Articles | Volume 14, issue 11
https://doi.org/10.5194/essd-14-4923-2022
https://doi.org/10.5194/essd-14-4923-2022
Data description paper
 | 
08 Nov 2022
Data description paper |  | 08 Nov 2022

The polar mesospheric cloud dataset of the Balloon Lidar Experiment (BOLIDE)

Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts

Related authors

Signatures of gravity wave-induced instabilities in balloon lidar soundings of polar mesospheric clouds
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961, https://doi.org/10.5194/acp-23-949-2023,https://doi.org/10.5194/acp-23-949-2023, 2023
Short summary
Australian wildfire smoke in the stratosphere: the decay phase in 2020/2021 and impact on ozone depletion
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022,https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary
A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech., 14, 1715–1732, https://doi.org/10.5194/amt-14-1715-2021,https://doi.org/10.5194/amt-14-1715-2021, 2021
Short summary
A technical description of the Balloon Lidar Experiment (BOLIDE)
Bernd Kaifler, Dimitry Rempel, Philipp Roßi, Christian Büdenbender, Natalie Kaifler, and Volodymyr Baturkin
Atmos. Meas. Tech., 13, 5681–5695, https://doi.org/10.5194/amt-13-5681-2020,https://doi.org/10.5194/amt-13-5681-2020, 2020
Short summary
Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data
Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, and Rigel Kivi
Atmos. Meas. Tech., 12, 5997–6015, https://doi.org/10.5194/amt-12-5997-2019,https://doi.org/10.5194/amt-12-5997-2019, 2019
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Atmospheric chemistry and physics
A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
Melisa Diaz Resquin, Pablo Lichtig, Diego Alessandrello, Marcelo De Oto, Darío Gómez, Cristina Rössler, Paula Castesana, and Laura Dawidowski
Earth Syst. Sci. Data, 15, 189–209, https://doi.org/10.5194/essd-15-189-2023,https://doi.org/10.5194/essd-15-189-2023, 2023
Short summary
Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023,https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
World Wide Lightning Location Network (WWLLN) Global Lightning Climatology (WGLC) and time series, 2022 update
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 14, 5665–5670, https://doi.org/10.5194/essd-14-5665-2022,https://doi.org/10.5194/essd-14-5665-2022, 2022
Short summary
Long-term ash dispersal dataset of the Sakurajima Taisho eruption for ashfall disaster countermeasure
Haris Rahadianto, Hirokazu Tatano, Masato Iguchi, Hiroshi L. Tanaka, Tetsuya Takemi, and Sudip Roy
Earth Syst. Sci. Data, 14, 5309–5332, https://doi.org/10.5194/essd-14-5309-2022,https://doi.org/10.5194/essd-14-5309-2022, 2022
Short summary
Full-coverage 250 m monthly aerosol optical depth dataset (2000–2019) amended with environmental covariates by an ensemble machine learning model over arid and semi-arid areas, NW China
Xiangyue Chen, Hongchao Zuo, Zipeng Zhang, Xiaoyi Cao, Jikai Duan, Chuanmei Zhu, Zhe Zhang, and Jingzhe Wang
Earth Syst. Sci. Data, 14, 5233–5252, https://doi.org/10.5194/essd-14-5233-2022,https://doi.org/10.5194/essd-14-5233-2022, 2022
Short summary

Cited articles

Backhouse, T. W.: The luminous cirrus cloud of June and July, Meteorol. Mag., 20, 133–133, 1885. a
Berger, U., Baumgarten, G., Fiedler, J., and Lübken, F.-J.: A new description of probability density distributions of polar mesospheric clouds, Atmos. Chem. Phys., 19, 4685–4702, https://doi.org/10.5194/acp-19-4685-2019, 2019. a, b
Carbary, J. F., Morrison, D., and Romick, G. J.: Hemispheric comparison of PMC altitudes, Geophys. Res. Lett., 28, 725–728, https://doi.org/10.1029/2000GL012388, 2001. a
Chandran, A., Rusch, D., Palo, S., Thomas, G., and Taylor, M.: Gravity wave observations in the summertime polar mesosphere from the Cloud Imaging and Particle Size (CIPS) experiment on the AIM spacecraft, J. Atmos. Sol.-Terr. Phys., 71, 392–400, https://doi.org/10.1016/j.jastp.2008.09.041, 2009. a
Chu, X., Gardner, C. S., and Roble, R. G.: Lidar studies of interannual, seasonal, and diurnal variations of polar mesospheric clouds at the South Pole, J. Geophys. Rese.-Atmos., 108, 8447, https://doi.org/10.1029/2002JD002524, 2003. a
Short summary
We measured polar mesospheric clouds (PMCs), our Earth’s highest clouds at the edge of space, with a Rayleigh lidar from a stratospheric balloon. We describe how we derive the cloud’s brightness and discuss the stability of the gondola pointing and the sensitivity of our measurements. We present our high-resolution PMC dataset that is used to study dynamical processes in the upper mesosphere, e.g. regarding gravity waves, mesospheric bores, vortex rings, and Kelvin–Helmholtz instabilities.