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Abstract. Aerosols are complex compounds that greatly affect the global radiation balance and climate system
and even human health; in addition, aerosols are currently a large source of uncertainty in the numerical simu-
lation process. The arid and semi-arid areas have fragile ecosystems with abundant dust but lack related high-
accuracy aerosol data. To solve these problems, we use the bagging trees ensemble model, based on 1 km aerosol
optical depth (AOD) data and multiple environmental covariates, to produce a monthly advanced-performance,
full-coverage, and high-resolution (250 m) AOD product (named FEC AOD, fusing environmental covariates
AOD) covering the arid and semi-arid areas. Then, based on the FEC AOD products, we analyzed the spatiotem-
poral AOD pattern and further discussed the interpretation of environmental covariates to AOD. The results
show that the bagging trees ensemble model has a good performance, with its verification R2 values always re-
maining at 0.90 and the R2 being 0.79 for FEC AOD compared with AERONET AOD product. The high-AOD
areas are located in the Taklimakan Desert and on the Loess Plateau, and the low-AOD areas are concentrated
in southern Qinghai province. The higher the AOD, the stronger the interannual variability. Interestingly, the
AOD reflected a dramatic decrease on the Loess Plateau and an evident increase in the south-eastern Takli-
makan Desert, while the southern Qinghai province AODs showed almost no significant change between 2000
and 2019. The annual variation characteristics show that the AOD was largest in spring (0.267± 0.200) and
smallest in autumn (0.147±0.089); the annual AOD variation pattern showed different features, with two peaks
in March and August over Gansu province but only one peak in April in other provinces/autonomous regions.
Farmlands and construction lands have high AOD levels compared to other land cover types. Meteorological
factors demonstrate the maximum interpretation ability of the AODs on all set temporal scales, followed by the
terrain factors, while surface properties have the smallest explanatory abilities; the corresponding average con-
tributions are 77.1 %, 59.1 %, and 50.4 %, respectively. The capability of the environmental covariates to explain
the AOD varies seasonally in the following sequence: winter (86.6 %) > autumn (80.8 %) > spring (79.9 %)
> summer (72.5 %). In this research, we provide a pathbreaking high spatial resolution (250 m) and long time
series (2000–2019) FEC AOD dataset covering arid and semi-arid regions to support atmospheric and related
studies in northwest China; the full dataset is available at https://doi.org/10.5281/zenodo.5727119 (Chen et al.,
2021b).
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1 Introduction

Aerosols are a type of complex substance dispersed in the at-
mosphere that can be from natural or anthropogenic sources
(Kaufman et al., 2002). Aerosols can affect the global radia-
tion balance and climate system directly, indirectly, or semi-
indirectly by absorbing or scattering solar radiation (Myhre
et al., 2013). Concurrently, aerosols seriously endanger hu-
man health by mixing, reacting, and dispersing dangerous
compounds (Chen et al., 2020; Lelieveld et al., 2019). As
one of the most significant optical characteristics of aerosols,
the aerosol optical depth (AOD) is the integral of the aerosol
extinction coefficient in the vertical direction and indicates
the attenuation impact of aerosols on solar energy (Chen et
al., 2021a). The AOD is frequently adopted to depict air pol-
lution and indirectly calculate various atmospheric parame-
ters, such as particulate matter 2.5/10; in addition, the AOD
is extensively applied in atmospheric environment-related re-
search (Goldberg et al., 2019; He et al., 2020).

Generally, the primary AOD acquisition method is in situ
observations, which have high precision. However, in situ
observations are restricted by the distribution of observation
stations, so the resulting data lack spatial continuity, making
it difficult to use these data to meet the objectives of grow-
ing regional atmospheric environmental studies (Zhang et al.,
2019). Remote sensing (RS) is an effective tool for collecting
AOD information over a wide range of spatial scales, signif-
icantly offsetting the deficiencies of in situ observations. RS
can tackle difficulties connected to insufficient data and un-
even geographical distributions to a certain extent (Chen et
al., 2020). Nonetheless, RS is not always a silver bullet for
acquiring AOD, as RS methods have some problems, such as
low spatial resolutions and missing data in some situations
(Li et al., 2020). The commonly utilized AOD satellite prod-
ucts derived from various sensors have different emphases
in their uses (Table S1). However, the common point is that
the spatial resolution of these data is coarse, and the products
even contain large numbers of no-data values (Chen et al.,
2022; Sun et al., 2021; Chen et al., 2021a; Wei et al., 2021).
All these issues restrict the application of satellite AOD prod-
ucts on regional scales and especially on the local scale. Fur-
thermore, the AOD spatial resolution scale often inevitably
affects subsequent atmospheric pollutant predictions (Yang
and Hu, 2018). These issues not only affect AOD analyses
but also mislead numerous pertinent uses of AOD data.

Although methods for resolving AOD RS data deficiencies
have been studied, previous research has not addressed this
problem completely (Li et al., 2020; Zhao et al., 2019). Con-
siderable related work has concentrated on multisource AOD
dataset fusion or AOD gap-filling methods using different
models. The initial and most extensively applied method is
interpolation, but the AODs obtained in this way show high
spatiotemporal variability; thus, this method is not suitable
for application to anticipate missing AOD data (Singh et al.,
2017). Another widely used method involves merging mul-

tiple AOD products; this method can improve the data qual-
ity but often fails to completely eliminate missing pixel val-
ues, even bringing about offsetting consequences (Bilal et al.,
2017; Ali and Assiri, 2019; Wei et al., 2021). Some statisti-
cal models, such as linear regression and additive models,
have also been employed to fill missing pixel values and im-
prove the spatial resolutions of AOD products. However, the
performances of these models are often dubious due to their
simple structures (Xiao et al., 2017). Most current methods
for obtaining high-resolution AOD forecasts are focused on
individual model techniques and rely on a set of assumptions
that are frequently not met, leading to inaccurate predictions
(Li et al., 2017; Zhang et al., 2018). As computing technol-
ogy advances, involving the training of multiple models by
resampling the training data with the corresponding environ-
mental covariates from their original distribution, ensemble
machine learning methods provide new considerations and
methods that are less constrained by the hypotheses of sin-
gle models, with less overfitting and fewer outliers (Li et al.,
2018). The strong data-mining ability of ensemble machine
learning methods is also good for fitting multisource data,
and these methods can achieve higher-precision results at the
same time (Zhao et al., 2019). As a result, the present re-
search attempts to adopt ensemble machine learning meth-
ods to explore the production of an advanced-performance,
high-resolution, full-coverage AOD dataset covering arid and
semi-arid areas.

Currently, many previous studies have focused on AOD
research in various regions and on various scales, but these
studies were concentrated on the eastern coastal areas and
lacked related exploration in arid and semi-arid areas. Arid
and semi-arid areas, as important components of the Earth’s
geographic units, have extremely fragile biosystems and are
extremely sensitive to climate change and human activities
(Huang et al., 2017). Due to the complex surface situation in
arid and semi-arid areas, especially those with large desert ar-
eas, many AOD retrieval algorithms are not suitable for use
in such regions. Although a minority of algorithms can ac-
quire AODs in arid and semi-arid areas, such as the deep
blue (DB) algorithm and multiangle implementation of at-
mospheric correction (MAIAC) algorithm, these algorithms
are still limited by their coarse resolution, high uncertainty,
or extensive missing-data phenomenon, so the resulting AOD
products have difficulty meeting the needs of arid and semi-
arid atmospheric environmental research (Wei et al., 2021).
However, arid and semi-arid areas are crucial dust sources,
with strong variability in the aspects of aerosol loading and
optical characteristics. As typical dust sources and AOD
data-scarce areas, the AOD variety in arid and semi-arid ar-
eas significantly influences global climate change and model
simulations. Therefore, manufacturing an AOD dataset cov-
ering arid and semi-arid areas with increased quality is nec-
essary for performing local and even global atmospheric en-
vironment research.
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To better solve the issue associated with the lack of
AOD data in arid and semi-arid areas, this research aims
to acquire an advanced-performance, high-resolution, full-
coverage AOD dataset that can serve as the foundation for
future studies. To achieve this goal, the main work of this
study includes the following steps: (1) based on the MA-
IAC AOD product combined with multiple environmental
covariates and utilizing a machine learning method, the FEC
AODs (fusing environmental covariates AODs) are obtained
for the 2000–2019 period; (2) Aerosol Robotic Network
(AERONET) ground observation data and the MCD19A2
and MxD04L2 AOD satellite products are collected to ver-
ify the applicability of the FEC AOD product; (3) the FEC
AOD spatiotemporal patterns are analyzed; and (4) the dom-
inant environmental covariates of the FEC AOD dataset are
explored.

2 Materials and methods

2.1 Study area

Figure 1 shows the arid and semi-arid areas in northwest
China (73◦25′–110◦55′ E, 31◦35′–49◦15′ N), a typical arid
and semi-arid region on the globe, in terms of their spatial
locations, surface covers, and environmental problems (Ge
et al., 2016). As dust sources and fragile-ecosystem areas,
the regional climate differences in this region are significant,
with perennial drought and low-precipitation (< 400 mm)
conditions (Ding and Xingming, 2021). Furthermore, the
area is extremely sensitive to climate change and human ac-
tivities and has a large AOD variability, which makes global
climate simulations and radiation balance quantifications dif-
ficult. With the development of society and technology, the
forces by which people change nature are increasing. In-
creasingly unreasonable human activities (such as deforesta-
tion and soil salinization) and poor land management policies
(such as reclamation and water resource utilization) bring
about regional vegetation degradation, desertification, rapid
glacier melting, and frequent dust weather, which eventually
lead to rapid deterioration of the ecological environments in
all arid and semi-arid areas.

2.2 MODIS MAIAC data

The MAIAC AOD product, which is named MCD19A2, is
based on the MODIS instrument onboard Terra and Aqua
in combination with the MAIAC algorithm. The MAIAC
algorithm is an advanced AOD retrieval method that uses
time-series analyses and image-based spatial processing to
acquire AOD data from densely vegetated areas and bright
desert regions (Lyapustin et al., 2018, 2011). The MAIAC
AOD product’s temporal and spatial resolutions are 1 d and
1 km× 1 km, respectively; this is the highest spatial resolu-
tion among existing AOD products. The MAIAC AOD prod-
uct also offers a long time-series AOD collection, which is

intended for air quality research on regional and even global
scales. Compared with former AOD products, the perfor-
mance of the MAIAC AOD data product on bright surfaces
and heavy AOD loading areas is generally considered to re-
flect significant improvements (Li et al., 2018; Chen et al.,
2021a). In this paper, we acquired the MAIAC AOD product
for the entire study region from the NASA website (https:
//search.earthdata.nasa.gov/, last access: 28 June 2021) over
20 years, from March 2000 to February 2020. Using the
Python tool, we pre-processed these data and computed the
daily average AOD by combining the 550 nm AOD data from
Terra and Aqua.

2.3 MODIS MxD04L2 data

MYD04L2 and MOD04L2 are the level-2 atmospheric
aerosol products from Aqua and Terra, respectively, and
the spatial and temporal resolutions of these products are
10 km× 10 km and 1 d, respectively (Zhao et al., 2021). The
MxD04L2 AOD product is constructed using two main al-
gorithms, the Dark Target (DT) and Deep Blue (DB) algo-
rithms, to retrieve the global AOD distribution. Based on
MODIS Collection 6.1 data, we chose the 550 nm combined
DT and DB AOD to validate the FEC AOD. Notably, the
Aqua and Terra launch times are different, so we acquired
MOD04L2 data from March 2000 to February 2020, but
for MYD04L2, we acquired data only from July 2002 to
February 2020. All processes were realized after download-
ing data from the NOAA website (https://ladsweb.modaps.
eosdis.nasa.gov/, last access: 19 June 2022); the calculation
and analysis steps were performed on local computers, and
the main works, including the geometric correction, pro-
jection conversion, image mosaicking, clipping, daily and
monthly AOD means computing, and numerical extraction
steps, were performed in the MODIS Reprojection Tool
(MRT), ENVI, and ArcGis software.

2.4 AERONET data

AERONET (Aerosol Robotic Network) is a network that
monitors aerosols on the ground, providing 0.340–1.060 m
aerosol optical characteristics at a high temporal resolution
(15 min) (Holben et al., 1998). AERONET currently includes
more than 500 sites and covers the major regions of the world
with a long time series. The AERONET AOD data have a
low uncertainty (0.01–0.02) and are considered the highest
accuracy AOD data available; these data are widely used as a
reference in RS AOD product validations (Almazroui, 2019).
In this study, data from a total of 12 AERONET sites in
northwest China were selected, most of which were from the
third version of the level 2.0 AERONET AOD, except for the
Mt_WLG station data (Level 1.5) (Yan et al., 2022; Giles et
al., 2019). Related information about these AERONET sites
is available in Table S2 and Fig. 1. Satellite products provide
mainly 550 nm wavelength AODs, so the AERONET AOD

https://doi.org/10.5194/essd-14-5233-2022 Earth Syst. Sci. Data, 14, 5233–5252, 2022

https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/


5236 X. Chen et al.: Full-coverage 250 m monthly aerosol optical depth dataset (2000–2019)

Figure 1. Study area. The figure shows the typical arid and semi-arid areas and AERONET site distributions; five provinces/autonomous
regions in northwest China. The five ecological zones were derived from © Google Earth (https://earth.google.com/, last access: 28 Septem-
ber 2022).

at 550 nm was computed via the Ångström exponent algo-
rithm to better match the AODs observed by the satellites
(Ångström, 1964). In the temporal dimension, we computed
the average AERONET AODs over the Aqua and Terra over-
pass periods. In the spatial dimension, we matched the satel-
lite and in situ observed AODs over a 3×3 pixel spatial win-
dow (Tao et al., 2017). The AERONET data and related in-
formation can be found at https://aeronet.gsfc.nasa.gov (last
access: 31 May 2021).

2.5 Environmental covariates

The environmental covariates selected in this study com-
prised 12 covariates in three categories (meteorological pa-
rameters, surface properties, and terrain factors). The covari-
ates were selected based on two criteria: first, each variable
had to be considered important to the AOD and to have a vital
influence on the AOD formation, accumulation, and migra-
tion processes, referring to existing research and expert expe-
rience (Zhao et al., 2019; Chen et al., 2020; Yan et al., 2022);
and second, the data must be freely released to the public,
meaning the datasets must be freely available on the national
or global scale (Li et al., 2020). Detailed information on these
covariates is listed in Table 1. In this study, we computed en-
vironmental variable datasets at two spatial resolutions (1 km
and 250 m). The 1 km spatial resolution data were obtained

with the aim of modeling with the MAIAC 1 km AOD, and
the 250 m spatial resolution data were the target resolution of
the FEC AODs. To normalize the covariables on this basis,
we interpolated the geo-datasets to 1 km and 250 m spatial
resolutions in ArcGIS (the bilinear method was used for the
continuous covariates and the nearest neighbor method was
used for classified covariates) and reprojected the results to
the 1984 World Geodetic System (WGS) coordinates. The
environmental covariates were divided into static and dy-
namic variables. Static variables were defined as those that
did not change essentially with time, i.e., slowly changing
factors. For dynamic covariates, the averaging method was
adopted to obtain monthly average data. The static variables,
similar to the baseline conditions, played an initial constraint
role in the downscaling of the monthly AODs, while the dy-
namic variables played a more dynamic evolution role (Yan
et al., 2022). Notably, the relevant operations are not limited
to ArcGIS, and relevant open-source software such as QGIS
could also be implemented.

2.5.1 Meteorological parameters

The meteorological parameters included temperature, pre-
cipitation, evapotranspiration, and wind speed. The tem-
perature and precipitation data were obtained from Na-
tional Tibetan Plateau/Third Pole Environment Data Center

Earth Syst. Sci. Data, 14, 5233–5252, 2022 https://doi.org/10.5194/essd-14-5233-2022

https://earth.google.com/
https://aeronet.gsfc.nasa.gov


X. Chen et al.: Full-coverage 250 m monthly aerosol optical depth dataset (2000–2019) 5237

(TPDC) at temporal and spatial resolutions of 1 month and
1 km× 1 km, respectively. The evapotranspiration (ET) data
were obtained from the TPDC’s terrestrial evapotranspiration
dataset across China at temporal and spatial resolutions of
1 month and 0.1◦× 0.1◦, respectively (Szilagyi et al., 2019).
For the ET data, we used a downscaling algorithm proposed
by Ma et al. (2017) to transform the values into a 1 km res-
olution. The wind speed data were obtained from National
Earth System Science Data Center at temporal and spatial
resolutions of 1 month and 1 km× 1 km, respectively (Sun et
al., 2015). For the four meteorological parameters, we calcu-
lated the monthly average value each year for the subsequent
research.

2.5.2 Surface properties

To describe the surface properties, we employed the land
use and land cover (LUCC), normalized difference vegeta-
tion index (NDVI), and temperature vegetation dryness in-
dex (TVDI). From the LUCC dataset, we selected the median
year of the whole study period, 2010, from Resource and En-
vironment Science and Data Center. The LUCC dataset was
obtained by manual visual interpretations of the Landsat se-
ries data as the data source. This dataset included six cat-
egories (farmland, forest, grassland, water body, construc-
tion land, and unused land) and 25 subcategories at a spa-
tial resolution of 30 m. LUCC data are often likely to indi-
cate the intensity of human activity and are closely related to
aerosol emissions, transport, and dustfall (Fan et al., 2020;
Li et al., 2022). The NDVI data were obtained from the
NASA Global Inventory, Monitoring, and Modelling Studies
(GIMMS) NDVI3g v1 product at temporal and spatial reso-
lutions of 15 d and 0.083◦× 0.083◦, respectively. The NDVI
data were downscaled to 1 km, similar to the ET data. The
TVDI data were obtained through a soil moisture inversion
method based on the NDVI and surface temperature. This in-
dex can optimally monitor drought conditions and is used to
study the spatial variation characteristics of the drought de-
gree. The temporal and spatial resolutions of the TVDI data
are 1 month and 1 km× 1 km, respectively.

2.5.3 Terrain factors

The elevation data were collected from the Shuttle Radar
Topography Mission (SRTM) 90 m digital elevation model
(DEM). DEM is highly correlated with surface pressure and
always used to represent the dispersion condition of aerosols
(Xue et al., 2021; Fan et al., 2020). Based on elevation, ge-
omorphology is realized under Geographic Resource Analy-
sis Support System extension named r.geomorphon modular
(Jasiewicz and Stepinski, 2013). Using the System for Auto-
mated Geoscientific Analyses software (https://sourceforge.
net/projects/saga-gis/, last access: 23 April 2021), the plan
curvature, slope length and slope steepness, and topographic
wetness index were computed.

2.6 Bagging tree ensemble

Ensemble machine learning methods can be divided into
two main categories according to whether dependency rela-
tions exist between learners: boosting and bagging (Fig. S1)
(González et al., 2020). If there is a strong dependency be-
tween individual weak learners, and a series of individual
weak learners needs to be generated serially (this means that
the following weak learner is affected by the former weak
learner), this is boosting. In contrast, if there is no depen-
dency between individual weak learners, a series of individ-
ual learners can be generated in parallel (there is no con-
straint relationship between each learner), this is bagging.
The typical representative and extensively used boosting
and bagging algorithms are gradient boosting decision tree
(GBDT) and random forest (RF), respectively (Zounemat-
Kermani et al., 2021). Compared to boosting, bagging re-
duces the training difficulty and has a strong generalization
ability.

Bagging (namely, bootstrap aggregating), as a simple but
powerful ensemble algorithm to obtain an aggregated predic-
tor, is more accurate than any single model (Breiman, 1996).
Bagging uses multiple base learners or individual learners
(such as decision trees, neural networks, and other basic
learning algorithms) to construct a robust learner under cer-
tain combined strategies (Li et al., 2018). Generally, bagging
algorithms include bootstrap resampling, decision tree grow-
ing, and out-of-bag error estimation steps. The main steps of
bagging are as follows: (1) bootstrap resampling of a random
sample (return sampling) under abundant individual weak
learners; (2) model training based on the origin samples to
train for abundant individual weak learners in accordance
with the self-serving sample set; and (3) outputting the re-
sults based on the decision tree and calculating the average
of all the regression results to obtain the final regression re-
sults. Therefore, bagging reduces the overfitting problem and
prediction errors in decision trees and the variance, thereby
significantly improving the accuracy of the results. Simulta-
neously, the influence of noise on the bagging algorithm is
comparatively lower than those of other available machine
learning algorithms for obtaining AODs (Liang et al., 2021).

In this study, we used 12 environmental covariates (1 km)
as the downscaling method (bagging tree ensemble algo-
rithms) inputs to acquire an AOD-environmental covariate
(AODe) model at a 1 km resolution and utilized the AODe
model and 250 m environmental covariates to acquire the
FEC AOD product. Specifically, the basic idea for down-
scaling AODs with bagging trees ensemble machine learn-
ing (ML) models is to train the relationships between the
MAIAC AODs and the auxiliary environmental variables at
a coarse resolution (1 km) using ML algorithms. We then ap-
plied the trained relationships to generate a high-resolution
FEC AOD product at a fine resolution (250 m) (Duveiller et
al., 2020; Yang et al., 2020; Ma et al., 2017). In the case of
lacking environmental covariates in some periods, we used
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Table 1. Environmental covariates for AOD modeling.

Type Name Abbreviation Resolution Source

Dynamic covariates

Meteorological parameters

Temperature Tem 1 km× 1 km http://data.tpdc.ac.cn/ (last ac-
cess: 26 April 2021)

Precipitation Pre 1 km× 1 km http://data.tpdc.ac.cn/ (last ac-
cess: 26 April 2021)

Wind speed WS 1 km× 1 km http://www.geodata.cn/ (last
access: 25 May 2021)

Evapotranspiration ET 0.1◦× 0.1◦ http://data.tpdc.ac.cn/ (last ac-
cess: 26 April 2021)

Surface properties
Normalized difference vegetation index NDVI 0.083◦× 0.083◦ https://ecocast.arc.nasa.

gov/data/pub/ (last access:
25 May 2021)

Temperature vegetation dryness index TVDI 1 km× 1 km http://www.geodata.cn/ (last
access: 24 April 2021)

Static covariates

Surface properties Land use and land cover LUCC 30 m× 30 m http://www.resdc.cn/ (last ac-
cess: 24 April 2021)

Terrain factors

Elevation Elev 90 m× 90 m http://srtm.csi.cgiar.org/
srtmdata/

Geomorphology Geoms 90 m× 90 m (last access: 23 April 2021)
Plan curvature Curpln 90 m× 90 m
Slope length and slope steepness LS 90 m× 90 m
Topographic wetness index TWI 90 m× 90 m

the multiyear monthly average to replace the missing values.
The reason why the 250 m target resolution was selected was
that existing studies have shown that the 250–500 m spatial-
resolution scales are appropriate for aerosol RS research and
can optimally capture aerosol features (Wang et al., 2021;
Chen et al., 2020). Second, most high-resolution global prod-
uct data have a 250 m resolution, especially soil data, as this
resolution is most convenient for peer comparison and fur-
ther research and application (De Poggio et al., 2021; Hengl
et al., 2017). The model was built monthly from March 2000
to February 2020 to assure the model’s accuracy in the in-
ference process, and the specific parameter set included 10
cross-validation folds, the number of learners (N = 30), and
the minimum leaf size (Lmin = 8). Each base learner was
developed using a bootstrap sample generated individually
from the input data. All steps were implemented in MAT-
LAB R2021a (Fig. 2). All modeling and application pro-
cesses could also be implemented in R or Python.

3 Results and analysis

3.1 Performance evaluation based on in situ
observations

To verify the performance of the FEC AOD product over arid
and semi-arid areas, based on the AERONET AOD data as
a reference, some generalized parameters were chosen to as-
sess the performance of the FEC AOD product, such as the
decision coefficient (R2), root mean square error (RMSE),

and expected error (EE). (Levy et al., 2010; Ali et al., 2019;
Feng and Wang, 2021). When R2 is higher and RMSE is
lower, the performance of the FEC AOD is better. The EE
can evaluate the degree of overestimation or underestimation
of the FEC AOD product via three situations (within EE,
above EE, and below EE). To examine the high-resolution
and full-coverage FEC AOD performance, we computed the
monthly average AOD at each AERONET site in the whole
study region. Specifically, we checked the data time range
and data usability at every site, and for the daily scale we
computed the average AOD only from 09:00–14:00 LT to ob-
tain the daily mean (if the valid data number in a day was
less than 18, the daily mean was considered to be missing).
For the monthly scale, if the number of effective daily data
was less than 20 d, the monthly mean was considered miss-
ing, so 180 effective matching samples were obtained. As
shown in Fig. 3a, the FEC AODs were highly correlated with
the AERONET AODs (R2

= 0.787), with an MAE of 0.049
and RMSE of 0.061. Approximately 83.9 % of the monthly
collections fell within the EE, with an RMB of 1.018 and a
bias of 0.005, meaning that the FEC AOD product almost
overcame some of the overestimation and underestimation
problems. Concurrently, we also conducted comparisons be-
tween the MAIAC AOD (Fig. 3b), MOD04 L2 (Fig. 3c), and
MYD04 L2 (Fig. 3d) products with the AERONET AODs
for the same period. The MAIAC AOD product was superior
to the MxD04L2 AOD product, and the FEC AODs exhib-
ited obvious improvements compared to the MAIAC AODs,
within EE values ranging from 65.0 % to 83.9 %. It is clear
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Figure 2. Flow chart of the experiment and model calculation process.

that the performance of the FEC AOD product obviously out-
performed the other AOD products in terms of the number of
valid data, consistency, and deviation. In addition, compared
to previous studies, the FEC AODs also have an improved
applicability advantage (Chen et al., 2021a; Wei et al., 2019).

3.2 Comparisons with satellite AOD products

The multiyear average spatial distributions of the FEC
AODs, MAIAC AODs, MOD04L2 AODs, and MYD04L2
AODs were calculated (Fig. 4). The AOD spatial patterns ex-
hibited high consistency among these products: high AODs
were located in the Taklimakan Desert and on the Loess
Plateau, and low AODs were distributed in high-elevation
areas (such as mountainous zones and Qinghai province).
To further validate the FEC AOD performance, we calcu-
lated the monthly, seasonal, and yearly average AODs from

2000 to 2019 (Figs. S2–S5). In terms of the monthly scale
(Fig. S2), we found that many high AOD values appeared
in March, April, and May, concentrated in and downwind of
the Taklimakan Desert. Generally, the FEC AODs, MAIAC
AODs, MOD04L2 AODs, and MYD04L2 AODs had simi-
lar monthly spatial distributions, especially the FEC AODs
and MAIAC AODs. The monthly correlations between the
FEC and MAIAC AODs were all above 0.78 in the study
area, most of which were higher than 0.9 (Rmean = 0.928,
N = 240, P < 0.001) (Fig. S3). A similar spatial pattern also
appeared in the multiyear seasonal average AODs (Fig. S4).
Spring had the broadest high-AOD-value distribution, fol-
lowed by summer, while autumn and winter had high AOD
values concentrated on the Loess Plateau. At the same time,
the multiyear annual average AOD also exhibits strong simi-
larity in its spatial patterns among products (Fig. S5). There-
fore, we can robustly conclude that the FEC AOD product
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Figure 3. Comparisons of various products with the AERONET AODs: (a) FEC AODs, (b) MAIAC AODs, (c) MOD04L2 AODs, and
(d) MYD04L2 AODs. The red line denotes the regression line, the black line shows the 1 : 1 line, and the blue area indicates the 95 %
prediction interval.

has a strong consistency with the MAIAC AOD, MOD04L2
AOD, and MYD04L2 AOD products with regards to the
monthly, seasonal, and yearly average AOD spatial patterns.

Considering that the ability to capture long-term trends is
an important element for a dataset, we compared the FEC
AOD, MAIAC AOD, MOD04L2 AOD, and MYD04L2 AOD
products to further validate the FEC AODs. From January
to December, the multiyear monthly averages of these four
AOD products showed similar change trends, increasing and
decreasing alternately, and reaching their lowest values in
November (Fig. S6). Of course, we observed some differ-
ences in the AOD magnitude and fluctuation range; these
differences were due mainly to the difference in AOD re-
trieval algorithms. To further analyze the consistency and

differences among the products, we also compared the four
products on monthly scale by removing the seasonal cycles
(Fig. 5). First, the four AOD data products changed in a
highly similar manner, and the MxD04L2 AOD fluctuation
range was significantly higher than those of the FEC AOD
and MAIAC AOD products. Notably, the FEC AOD and
MAIAC AOD products were substantially consistent, with
an R2 value of 0.953. In addition, we also computed the
monthly and seasonal change trends by removing the sea-
sonal cycles on the pixel scale. Because MxD04L2 contains
a large amount of missing data and the detrend results show
no data, we mainly discuss the spatial change trends of the
FEC AOD and MAIAC AOD products on the monthly and
seasonal scales in the following text. From Figs. S7 and S8,
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Figure 4. The multiyear spatial average AODs from 2000 to 2019: (a) FEC AODs, (b) MAIAC AODs, (c) MOD04L2 AODs, and
(d) MYD04L2 AODs.

Figure 5. The long-term change trends of four AOD products ob-
tained by removing seasonal cycles.

we find that the monthly and seasonal change trends reveal
good consistency between the FEC AOD and MAIAC AOD
products. The long-term trends based on the monthly AOD
data between 2000 and 2019 show a similar spatial pattern
in the effective pixels of the FEC AOD and MAIAC AOD
products (Fig. 6), with a significant decrease on the Loess
Plateau and a significant increase in the south-eastern Takli-
makan Desert. Moreover, the long-term FEC AOD trends are
significant (P < 0.05) in most areas.

As is well established, the effect of scale is a scientific
problem in remote sensing, so we further discussed the abil-
ity of the FEC AOD product to describe relatively fine-
spatial-resolution features. First, we created a 10 km× 10 km

fishnet; then, we chose a single LUCC as a corresponding
ecosystem; and finally, we selected five different ecological
zones (forest, grassland, farmland, construction land, and un-
used land) to further quantify the local performance of the
FEC AOD product (Fig. 1). We found that the FEC AOD
and MAIAC AOD products revealed good consistency in
their long-term trends, while the MxD04L2 AODs showed
a larger deviation (Fig. 7). The FEC AODs and MAIAC
AODs had close relationships in unused lands (R = 0.959)
and farmland, followed by in construction land and forest,
while these products had the lowest relationship in grassland
(R = 0.675). Therefore, the above evidence indicates that the
FEC AOD product is also reliable with regards to the fine-
spatial-resolution long-term trends captured over single sur-
face coverage types.

3.3 Spatiotemporal patterns of the FEC AOD product
from 2000 to 2019

Generally, the spatial patterns of the FEC AOD product were
consistent among different years (Fig. S5); the highest AODs
were found in the southern area of Xinjiang Uyghur Au-
tonomous Region of China (hereafter referred to as Xinjiang)
and the center of Shaanxi province, mainly due to the special
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Figure 6. Spatial patterns of AOD trends obtained by removing seasonal cycles between 2000 and 2019: (a) FEC AODs (10−3) and
(b) MAIAC AODs (10−2). The label “+” indicates a statistically significant trend (p < 0.05).

Figure 7. The long-term change trends of four AOD products over
five ecological zones obtained by removing seasonal cycles.

meteorological conditions, unique topography, and surface
coverage of these regions. The AODs were low in other ar-
eas, especially in southern Qinghai province. The multiyear
mean AOD was 0.193± 0.124 for the whole study area. The
spatial AOD patterns differed greatly at the seasonal level
(Fig. S4). In autumn, the AODs were relatively small, with
an average AOD value of 0.147± 0.089 and most AOD val-
ues < 0.2. In contrast, the AODs were most severe in spring,
with most AOD values > 0.2 (average= 0.267±0.200). The
summer and winter seasons had similar spatial patterns, and
the former had higher AODs than the latter, with AOD val-
ues of 0.198±0.134 and 0.159±0.103, respectively. To fur-
ther investigate the spatiotemporal variations in the AOD,
concepts of information entropy were introduced: temporal
information entropy (TIE) and time-series information en-
tropy (TSIE) (Ebrahimi et al., 2010). TIE and TSIE are time-
series indicators that can depict the changing intensity and
trend information of AODs. Generally, the higher (lower)
the TIE is, the stronger (weaker) the change intensity of the
AOD is in the temporal dimension. Regarding TSIE, if TSIE
> 0, then the AOD is increasing in the considered period,
whereas TSIE < 0 denotes a downward trend. Furthermore,
the larger the absolute TSIE value is, the more significant the
increasing (decreasing) trend is. Figure 8 depicts the TIE and
TISE of the AOD from 2000 to 2019 over the whole study
area. We find that the overall AOD change intensity over the
past 20 years is large, especially in southern Xinjiang (Takli-
makan Desert) and Shannxi province (Loess Plateau). The
areas with low variation intensities are distributed mainly
at high elevations (in mountainous and grassland areas).
The change intensity characteristics are similar to the AOD
changes, meaning that the higher the AOD is, the larger the
multiyear change is. The AODs in Xinjiang were increas-
ing throughout the study period, with the most obvious in-
creases occurring around the Taklimakan Desert and north-
ern Xinjiang, whereas the eastern AODs were decreasing,
with decreases concentrated mainly in Shannxi province and
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south-eastern Gansu province. Considering TIE and TSIE to-
gether, we find that the AODs increased strongly in the south-
eastern Taklimakan Desert but increased slightly in north-
ern Xinjiang and north-western Qinghai province. The AODs
in southern Qinghai province showed almost no change. A
dramatic decrease was observed found in the eastern area,
mainly distributed in Shannxi province, Ningxia Hui Au-
tonomous Region, and south-eastern Gansu province. A pos-
sible reason for this finding is that the Loess Plateau is ex-
periencing greening, and the vegetation cover in this region
continues to increase under artificial intervention. All these
various characteristics are in good agreement with the de-
trended long-term variation results (Fig. 6).

The FEC AOD product, with its high spatial resolution
and full coverage over arid and semi-arid areas, provides
new possible data sources for further fine-scale research on
air pollution in areas with scarce data. Based on the FEC
AOD product, we explored the regional distribution charac-
teristics of AODs under different areas and surface coverage
types. Figure 9 shows that the AODs in Gansu province were
highest in all months, while the AODs in Qinghai province
were lowest. From January to December, almost all AODs
showed a trend of first increasing and then decreasing, peak-
ing in March and April. Except for Gansu province, where
the AODs were bimodal, the other provinces/autonomous
regions exhibit unimodal AODs. Figure 10 describes the
seasonal AOD distribution under seven different land cover
types (forest, grassland, water body, ice and snow, construc-
tion land, unused land, and farmland). The AODs over ice
and snow were the smallest and continuously decreased from
spring to winter. The AODs were at high levels over farm-
land and construction land, mainly due to human activities.
Regardless of the land cover type, the springtime AODs were
always highest. Except for ice and snow and unused land, the
seasonal AOD distributions were similar among land cover
types, first decreasing and then increasing, and autumn had
the lowest AOD values.

3.4 Variation partitioning of FEC AOD

To examine the contributions of environmental covariates to
the FEC AOD dynamics, redundancy analysis (RDA) was
used to explore the association between different seasons in
the FEC AOD product and environmental covariates. The 12
environmental covariates were divided into three groups: me-
teorological parameters, surface properties, and terrain fac-
tors. The variance proportions driving the FEC AOD varia-
tions on different temporal scales were tested from the envi-
ronmental covariate groups. The variation in the FEC AODs
can be interpreted by every group of environmental covari-
ates individually or using the combined variation owing to
a set of two or more covariates, and the residual represents
the unexplained proportion. The variance partitioning results
can be described as Venn diagrams constructing in the R lan-
guage (Waits et al., 2018). From Table 2 and Fig. 11, the

variation partitioning analysis reveals that the meteorological
factors still explain a maximal proportion of FEC AOD vari-
ance on different temporal scales, followed by the terrain fac-
tors, and the surface properties explain the smallest variation;
the average contributions of these categories were 77.1 %,
59.1 %, and 50.4 %, respectively. In different seasons, the en-
vironmental covariates have different abilities to explain the
FEC AODs, and the following order was obtained: winter
(86.6 %) > autumn (80.8 %) > spring (79.9 %) > summer
(72.5 %). Except in winter, the largest variance was explained
by the three groups’ environmental covariates, with values of
40.7 %, 38.9 %, and 45.4 % in spring, summer, and autumn,
respectively. In winter, the largest variance was explained by
meteorological and terrain factors (39.1 %). From spring to
winter, the explanatory ability of the three groups of covari-
ates was always highest in autumn, and meteorological pa-
rameters, surface properties, and terrain factors reached their
lowest values in summer, winter, and spring, respectively.

4 Discussion

4.1 Model uncertainty

This study, based on the MAIAC AOD product and 12 envi-
ronmental covariates data, adopts the bagging tree ensemble
approach to produce a monthly advanced-performance, full-
coverage, and high-resolution FEC AOD product in north-
west China. The bagging tree ensemble approach has a strong
advantage in feature modeling and prediction, but some prob-
lems also exist; for example, most base learners are black
boxes, meaning that their explanation capacities are limited
(Zounemat-Kermani et al., 2021). Concurrently, the model
uncertainty is also an issue to be considered, possibly arising
from the setting of hyperparameters and base learners and
the sample number selection (Khaledian and Miller, 2020).
Therefore, the model robustness is critical for modeling and
predicting. Simultaneously, providing mapping uncertainty
information helps users better understand the quality of the
FEC AOD product in different regions, thus further promot-
ing users’ reasonable use of the AOD product. To check
the reliability and stability of the simulated AOD model and
consider the computing efficiency simultaneously, data rep-
resenting 1 month were randomly selected (August 2010),
and we conducted a 100-iteration, 10-fold cross-validation;
that is, we obtained 100 predictions for each pixel and av-
eraged these 100 predictions to obtain the final prediction
result (Rodriguez et al., 2010; Wei et al., 2021; Zhang et al.,
2021; Ma et al., 2022). Then, we calculated the model uncer-
tainty, specifically by using the standard deviation and upper
and lower limits of the 95 % confidence interval (Sect. S1).
Following the 100 experiments, the validated R2 value still
remained at 0.90, and the RMSE and MAE values ranged
from 0.058–0.057 and 0.0319–0.0317, respectively. Concur-
rently, the case average and uncertainty results are shown in
Fig. 12. The FEC AODs were concentrated mainly in the 0–
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Figure 8. Temporal information entropy (TIE) and time-series information entropy (TSIE) of the AOD distribution.

Table 2. Three groups of environmental covariates for AOD variation partitioning.

Variance proportion Spring Summer Autumn Winter Average

Meteorological parameters 78.8 % 70.4 % 80.5 % 74.8 % 77.1 %
Surface properties 44.5 % 37.9 % 52.5 % 31.4 % 50.4 %
Terrain factor 48.7 % 49.5 % 62.6 % 62.8 % 59.1 %
Residual 20.1 % 27.5 % 19.2 % 13.4 % 21.8 %

Figure 9. The monthly AOD distribution characteristics in different
provinces/autonomous regions. The error bars represent the stan-
dard errors.

0.6 range, accounting for 96.2 % of all AODs, and the maxi-
mum distribution was 0.1–0.2 (36.8 %). The uncertainty was
concentrated mainly within the 0.2–0.6 range, accounting for
80.0 %, and the maximum distribution was 0.4–0.5 (38.1 %).
We also calculated the average uncertainties corresponding
to different FEC AOD levels (Fig. 13). Uncertainties below
0.5 accounted for 77.3 % of the region, and the lowest uncer-
tainty (0.3) corresponded to the largest proportion of the FEC

Figure 10. The seasonal AOD distributions over different land
cover types. The error bars represent the standard errors.

AODs (0.1–0.2). With increasing AODs, the uncertainty also
continued to rise; in other words, the high-AOD areas often
featured high uncertainty.

4.2 AOD as affected by environmental covariates

The bagging tree ensemble method performance is generally
affected by the selection of environmental covariates (Khale-
dian and Miller, 2020). The prediction accuracy is depen-
dent on input variables, with underpinning static variables,
and meteorological factors (dynamic variables) explain most
of the AOD variation (Yan et al., 2022). Despite our selec-
tion of 12 environmental covariates that could explain most
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Figure 11. Seasonal variation partitioning and average AODs explained in the following seasons: (a) spring; (b) summer; (c) autumn; and
(d) winter.

Figure 12. Distributions of the mean values and uncertainties in the AOD prediction model.

of the AOD variations, approximately 13.4 %–27.5 % of the
results could not be well explained, and differences in the in-
terpretation of the environmental covariates existed. There-
fore, there is much room for improvement in the optimiza-
tion of environmental covariates. There is no doubt that the

meteorological parameters are the most significant contrib-
utors, as the temperature, precipitation, evapotranspiration,
and wind speed effectively influence the AOD through direct
or indirect interactions in the air (Chen et al., 2020). At the
same time, the effect of terrain factors cannot be ignored, as
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Figure 13. The average uncertainties corresponding to different
AOD levels. The light-colored area surrounded by the black line
denotes the AOD percentage and the histogram bars reflect the un-
certainty.

these factors affect the propagation, diffusion, and settlement
of the AOD. The surface factors involving the surface cover
and soil wetness affect the dust generation and reduction pro-
cesses. Additionally, some other questions also warrant fur-
ther research, such as surface properties performance to ex-
plain AOD in summer lower spring and examining why the
terrain factors have a higher AOD variance analytical power
in autumn and winter compared to in spring and summer.
We preliminarily speculate that this may be related to mul-
tifactor interactions, but this topic needs further analysis. In
the following research, we consider introducing more related
environmental covariates to try to improve the prediction ac-
curacy. In addition, we plan to further explore the internal
correlations among various covariates and the relative con-
tributions of individual covariates to the AOD. Of course, the
high spatial resolution and accuracy of the environmental co-
variates must also be taken into consideration (by adding or
replacing data as necessary).

4.3 FEC AOD product for local information
characterizations over complex underlying surfaces

Spatial heterogeneity, as the second law of geography, is the
source of the scale effects. As a result, the richness of feature
information varies in accordance with spatial scales in re-
mote sensing data; in most cases, certain patterns are found
only at specific scales (Miller et al., 2015). Complex under-
lying surfaces are often accompanied by strong spatial het-
erogeneity and scale effects, which bring great challenges
to high-spatial-resolution remote sensing observations and
product generation. In this research, the FEC AOD product,
which is generated by the way in which MAIAC AOD is con-
strained by combining dynamic and static variables, was con-

sistent with the MAAC AOD product overall. Specifically,
the monthly correlations were all above 0.78 in the study
area, and most were higher than 0.9 (N = 240, Rmean =

0.928, P < 0.001, Fig. S3). In addition, the FEC AOD prod-
uct was also found to be reliable in fine-resolution, long-term
trend captures performed on single ecosystems. However, the
performance of the FEC AOD product on complex surfaces
needs further exploration. Two typical cities (Urumqi and
Lanzhou) and 2 months (April and October) were randomly
selected to analyze the applicability of the FEC AOD prod-
uct over complex underlying surfaces, and Shaybak district
and Chengguan district were randomly selected for magni-
fication in the cities of Urumqi and Lanzhou, respectively
(Fig. 14). Obviously, the MOD04L2 and MYD04L2 AOD
products were not suitable for local air quality research be-
cause it is difficult to characterize the detailed features of
AODs using these products due to their coarse spatial reso-
lutions and excessive no-data values. However, we also iden-
tified some evident differences between the FEC AOD and
MAIAC AOD products, especially in April 2010 over south-
eastern Urumqi. To this end, we quantitatively analyzed the
difference between the FEC AOD and MAIAC AOD prod-
ucts in April 2010 over Urumqi (Fig. S9). The FEC AOD and
MAIAC AOD products were similar in the north-western re-
gion (±0.05, close to the magnitude of 1 standard deviation)
but were obviously different in the south-eastern area. Ac-
cordingly, we carefully compared multiple AOD products in
April 2010 over Urumqi to attempt to identify the reasons
for this evident difference and determine its rationality. From
Fig. 15, we found significant heterogeneities in some areas,
and the portrayal of local AOD features varied from prod-
uct to product; for example, the FEC, MERRA-2, MERIS,
MOD04L2, and MOD08 AOD products showed high values
in south-eastern Urumqi. Therefore, we think that the main
reasons for the evident difference between the FEC AOD
and MAIAC AOD products in south-eastern Urumqi may be
as follows: (1) algorithm limitations. The MAIAC algorithm
assumes that the surface state is stable over a short period
of time, resulting in a large number of high AOD records
not being detected in the MAIAC AOD product (Lyapustin
et al., 2018, 2011). Certainly, our model and our selection
of environmental covariates also introduce some uncertainty,
as was systematically discussed above. (2) Scale effects and
spatial heterogeneity. Scale effects are common phenomena
in remote sensing and are inevitable and difficult to elimi-
nate. When scale effects overlay spatial heterogeneity, it may
be difficult for the AOD retrieval algorithm to process data
under the existing technology level. In this situation, most
modes may have fuzzed or smoothed AOD extrema and thus
cannot effectively capture local information. Despite the sig-
nificant differences in April 2010 over south-eastern Urumqi,
we found that the FEC AOD product still has a good ability
to capture long-term trends in Urumqi (Figs. S10 and S11).
The FEC AOD and MAIAC AOD products have a close re-
lationship in Midong district (R = 0.811) and Dabancheng
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Figure 14. The spatial patterns of four AOD products in April and October 2010: (a) Urumqi and (b) Lanzhou.
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Figure 15. The spatial patterns between the FEC AOD product and other AOD products in April 2010 over Urumqi.

district, while these products have the lowest relationship in
Shaybak district (R = 0.620). In summary, the evident dif-
ferences between the FEC AOD and MAIAC AOD products
in some highly heterogeneous areas are objective and reason-
able in some way, but there is still much research to be done
to determine which AOD products are the most reliable in
portraying local features.

5 Data availability

This monthly advanced-performance, full-coverage,
high-resolution AOD dataset (FEC AOD) constructed
over northwest China in this study is freely available
via https://doi.org/10.5281/zenodo.5727119 (Chen et al.,
2021b).

6 Conclusion

In this paper, a monthly advanced-performance, full-
coverage, high-resolution AOD dataset was produced based
on the MAIAC AOD product and multiple environmental co-
variates and utilizing a machine learning method from 2000
to 2019 in the northwest region of China. AERONET and
MODIS AOD data were collected to verify the applicability
of the FEC AOD product. Then, the spatiotemporal changes
reflected in FEC AOD product are analyzed, and an inter-
pretation of the contributions of environmental covariates to
the FEC AOD product is explored. The results show that the
FEC AOD effectively compensates for the deficiency and
constraints of in situ observation and satellite AOD prod-
ucts. Moreover, the FEC AOD product demonstrates a re-
liable performance and ability to capture local information
and long-term trends, even superior to the abilities of the
MAIAC and MxD04L2 AOD products; these findings also
indicate the necessity of high-spatial-resolution AOD data.
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The spatial patterns are consistent among different years and
greatly differ at the seasonal level. The higher the AOD is,
the stronger the temporal variability is. The AODs exhibit a
dramatic decrease on the Loess Plateau and an evident in-
crease in the south-eastern Taklimakan Desert between 2000
and 2019. Farmland and construction land have high AOD
levels compared to other land cover types. The meteorologi-
cal factors demonstrated the maximum interpretation ability
of AODs on all analyzed temporal scales, while the capability
of environmental covariates to explain AODs varies season-
ally.
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