Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-3889-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-3889-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new global dataset of mountain glacier centerlines and lengths
Dahong Zhang
College of Urban and Environmental Science, Northwest University,
Xi'an 710127, PR China
Shaanxi Key Laboratory of Earth Surface System and Environmental
Carrying Capacity, Northwest University, Xi'an 710127, PR China
Gang Zhou
College of Urban and Environmental Science, Northwest University,
Xi'an 710127, PR China
Shaanxi Key Laboratory of Earth Surface System and Environmental
Carrying Capacity, Northwest University, Xi'an 710127, PR China
Wen Li
College of Urban and Environmental Science, Northwest University,
Xi'an 710127, PR China
Shaanxi Key Laboratory of Earth Surface System and Environmental
Carrying Capacity, Northwest University, Xi'an 710127, PR China
College of Urban and Environmental Science, Northwest University,
Xi'an 710127, PR China
Shaanxi Key Laboratory of Earth Surface System and Environmental
Carrying Capacity, Northwest University, Xi'an 710127, PR China
Xiaojun Yao
College of Geography and Environment Sciences, Northwest Normal
University, Lanzhou 730070, PR China
Shimei Wei
College of Geography and Environment Sciences, Northwest Normal
University, Lanzhou 730070, PR China
Related authors
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021, https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary
Short summary
Glacier centerlines are crucial input for many glaciological applications. We propose a new algorithm to derive glacier centerlines and implement the corresponding program in Python language. Application of this method to 48 571 glaciers in the second Chinese glacier inventory automatically yielded the corresponding glacier centerlines with an average computing time of 20.96 s, a success rate of 100 % and a comprehensive accuracy of 94.34 %.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-255, https://doi.org/10.5194/essd-2024-255, 2024
Preprint under review for ESSD
Short summary
Short summary
This study compiled a near-complete inventory of glacier mass changes across the eastern Tibetan Plateau using topographical maps. This data enhances our understanding of glacier change variability before 2000. When combined with existing research, our dataset provides a nearly five-decade record of mass balance, aiding hydrological simulations and assessments of mountain glacier contributions to sea-level rise.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Hongyu Duan, Xiaojun Yao, Yuan Zhang, Huian Jin, Qi Wang, Zhishui Du, Jiayu Hu, Bin Wang, and Qianxun Wang
The Cryosphere, 17, 591–616, https://doi.org/10.5194/tc-17-591-2023, https://doi.org/10.5194/tc-17-591-2023, 2023
Short summary
Short summary
We conducted a comprehensive investigation of Bienong Co, a moraine-dammed glacial lake on the southeastern Tibetan Plateau (SETP), to assess its potential hazards. The maximum lake depth is ~181 m, and the lake volume is ~102.3 × 106 m3. Bienong Co is the deepest known glacial lake with the same surface area on the Tibetan Plateau. Ice avalanches may produce glacial lake outburst floods that threaten the downstream area. This study could provide new insight into glacial lakes on the SETP.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-473, https://doi.org/10.5194/essd-2022-473, 2023
Preprint withdrawn
Short summary
Short summary
In this study, we presented a nearly complete inventory of glacier mass change dataset across the eastern Tibetan Plateau by using topographical maps, which will enhance the knowledge on the heterogeneity of glacier change before 2000. Our dataset, in combination with the published results, provide a nearly five decades mass balance to support hydrological simulation, and to evaluate the contribution of mountain glacier loss to sea level.
Xinde Chu, Xiaojun Yao, Hongyu Duan, Cong Chen, Jing Li, and Wenlong Pang
The Cryosphere, 16, 4273–4289, https://doi.org/10.5194/tc-16-4273-2022, https://doi.org/10.5194/tc-16-4273-2022, 2022
Short summary
Short summary
The available remote-sensing data are increasingly abundant, and the efficient and rapid acquisition of glacier boundaries based on these data is currently a frontier issue in glacier research. In this study, we designed a complete solution to automatically extract glacier outlines from the high-resolution images. Compared with other methods, our method achieves the best performance for glacier boundary extraction in parts of the Tanggula Mountains, Kunlun Mountains and Qilian Mountains.
Meiping Sun, Sugang Zhou, Xiaojun Yao, Hongyu Duan, and Yuan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2022-765, https://doi.org/10.5194/egusphere-2022-765, 2022
Preprint withdrawn
Short summary
Short summary
For understanding the occurrence mechanism of surging glaciers in High Mountain Asia, it is essential to ascertain their amounts, distribution and periodicity. Based on images from Landsat satellite from 1986–2021, we identified 244 surging glaciers with high confidence and 2802 events of glacier surge. We also analyzed the periodicity of 36 glaciers which experienced two or more surges. The findings will benefit to enrich dataset and provide basic information of surging glaciers in HMA.
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021, https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary
Short summary
Glacier centerlines are crucial input for many glaciological applications. We propose a new algorithm to derive glacier centerlines and implement the corresponding program in Python language. Application of this method to 48 571 glaciers in the second Chinese glacier inventory automatically yielded the corresponding glacier centerlines with an average computing time of 20.96 s, a success rate of 100 % and a comprehensive accuracy of 94.34 %.
W. Wang, A. Rinke, J. C. Moore, X. Cui, D. Ji, Q. Li, N. Zhang, C. Wang, S. Zhang, D. M. Lawrence, A. D. McGuire, W. Zhang, C. Delire, C. Koven, K. Saito, A. MacDougall, E. Burke, and B. Decharme
The Cryosphere, 10, 287–306, https://doi.org/10.5194/tc-10-287-2016, https://doi.org/10.5194/tc-10-287-2016, 2016
Short summary
Short summary
We use a model-ensemble approach for simulating permafrost on the Tibetan Plateau. We identify the uncertainties across models (state-of-the-art land surface models) and across methods (most commonly used methods to define permafrost).
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
Related subject area
Domain: ESSD – Ice | Subject: Glaciology
Climate and ablation observations from automatic ablation and weather stations at A. P. Olsen Ice Cap transect, northeast Greenland, for May 2008 through May 2022
Glaciological and meteorological monitoring at Long Term Ecological Research (LTER) sites Mullwitzkees and Venedigerkees, Austria, 2006–2022
A newly digitized ice-penetrating radar data set acquired over the Greenland ice sheet in 1971–1979
Multitemporal characterization of a proglacial system: a multidisciplinary approach
Ice thickness and bed topography of Jostedalsbreen ice cap, Norway
Spatial and temporal stable water isotope data from the upper snowpack at the EastGRIP camp site, NE Greenland, sampled in summer 2018
High temporal resolution records of the velocity of Hansbreen, a tidewater glacier in Svalbard
A high-resolution calving front data product for marine-terminating glaciers in Svalbard
Calving front positions for 19 key glaciers of the Antarctic Peninsula: a sub-seasonal record from 2013 to 2023 based on a deep learning application to Landsat multispectral imagery
Spatial and temporal variability of environmental proxies from the top 120 m of two ice cores in Dronning Maud Land (East Antarctica)
Inventory of glaciers and perennial snowfields of the conterminous USA
A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia
Unlocking archival maps of the Hornsund fjord area for monitoring glaciers of the Sørkapp Land peninsula, Svalbard
Antarctic Ice Sheet paleo-constraint database
Ice-core data used for the construction of the Greenland Ice-Core Chronology 2005 and 2021 (GICC05 and GICC21)
Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data
PRODEM: Annual summer DEMs (2019–present) of the marginal areas of the Greenland Ice Sheet
A new inventory of High Mountain Asia surging glaciers derived from multiple elevation datasets since the 1970s
Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years
Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020
Interdecadal glacier inventories in the Karakoram since the 1990s
Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020
Processing methodology for the ITS_LIVE Sentinel-1 ice velocity products
Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery
Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region
2000 years of annual ice core data from Law Dome, East Antarctica
A 41-year (1979–2019) passive-microwave-derived lake ice phenology data record of the Northern Hemisphere
Rescue and homogenization of 140 years of glacier mass balance data in Switzerland
Signe Hillerup Larsen, Daniel Binder, Anja Rutishauser, Bernhard Hynek, Robert Schjøtt Fausto, and Michele Citterio
Earth Syst. Sci. Data, 16, 4103–4118, https://doi.org/10.5194/essd-16-4103-2024, https://doi.org/10.5194/essd-16-4103-2024, 2024
Short summary
Short summary
The Greenland Ecosystem Monitoring programme has been running since 1995. In 2008, the Glaciological monitoring sub-program GlacioBasis was initiated at the Zackenberg site in northeast Greenland, with a transect of three weather stations on the A. P. Olsen Ice Cap. In 2022, the weather stations were replaced with a more standardized set up. Here, we provide the reprocessed and quality-checked data from 2008 to 2022, i.e., the first 15 years of continued monitoring.
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024, https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well-documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024, https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Short summary
In the 1970s, more than 177 000 km of observations were acquired from airborne radar over the Greenland ice sheet. The radar data contain information on not only the thickness of the ice, but also the properties of the ice itself. This information was recorded on film rolls and subsequently stored. In this study, we document the digitization of these film rolls that shed new and unprecedented detailed light on the Greenland ice sheet 50 years ago.
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024, https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
Mette Kusk Gillespie, Liss Marie Andreassen, Matthias Huss, Simon de Villiers, Kamilla Hauknes Sjursen, Jostein Aasen, Jostein Bakke, Jan Magne Cederstrøm, Halgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd Daniel Nerhus, Torgeir Opeland Røthe, Eivind Nagel Wilhelm Støren, Kåre Øst, and Jacob Clement Yde
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-167, https://doi.org/10.5194/essd-2024-167, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Here we present an extensive new ice thickness dataset from Jostedalsbreen ice cap which will serve as baseline for future studies of regional climate-induced change. Results show that Jostedalsbreen currently (~2020) has a maximum ice thickness of ~630 m, a mean ice thickness of 154 m ± 22 m and an ice volume of 70.6 ± 10.2 km3. Ice of less than 50 m thickness covers two narrow regions of the ice cap, and Jostedalsbreen is likely to separate into three smaller ice caps in a warming climate.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024, https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
Short summary
Our study uses deep learning to produce a new high-resolution calving front dataset for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, containing 124 919 terminus traces. This dataset offers insights into understanding calving mechanisms and can help improve glacier frontal ablation estimates as a component of the integrated mass balance assessment.
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-535, https://doi.org/10.5194/essd-2023-535, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constrain ice modelling. We apply a deep learning framework on multispectral Landsat imagery to create a calving front record for 19 key outlet glaciers of the Antarctic Peninsula. The resulting data product includes 2064 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Andrew G. Fountain, Bryce Glenn, and Christopher Mcneil
Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, https://doi.org/10.5194/essd-15-4077-2023, 2023
Short summary
Short summary
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for future change, we inventoried the extent of glaciers and perennial snowfields across the western USA excluding Alaska. Using mostly aerial imagery, we digitized the outlines of all glaciers and perennial snowfields equal to or larger than 0.01 km2 using a geographical information system. We identified 1331 (366.52 km2) glaciers and 1176 (31.00 km2) snowfields.
Finu Shrestha, Jakob F. Steiner, Reeju Shrestha, Yathartha Dhungel, Sharad P. Joshi, Sam Inglis, Arshad Ashraf, Sher Wali, Khwaja M. Walizada, and Taigang Zhang
Earth Syst. Sci. Data, 15, 3941–3961, https://doi.org/10.5194/essd-15-3941-2023, https://doi.org/10.5194/essd-15-3941-2023, 2023
Short summary
Short summary
A new inventory of glacial lake outburst floods (GLOFs) in High Mountain Asia found 697 events, causing 906 deaths, 3 times more than previously reported. This study provides insights into the contributing factors behind GLOFs on a regional scale and highlights the need for interdisciplinary approaches, including scientific communities and local knowledge, to understand GLOF risks in Asia. This study allows integration with other datasets, enabling future local and regional risk assessments.
Justyna Dudek and Michał Pętlicki
Earth Syst. Sci. Data, 15, 3869–3889, https://doi.org/10.5194/essd-15-3869-2023, https://doi.org/10.5194/essd-15-3869-2023, 2023
Short summary
Short summary
In our research, we evaluate the potential of archival maps of Hornsund fjord area, southern Spitsbergen, published by the Polish Academy of Sciences for studying glacier changes. Our analysis concerning glaciers in the north-western part of the Sørkapp Land peninsula revealed that, in the period 1961–2010, a maximum lowering of their surface was about 100 m for the largest land-terminating glaciers and over 120 m for glaciers terminating in the ocean (above the line marking their 1984 extents).
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine S. Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo M. Vinther
Earth Syst. Sci. Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, https://doi.org/10.5194/essd-15-3351-2023, 2023
Short summary
Short summary
Timescales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the timescales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Mai Winstrup, Heidi Ranndal, Signe Hillerup Larsen, Sebastian Bjerregaard Simonsen, Kenneth David Mankoff, Robert Schjøtt Fausto, and Louise Sandberg Sørensen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-224, https://doi.org/10.5194/essd-2023-224, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Surface topography across the marginal zone of the Greenland Ice Sheet is constantly evolving. We here present four 500-meter resolution annual (2019–2022) summer DEMs (PRODEMs) of the Greenland ice sheet marginal zone, capturing all outlet glaciers of the ice sheet. The PRODEMs are based on fusion of CryoSat-2 radar altimetry and ICESat-2 laser altimetry. With their high spatial and temporal resolution, the PRODEMs will enable detailed studies of the changes in marginal ice sheet elevations.
Lei Guo, Jia Li, Amaury Dehecq, Zhiwei Li, Xin Li, and Jianjun Zhu
Earth Syst. Sci. Data, 15, 2841–2861, https://doi.org/10.5194/essd-15-2841-2023, https://doi.org/10.5194/essd-15-2841-2023, 2023
Short summary
Short summary
We established a new inventory of surging glaciers across High Mountain Asia based on glacier elevation changes and morphological changes during 1970s–2020. A total of 890 surging and 336 probably or possibly surging glaciers were identified. Compared to the most recent inventory, this one incorporates 253 previously unidentified surging glaciers. Our results demonstrate a more widespread surge behavior in HMA and find that surging glaciers are prone to have steeper slopes than non-surging ones.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Muchu Lesi, Yong Nie, Dan Hirsh Shugar, Jida Wang, Qian Deng, Huayong Chen, and Jianrong Fan
Earth Syst. Sci. Data, 14, 5489–5512, https://doi.org/10.5194/essd-14-5489-2022, https://doi.org/10.5194/essd-14-5489-2022, 2022
Short summary
Short summary
The China–Pakistan Economic Corridor plays a vital role in foreign trade and faces threats from water shortage and water-related hazards. An up-to-date glacial lake dataset with critical parameters is basic for water resource and flood risk research, which is absent from the corridor. This study created a glacial lake dataset in 2020 from Landsat and Sentinel images from 1990–2000, using a threshold-based mapping method. Our dataset has the potential to be widely applied.
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-2022, https://doi.org/10.5194/essd-14-5111-2022, 2022
Short summary
Short summary
This work describes NASA MEaSUREs ITS_LIVE project's Version 2 Sentinel-1 image-pair ice velocity product and processing methodology. We show the refined offset tracking algorithm, autoRIFT, calibration for Sentinel-1 geolocation biases and correction of the ionosphere streaking problems. Validation was performed over three typical test sites covering the globe by comparing with other similar global and regional products.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Mohd Soheb, Alagappan Ramanathan, Anshuman Bhardwaj, Millie Coleman, Brice R. Rea, Matteo Spagnolo, Shaktiman Singh, and Lydia Sam
Earth Syst. Sci. Data, 14, 4171–4185, https://doi.org/10.5194/essd-14-4171-2022, https://doi.org/10.5194/essd-14-4171-2022, 2022
Short summary
Short summary
This study provides a multi-temporal inventory of glaciers in the Ladakh region. The study records data on 2257 glaciers (>0.5 km2) covering an area of ~7923 ± 106 km2 which is equivalent to ~89 % of the total glacierised area of the Ladakh region. It will benefit both the scientific community and the administration of the Union Territory of Ladakh, in developing efficient mitigation and adaptation strategies by improving the projections of change on timescales relevant to policymakers.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Cited articles
Abrams, M., Crippen, R., and Fujisada, H.: ASTER Global Digital Elevation
Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD), Remote Sensing,
12, 1156, https://doi.org/10.3390/rs12071156, 2020.
Aciego, S. M., Stevenson, E. I., and Arendt, C. A.: Climate versus
geological controls on glacial meltwater micronutrient production in
southern Greenland, Earth Planet. Sc. Lett., 424, 51–58,
https://doi.org/10.1016/j.epsl.2015.05.017, 2015.
Carabajal, C. C. and Boy, J. P.: Evaluation of Aster Gdem V3 Using Icesat
Laser Altimetry, Int. Arch. Photogramm., XLI-B4, 117–124,
https://doi.org/10.5194/isprsarchives-XLI-B4-117-2016, 2016.
Carrera-Hernández, J. J.: Not all DEMs are equal: An evaluation of six
globally available 30 m resolution DEMs with geodetic benchmarks and LiDAR
in Mexico, Remote Sens. Environ., 261, 112474,
https://doi.org/10.1016/j.rse.2021.112474, 2021.
Fan, Y., Ke, C.-Q., and Shen, X.: A new Greenland digital elevation model derived from ICESat-2 during 2018–2019, Earth Syst. Sci. Data, 14, 781–794, https://doi.org/10.5194/essd-14-781-2022, 2022.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, 1–33,
https://doi.org/10.1029/2005rg000183, 2007.
Franke, S., Jansen, D., Binder, T., Paden, J. D., Dörr, N., Gerber, T. A., Miller, H., Dahl-Jensen, D., Helm, V., Steinhage, D., Weikusat, I., Wilhelms, F., and Eisen, O.: Airborne ultra-wideband radar sounding over the shear margins and along flow lines at the onset region of the Northeast Greenland Ice Stream, Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, 2022.
Gao, Y. P., Yao, X. J., Liu, S. Y., Qi, M. M., Gong, P., An, L. N., Li, X.
F., and Duan, H. Y.: Methods and future trend of ice volume calculation of
glacier, Arid Land Geography, 41, 1204–1213, 2018.
Hansen, K., Hasenstab, K., and Schwartzman, A.: Estimating Mountain Glacier
Flowlines by Local Linear Regression Gradient Descent, IEEE T.
Geosci. Remote, 59, 10022–10034,
https://doi.org/10.1109/tgrs.2020.3035513, 2020.
Heid, T. and Kääb, A.: Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds, The Cryosphere, 6, 467–478, https://doi.org/10.5194/tc-6-467-2012, 2012.
Herla, F., Roe, G. H., and Marzeion, B.: Ensemble statistics of a geometric
glacier length model, Ann. Glaciol., 58, 130–135,
https://doi.org/10.1017/aog.2017.15, 2017.
Herreid, S. and Pellicciotti, F.: The state of rock debris covering Earth's
glaciers, Nat. Geosci., 13, 621–627,
https://doi.org/10.1038/s41561-020-0615-0, 2020.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kaab, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731,
https://doi.org/10.1038/s41586-021-03436-z, 2021.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch,
T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink,
P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter,
T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A.
B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.:
Importance and vulnerability of the world's water towers, Nature, 577,
364–369, https://doi.org/10.1038/s41586-019-1822-y, 2019.
Ji, Q., Yang, T.-b., He, Y., Qin, Y., Dong, J., and Hu, F.-s.: A simple
method to extract glacier length based on Digital Elevation Model and
glacier boundaries for simple basin type glacier,
J. Mt. Sci., 14, 1776–1790,
https://doi.org/10.1007/s11629-016-4243-5, 2017.
Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E., and Kargel, J. S.: Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?, The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, 2021.
Kienholz, C., Hock, R., and Arendt, A. A.: A new semi-automatic approach for
dividing glacier complexes into individual glaciers, J. Glaciol.,
59, 925–937, https://doi.org/10.3189/2013JoG12J138, 2013.
Kienholz, C., Rich, J. L., Arendt, A. A., and Hock, R.: A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada, The Cryosphere, 8, 503–519, https://doi.org/10.5194/tc-8-503-2014, 2014.
Le Bris, R. and Paul, F.: An automatic method to create flow lines for
determination of glacier length: A pilot study with Alaskan glaciers,
Comput. Geosci., 52, 234–245,
https://doi.org/10.1016/j.cageo.2012.10.014, 2013.
Le Moine, N. and Gsell, P.-S.: A graph-based approach to glacier flowline
extraction: An application to glaciers in Switzerland, Comput.
Geosci., 85, 91–101,
https://doi.org/10.1016/j.cageo.2015.09.010, 2015.
Leclercq, P. W. and Oerlemans, J.: Global and hemispheric temperature
reconstruction from glacier length fluctuations, Clim. Dynam., 38,
1065–1079, https://doi.org/10.1007/s00382-011-1145-7, 2011.
Leclercq, P. W., Oerlemans, J., Basagic, H. J., Bushueva, I., Cook, A. J., and Le Bris, R.: A data set of worldwide glacier length fluctuations, The Cryosphere, 8, 659–672, https://doi.org/10.5194/tc-8-659-2014, 2014.
Li, H., Ng, F., Li, Z., Qin, D., and Cheng, G.: An extended
“perfect-plasticity” method for estimating ice thickness along the flow
line of mountain glaciers, J. Geophys. Res.-Earth,
117, F01020, https://doi.org/10.1029/2011jf002104, 2012.
Li, X., Ding, Y., Hood, E., Raiswell, R., Han, T., He, X., Kang, S., Wu, Q.,
Yu, Z., Mika, S., Liu, S., and Li, Q.: Dissolved Iron Supply from Asian
Glaciers: Local Controls and a Regional Perspective, Global Biogeochem.
Cy., 33, 1223–1237, https://doi.org/10.1029/2018gb006113,
2019.
Li, Y., Li, F., Shangguan, D., and Ding, Y.: A new global gridded glacier
dataset based on the Randolph Glacier Inventory version 6.0, J.
Glaciol., 67, 773–776, https://doi.org/10.1017/jog.2021.28,
2021.
Lüthi, M. P., Bauder, A., and Funk, M.: Volume change reconstruction of
Swiss glaciers from length change data, J. Geophys. Res.,
115, F04022, https://doi.org/10.1029/2010jf001695, 2010.
Machguth, H. and Huss, M.: The length of the world's glaciers – a new approach for the global calculation of center lines, The Cryosphere, 8, 1741–1755, https://doi.org/10.5194/tc-8-1741-2014, 2014.
Mankoff, K. D., Fettweis, X., Langen, P. L., Stendel, M., Kjeldsen, K. K., Karlsson, N. B., Noël, B., van den Broeke, M. R., Solgaard, A., Colgan, W., Box, J. E., Simonsen, S. B., King, M. D., Ahlstrøm, A. P., Andersen, S. B., and Fausto, R. S.: Greenland ice sheet mass balance from 1840 through next week, Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, 2021.
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1, Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, 2019.
Melkonian, A. K., Willis, M. J., and Pritchard, M. E.: Satellite-derived
volume loss rates and glacier speeds for the Juneau Icefield, Alaska,
J. Glaciol., 60, 743–760,
https://doi.org/10.3189/2014JoG13J181, 2017.
Noel, B., Jakobs, C. L., van Pelt, W. J. J., Lhermitte, S., Wouters, B.,
Kohler, J., Hagen, J. O., Luks, B., Reijmer, C. H., van de Berg, W. J., and
van den Broeke, M. R.: Low elevation of Svalbard glaciers drives high mass
loss variability, Nat. Commun., 11, 4597,
https://doi.org/10.1038/s41467-020-18356-1, 2020.
Oerlemans, J.: A flowline model for Nigardsbreen, Norway: projection of
future glacier length based on dynamic calibration with the historic record,
Ann. Glaciol., 24, 382–389,
https://doi.org/10.1017/S0260305500012489, 1997.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S.,
Moholdt, G., Mölg, N., Paul, F., Radiæ, V., Rastner, P., Raup, B.
H., Rich, J., and Sharp, M. J.: The Randolph Glacier Inventory: a globally
complete inventory of glaciers, J. Glaciol., 60, 537–552,
https://doi.org/10.3189/2014JoG13J176, 2014.
Pritchard, H. D.: Asia's shrinking glaciers protect large populations from
drought stress, Nature, 569, 649–654,
https://doi.org/10.1038/s41586-019-1240-1, 2019.
Radiæ, V. and Hock, R.: Regional and global volumes of glaciers derived
from statistical upscaling of glacier inventory data, J. Geophys. Res., 115, F01010, https://doi.org/10.1029/2009jf001373, 2010.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, Colorado, USA, https://doi.org/10.7265/N5-RGI-60, 2017.
Scherler, D., Wulf, H., and Gorelick, N.: Global Assessment of Supraglacial
Debris-Cover Extents, Geophys. Res. Lett., 45, 11798–11805,
https://doi.org/10.1029/2018gl080158, 2018.
Schiefer, E., Menounos, B., and Wheate, R.: An inventory and morphometric
analysis of British Columbia glaciers, Canada, J. Glaciol.,
54, 551–560, 2008.
Shukla, A., Garg, S., Mehta, M., Kumar, V., and Shukla, U. K.: Temporal inventory of glaciers in the Suru sub-basin, western Himalaya: impacts of regional climate variability, Earth Syst. Sci. Data, 12, 1245–1265, https://doi.org/10.5194/essd-12-1245-2020, 2020.
Shukla, T. and Sen, I. S.: Preparing for floods on the Third Pole, Science,
372, 232–234, https://doi.org/10.1126/science.abh3558, 2021.
Solgaard, A., Kusk, A., Merryman Boncori, J. P., Dall, J., Mankoff, K. D., Ahlstrøm, A. P., Andersen, S. B., Citterio, M., Karlsson, N. B., Kjeldsen, K. K., Korsgaard, N. J., Larsen, S. H., and Fausto, R. S.: Greenland ice velocity maps from the PROMICE project, Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, 2021.
Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M., and Braun, M. H.:
Rapid glacier retreat and downwasting throughout the European Alps in the
early 21(st) century, Nat. Commun., 11, 3209,
https://doi.org/10.1038/s41467-020-16818-0, 2020.
Stuart-Smith, R. F., Roe, G. H., Li, S., and Allen, M. R.: Increased
outburst flood hazard from Lake Palcacocha due to human-induced glacier
retreat, Nat. Geosci., 14, 85–90,
https://doi.org/10.1038/s41561-021-00686-4, 2021.
Sugiyama, S., Bauder, A., Zahno, C., and Funk, M.: Evolution of
Rhonegletscher, Switzerland, over the past 125 years and in the future :
application of an improved flowline model, Ann. Glaciol., 46,
268–274, 2007.
Thogersen, K., Gilbert, A., Schuler, T. V., and Malthe-Sorenssen, A.:
Rate-and-state friction explains glacier surge propagation, Nat. Commun., 10,
2823, https://doi.org/10.1038/s41467-019-10506-4, 2019.
Uuemaa, E., Ahi, S., Montibeller, B., Muru, M., and Kmoch, A.: Vertical
Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30,
MERIT, TanDEM-X, SRTM, and NASADEM), Remote Sensing, 12, 3482,
https://doi.org/10.3390/rs12213482, 2020.
Vargo, L. J., Anderson, B. M., Dadiæ, R., Horgan, H. J., Mackintosh, A.
N., King, A. D., and Lorrey, A. M.: Anthropogenic warming forces extreme
annual glacier mass loss, Nat. Clim. Change, 10, 856–861,
https://doi.org/10.1038/s41558-020-0849-2, 2020.
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018.
Winsvold, S. H., Andreassen, L. M., and Kienholz, C.: Glacier area and length changes in Norway from repeat inventories, The Cryosphere, 8, 1885–1903, https://doi.org/10.5194/tc-8-1885-2014, 2014.
Wu, K., Liu, S., Jiang, Z., Liu, Q., Zhu, Y., Yi, Y., Xie, F., Ahmad Tahir,
A., and Saifullah, M.: Quantification of glacier mass budgets in the
Karakoram region of Upper Indus Basin during the early twenty-first century,
J. Hydrol., 603, 127095,
https://doi.org/10.1016/j.jhydrol.2021.127095, 2021.
Xia, W.: An Automatic Extraction Method of Glacier Length Based on Voronoi Algorithm – A Pilot Study in the Sanjiangyuan Region, M.S. thesis, Northwest University, China, https://doi.org/10.27405/d.cnki.gxbdu.2020.000585, 2020.
Yang, B. Y., Zhang, L. X., Gao, Y., Xiang, Y., Mou, N. X., and Suo, L. D.
B.: An integrated method of glacier length extraction based on Gaofen
satellite data, Journal of Glaciology and Geocryology, 38, 1615–1623,
https://doi.org/10.7522/j.issn.1000-0240.2016.0189, 2016.
Yao, X. J., Liu, S. Y., Zhu, Y., Gong, P., An, L. N., and Li, X. F.: Design
and implementation of an automatic method for deriving glacier centerlines
based on GIS, Journal of Glaciology and Geocryology, 37, 1563–1570,
2015.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J.,
Barandun, M., Machguth, H., Nussbaumer, S. U., Gartner-Roer, I., Thomson,
L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier
mass changes and their contributions to sea-level rise from 1961 to 2016,
Nature, 568, 382–386,
https://doi.org/10.1038/s41586-019-1071-0, 2019.
Zhang, B., Wang, Z., An, J., Liu, T., and Geng, H.: A 30-year monthly 5 km gridded surface elevation time series for the Greenland Ice Sheet from multiple satellite radar altimeters, Earth Syst. Sci. Data, 14, 973–989, https://doi.org/10.5194/essd-14-973-2022, 2022.
Zhang, D. and Zhang, S.: A new global dataset of mountain glacier centerline
and length, Science Data Bank [data set],
https://doi.org/10.11922/sciencedb.01643, 2022.
Zhang, D., Yao, X., Duan, H., Liu, S., Guo, W., Sun, M., and Li, D.: A new automatic approach for extracting glacier centerlines based on Euclidean allocation, The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021, 2021.
Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss, M.,
Zhang, G., Li, J., Yuan, Y., Jiang, L., Yu, T., Chen, W., and Stoffel, M.:
Increasing risk of glacial lake outburst floods from future Third Pole
deglaciation, Nat. Clim. Change, 11, 411–417,
https://doi.org/10.1038/s41558-021-01028-3, 2021.
Zhou, S., Yao, X., Zhang, D., Zhang, Y., Liu, S., and Min, Y.: Remote
Sensing Monitoring of Advancing and Surging Glaciers in the Tien Shan,
1990–2019, Remote Sensing, 13, 1973,
https://doi.org/10.3390/rs13101973, 2021a.
Zhou, Y., Li, X., Zheng, D., Li, Z., An, B., Wang, Y., Jiang, D., Su, J.,
and Cao, B.: The joint driving effects of climate and weather changes caused
the Chamoli glacier-rock avalanche in the high altitudes of the India
Himalaya, Science China Earth Sciences, 64, 1909–1921,
https://doi.org/10.1007/s11430-021-9844-0, 2021b.
Short summary
The length of a glacier is a key determinant of its geometry; glacier centerlines are crucial inputs for many glaciological applications. Based on the European allocation theory, we present a new global dataset that includes the centerlines and lengths of 198 137 mountain glaciers. The accuracy of the glacier centerlines was 89.68 %. The constructed dataset comprises 17 sub-datasets which contain the centerlines and lengths of glacier tributaries.
The length of a glacier is a key determinant of its geometry; glacier centerlines are crucial...
Special issue
Altmetrics
Final-revised paper
Preprint