spatiotemporal imputation of MAIAC
AOD using deep learning with downscaling, Remote Sens. Environ.,
237, 111584, https://doi.org/10.1016/j.rse.2019.111584, 2020.
Liang, T., Sun, L., and Li, H.: MODIS aerosol optical depth retrieval based
on random forest approach, Remote Sens. Lett., 12, 179–189,
https://doi.org/10.1080/2150704X.2020.1842540, 2021.
Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy,
R., and Reid, J. S.: Multiangle implementation of atmospheric correction
(MAIAC): 2. Aerosol algorithm, J. Geophys. Res.-Atmos.,
116, 0148–0227, https://doi.org/10.1029/2010JD014986, 2011.
Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC algorithm, Atmos. Meas. Tech., 11, 5741–5765, https://doi.org/10.5194/amt-11-5741-2018, 2018.
Ma, R., Ban, J., Wang, Q., Zhang, Y., Yang, Y., Li, S., Shi, W., Zhou, Z., Zang, J., and Li, T.: Full-coverage 1 km daily ambient PM2.5 and O3 concentrations of China in 2005–2017 based on a multi-variable random forest model, Earth Syst. Sci. Data, 14, 943–954, https://doi.org/10.5194/essd-14-943-2022, 2022.
Ma, Z., Shi, Z., Zhou, Y., Xu, J., Yu, W., and Yang, Y.: A spatial data
mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet
Plateau with the effects of systematic anomalies removed, Remote Sens.
Environ., 200, 378–395, https://doi.org/10.1016/j.rse.2017.08.023, 2017.
Miller, B. A., Koszinski, S., Wehrhan, M., and Sommer, M.: Impact of
multi-scale predictor selection for modeling soil properties, Geoderma,
239–240, 97–106, https://doi.org/10.1016/j.geoderma.2014.09.018, 2015.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Rodriguez, J. D., Perez, A., and Lozano, J. A.: Sensitivity Analysis of
k-Fold Cross Validation in Prediction Error Estimation, IEEE T.
Pattern Anal., 32, 569–575, https://doi.org/10.1109/TPAMI.2009.187, 2010.
Singh, M. K., Venkatachalam, P., and Gautam, R.: Geostatistical Methods for
Filling Gaps in Level-3 Monthly-Mean Aerosol Optical Depth Data from
Multi-Angle Imaging SpectroRadiometer, Aerosol Air Qual. Res., 17,
1963–1974, https://doi.org/10.4209/aaqr.2016.02.0084, 2017.
Sun, J., Gong, J., and Zhou, J.: Estimating hourly PM2.5 concentrations
in Beijing with satellite aerosol optical depth and a random forest
approach, Sci. Total Environ., 762, 144502,
https://doi.org/10.1016/j.scitotenv.2020.144502, 2021.
Sun, W., Song, X., Mu, X., Gao, P., Wang, F., and Zhao, G.: Spatiotemporal
vegetation cover variations associated with climate change and ecological
restoration in the Loess Plateau, Agric. Forest Meteorol.,
209–210, 87–99, https://doi.org/10.1016/j.agrformet.2015.05.002, 2015.
Szilagyi, J., Yinsheng, Z., Ning, M., and Wenbin, L.: Terrestrial
evapotranspiration dataset across China (1982–2017), National Tibetan
Plateau Data Center [data set],
https://doi.org/10.11888/AtmosPhys.tpe.249493.file, 2019.
Tao, M., Chen, L., Wang, Z., Wang, J., Che, H., Xu, X., Wang, W., Tao, J.,
Zhu, H., and Hou, C.: Evaluation of MODIS Deep Blue Aerosol Algorithm in
Desert Region of East Asia: Ground Validation and Intercomparison, J. Geophys. Res.-Atmos., 122, 10357–10368,
https://doi.org/10.1002/2017JD026976, 2017.
Waits, A., Emelyanova, A., Oksanen, A., Abass, K., and Rautio, A.: Human
infectious diseases and the changing climate in the Arctic, Environ.
Int., 121, 703–713, https://doi.org/10.1016/j.envint.2018.09.042,
2018.
Wang, Z., Deng, R., Ma, P., Zhang, Y., Liang, Y., Chen, H., Zhao, S., and
Chen, L.: 250-m Aerosol Retrieval from FY-3 Satellite in Guangzhou, Remote
Sens., 13, 920, https://doi.org/10.3390/rs13050920, 2021.
Wei, J., Peng, Y., Guo, J., and Sun, L.: Performance of MODIS Collection 6.1
Level 3 aerosol products in spatial-temporal variations over land,
Atmos. Environ., 206, 30–44,
https://doi.org/10.1016/j.atmosenv.2019.03.001, 2019.
Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., and
Cribb, M.: Reconstructing 1-km-resolution high-quality PM2.5 data
records from 2000 to 2018 in China: spatiotemporal variations and policy
implications, Remote Sens. Environ., 252, 112136,
https://doi.org/10.1016/j.rse.2020.112136, 2021.
Wei, X., Bai, K., Chang, N.-B., and Gao, W.: Multi-source hierarchical data
fusion for high-resolution AOD mapping in a forest fire event, International
Journal of Applied Earth Observation and Geoinformation, 102, 102366,
https://doi.org/10.1016/j.jag.2021.102366, 2021.
Xiao, Q., Wang, Y., Chang, H. H., Meng, X., Geng, G., Lyapustin, A., and
Liu, Y.: Full-coverage high-resolution daily PM2.5 estimation using
MAIAC AOD in the Yangtze River Delta of China, Remote Sens.
Environ., 199, 437–446, https://doi.org/10.1016/j.rse.2017.07.023, 2017.
Xue, W., Wei, J., Zhang, J., Sun, L., Che, Y., Yuan, M., and Hu, X.:
Inferring Near-Surface PM2.5 Concentrations from the VIIRS Deep Blue
Aerosol Product in China: A Spatiotemporally Weighted Random Forest Model,
Remote Sens., 13, 505, https://doi.org/10.3390/rs13030505, 2021.
Yan, X., Zang, Z., Li, Z., Luo, N., Zuo, C., Jiang, Y., Li, D., Guo, Y., Zhao, W., Shi, W., and Cribb, M.: A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physical and deep learning approaches, Earth Syst. Sci. Data, 14, 1193–1213, https://doi.org/10.5194/essd-14-1193-2022, 2022.
Yang, J. and Hu, M.: Filling the missing data gaps of daily MODIS AOD using
spatiotemporal interpolation, Sci. Total Environ., 633,
677–683, https://doi.org/10.1016/j.scitotenv.2018.03.202, 2018.
Yang, Q., Yuan, Q., Li, T., and Yue, L.: Mapping PM2.5 concentration at high
resolution using a cascade random forest based downscaling model: Evaluation
and application, J. Clean. Prod., 277, 123887,
https://doi.org/10.1016/j.jclepro.2020.123887, 2020.
Zhang, R., Di, B., Luo, Y., Deng, X., Grieneisen, M. L., Wang, Z., Yao, G.,
and Zhan, Y.: A nonparametric approach to filling gaps in
satellite-retrieved aerosol optical depth for estimating ambient PM2.5
levels, Environ. Pollut., 243, 998–1007,
https://doi.org/10.1016/j.envpol.2018.09.052, 2018.
Zhang, Z., Wu, W., Fan, M., Wei, J., Tan, Y., and Wang, Q.: Evaluation of
MAIAC aerosol retrievals over China, Atmos. Environ., 202, 8–16,
https://doi.org/10.1016/j.atmosenv.2019.01.013, 2019.
Zhang, Z., Ding, J., Zhu, C., Chen, X., Wang, J., Han, L., Ma, X., and Xu,
D.: Bivariate empirical mode decomposition of the spatial variation in the
soil organic matter content: A case study from NW China, Catena, 206,
105572, https://doi.org/10.1016/j.catena.2021.105572, 2021.
Zhao, C., Liu, Z., Wang, Q., Ban, J., Chen, N. X., and Li, T.:
High-resolution daily AOD estimated to full coverage using the random forest
model approach in the Beijing-Tianjin-Hebei region, Atmos. Environ.,
203, 70–78, https://doi.org/10.1016/j.atmosenv.2019.01.045, 2019.
Zhao, H., Gui, K., Ma, Y., Wang, Y., Wang, Y., Wang, H., Zheng, Y., Li, L.,
Zhang, L., Che, H., and Zhang, X.: Climatological variations in aerosol
optical depth and aerosol type identification in Liaoning of Northeast China
based on MODIS data from 2002 to 2019, Sci. Total Environ.,
781, 146810, https://doi.org/10.1016/j.scitotenv.2021.146810, 2021.
Zounemat-Kermani, M., Batelaan, O., Fadaee, M., and Hinkelmann, R.: Ensemble
machine learning paradigms in hydrology: A review, J. Hydrol.,
598, 126266, https://doi.org/10.1016/j.jhydrol.2021.126266, 2021.
Short summary
Arid and semi-arid areas are data-scarce aerosol areas. We provide path-breaking, high-resolution, full coverage, and long time series AOD datasets (FEC AOD) to support the atmosphere and related studies in northwestern China. The FEC AOD effectively compensates for the deficiency and constraints of in situ observations and satellite AOD products. Meanwhile, FEC AOD products demonstrate a reliable accuracy and ability to capture long-term change information.
Arid and semi-arid areas are data-scarce aerosol areas. We provide path-breaking,...