Articles | Volume 14, issue 7
https://doi.org/10.5194/essd-14-3329-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3329-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 41-year (1979–2019) passive-microwave-derived lake ice phenology data record of the Northern Hemisphere
Yu Cai
Jiangsu Provincial Key Laboratory of Geographic Information Science
and Technology, Key Laboratory for Land Satellite Remote Sensing
Applications of Ministry of Natural Resources, School of Geography and Ocean
Science, Nanjing University, Nanjing, China
Claude R. Duguay
Department of Geography and Environmental Management, University of
Waterloo, Ontario, Canada
H2O Geomatics Inc., Waterloo, Ontario, Canada
Chang-Qing Ke
CORRESPONDING AUTHOR
Jiangsu Provincial Key Laboratory of Geographic Information Science
and Technology, Key Laboratory for Land Satellite Remote Sensing
Applications of Ministry of Natural Resources, School of Geography and Ocean
Science, Nanjing University, Nanjing, China
Related authors
Yu Cai, Jingjing Wang, Yao Xiao, Zifei Wang, Xiaoyi Shen, Haili Li, and Chang-Qing Ke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-441, https://doi.org/10.5194/essd-2023-441, 2024
Revised manuscript not accepted
Short summary
Short summary
In this study, we re-explored the potential of passive microwaves in extracting lake ice freeze-thaw events. Brightness temperature and air temperature data were used to extract freeze-up and break-up records of 194 lakes on the Tibetan Plateau, providing complete lake ice records for a large number of small and medium-sized lakes for the first time. The dataset will provide valuable data for users interested in lake ice cover on the Tibetan Plateau over the last decade.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Yu Cai, Jingjing Wang, Yao Xiao, Zifei Wang, Xiaoyi Shen, Haili Li, and Chang-Qing Ke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-441, https://doi.org/10.5194/essd-2023-441, 2024
Revised manuscript not accepted
Short summary
Short summary
In this study, we re-explored the potential of passive microwaves in extracting lake ice freeze-thaw events. Brightness temperature and air temperature data were used to extract freeze-up and break-up records of 194 lakes on the Tibetan Plateau, providing complete lake ice records for a large number of small and medium-sized lakes for the first time. The dataset will provide valuable data for users interested in lake ice cover on the Tibetan Plateau over the last decade.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere, 17, 1775–1786, https://doi.org/10.5194/tc-17-1775-2023, https://doi.org/10.5194/tc-17-1775-2023, 2023
Short summary
Short summary
We used the new-generation ICESat-2 altimeter to detect and monitor active subglacial lakes in unprecedented spatiotemporal detail. We created a new inventory of 18 active subglacial lakes as well as their elevation and volume changes during 2019–2020, which provides an improved understanding of how the Greenland subglacial water system operates and how these lakes are fed by water from the ice surface.
Maria Shaposhnikova, Claude Duguay, and Pascale Roy-Léveillée
The Cryosphere, 17, 1697–1721, https://doi.org/10.5194/tc-17-1697-2023, https://doi.org/10.5194/tc-17-1697-2023, 2023
Short summary
Short summary
We explore lake ice in the Old Crow Flats, Yukon, Canada, using a novel approach that employs radar imagery and deep learning. Results indicate an 11 % increase in the fraction of lake ice that grounds between 1992/1993 and 2020/2021. We believe this is caused by widespread lake drainage and fluctuations in water level and snow depth. This transition is likely to have implications for permafrost beneath the lakes, with a potential impact on methane ebullition and the regional carbon budget.
Xiaoyi Shen, Chang-Qing Ke, Yubin Fan, and Lhakpa Drolma
Earth Syst. Sci. Data, 14, 3075–3089, https://doi.org/10.5194/essd-14-3075-2022, https://doi.org/10.5194/essd-14-3075-2022, 2022
Short summary
Short summary
Obtaining the detailed surface topography in Antarctica is essential for fieldwork planning, surface height change and mass balance estimations. A new and reliable DEM for Antarctica with a modal resolution of 500 m is presented based on the surface height measurements from ICESat-2 by using a model fitting method. The high accuracy of elevations and the possibility for annual updates make the ICESat-2 DEM an addition to the existing Antarctic DEM groups.
Yubin Fan, Chang-Qing Ke, and Xiaoyi Shen
Earth Syst. Sci. Data, 14, 781–794, https://doi.org/10.5194/essd-14-781-2022, https://doi.org/10.5194/essd-14-781-2022, 2022
Short summary
Short summary
A new digital elevation model of Greenland was provided based on the ICESat-2 observations acquired from November 2018 to November 2019. A model fit method was applied within the grid cells at different spatial resolutions to estimate the surface elevations with a modal resolution of 500 m. We estimated the uncertainty with a median difference of −0.48 m for all of Greenland, which can benefit studies of elevation change and mass balance in Greenland.
Xiaoyi Shen, Chang-Qing Ke, and Haili Li
Earth Syst. Sci. Data, 14, 619–636, https://doi.org/10.5194/essd-14-619-2022, https://doi.org/10.5194/essd-14-619-2022, 2022
Short summary
Short summary
Snow over Antarctic sea ice controls energy budgets and thus has essential effects on the climate. Here, we estimated snow depth using microwave radiometers and a newly constructed, robust method by incorporating lower frequencies, which have been available from AMSR-E and AMSR-2. Comparing the new retrieval with in situ and shipborne snow depth measurements showed that this method outperformed the previously available method.
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
Haili Li, Chang-Qing Ke, Qinghui Zhu, and Xiaoyi Shen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-271, https://doi.org/10.5194/tc-2021-271, 2021
Revised manuscript not accepted
Short summary
Short summary
Here, we employ particle filter assimilation to combine snow depth values retrieved from remote sensing with those obtained from reanalysis reconstructions, and INESOSIM-PF is proposed. The results indicate that the proposed method improves the modeled snow depth, and the monthly and seasonal changes in the snow depth are consistent with those in the snow depth determined with two existing snow depth algorithms.
Xiaoyi Shen, Chang-Qing Ke, Yubin Fan, and Lhakpa Drolma
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-204, https://doi.org/10.5194/tc-2021-204, 2021
Manuscript not accepted for further review
Short summary
Short summary
Obtaining the detailed surface topography in Antarctica is essential for human fieldwork planning, ice surface height changes and mass balance estimations. A definite time-stamped and fine-scale DEM for Antarctica with a modal resolution of 250 m is presented based on the surface height measurements from ICESat-2 by using a model fitting method, which is more valuable for further scientific applications, e.g., land ice height and mass balance estimations.
Ingmar Nitze, Sarah W. Cooley, Claude R. Duguay, Benjamin M. Jones, and Guido Grosse
The Cryosphere, 14, 4279–4297, https://doi.org/10.5194/tc-14-4279-2020, https://doi.org/10.5194/tc-14-4279-2020, 2020
Short summary
Short summary
In summer 2018, northwestern Alaska was affected by widespread lake drainage which strongly exceeded previous observations. We analyzed the spatial and temporal patterns with remote sensing observations, weather data and lake-ice simulations. The preceding fall and winter season was the second warmest and wettest on record, causing the destabilization of permafrost and elevated water levels which likely led to widespread and rapid lake drainage during or right after ice breakup.
Kiana Zolfaghari, Claude R. Duguay, and Homa Kheyrollah Pour
Hydrol. Earth Syst. Sci., 21, 377–391, https://doi.org/10.5194/hess-21-377-2017, https://doi.org/10.5194/hess-21-377-2017, 2017
Short summary
Short summary
A remotely-sensed water clarity value (Kd) was applied to improve FLake model simulations of Lake Erie thermal structure using a time-invariant (constant) annual value as well as monthly values of Kd. The sensitivity of FLake model to Kd values was studied. It was shown that the model is very sensitive to variations in Kd when the value is less than 0.5 m-1.
Jinyang Du, John S. Kimball, Claude Duguay, Youngwook Kim, and Jennifer D. Watts
The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017, https://doi.org/10.5194/tc-11-47-2017, 2017
Short summary
Short summary
A new automated method for microwave satellite assessment of lake ice conditions at 5 km resolution was developed for lakes in the Northern Hemisphere. The resulting ice record shows strong agreement with ground observations and alternative ice records. Higher latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower latitude lakes. The new approach allows for rapid monitoring of lake ice cover changes, with accuracy suitable for global change studies.
Cristina M. Surdu, Claude R. Duguay, and Diego Fernández Prieto
The Cryosphere, 10, 941–960, https://doi.org/10.5194/tc-10-941-2016, https://doi.org/10.5194/tc-10-941-2016, 2016
P. Muhammad, C. Duguay, and K.-K. Kang
The Cryosphere, 10, 569–584, https://doi.org/10.5194/tc-10-569-2016, https://doi.org/10.5194/tc-10-569-2016, 2016
Short summary
Short summary
This study involves the analysis of MODIS Level 3500 m snow products, complemented with 250 m Level 1B data, to monitor ice cover during the break-up period on the Mackenzie River, Canada. Results from the analysis of data for 13 ice seasons (2001–2013) show that ice-off begins between days of year (DOYs) 115 and 125 and ends between DOYs 145 and 155, resulting in average melt durations of about 30–40 days; we conclude that MODIS can monitor ice break-up.
Chang-Qing Ke, Xiu-Cang Li, Hongjie Xie, Dong-Hui Ma, Xun Liu, and Cheng Kou
Hydrol. Earth Syst. Sci., 20, 755–770, https://doi.org/10.5194/hess-20-755-2016, https://doi.org/10.5194/hess-20-755-2016, 2016
Short summary
Short summary
The heavy snow years in China include 1955, 1957, 1964, and 2010, and light snow years include 1953, 1965, 1999, 2002, and 2009. The reduction in number of days with temperature below 0 °C and increase in mean air temperature are the main reasons for the delay of snow cover onset date and advance of snow cover end date. This explains why only 15 % of the stations show significant shortening of snow cover days and differ with the overall shortening of the snow period in the Northern Hemisphere.
J. Chen, C. Q. Ke, and Z. D. Shao
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-5875-2014, https://doi.org/10.5194/tcd-8-5875-2014, 2014
Revised manuscript not accepted
C. M. Surdu, C. R. Duguay, L. C. Brown, and D. Fernández Prieto
The Cryosphere, 8, 167–180, https://doi.org/10.5194/tc-8-167-2014, https://doi.org/10.5194/tc-8-167-2014, 2014
K. A. Luus, Y. Gel, J. C. Lin, R. E. J. Kelly, and C. R. Duguay
Biogeosciences, 10, 7575–7597, https://doi.org/10.5194/bg-10-7575-2013, https://doi.org/10.5194/bg-10-7575-2013, 2013
H. Xie, R. Lei, C. Ke, H. Wang, Z. Li, J. Zhao, and S. F. Ackley
The Cryosphere, 7, 1057–1072, https://doi.org/10.5194/tc-7-1057-2013, https://doi.org/10.5194/tc-7-1057-2013, 2013
Related subject area
Domain: ESSD – Ice | Subject: Glaciology
Climate and ablation observations from automatic ablation and weather stations at A. P. Olsen Ice Cap transect, northeast Greenland, for May 2008 through May 2022
Glaciological and meteorological monitoring at Long Term Ecological Research (LTER) sites Mullwitzkees and Venedigerkees, Austria, 2006–2022
A newly digitized ice-penetrating radar data set acquired over the Greenland ice sheet in 1971–1979
Multitemporal characterization of a proglacial system: a multidisciplinary approach
Spatial and temporal stable water isotope data from the upper snowpack at the EastGRIP camp site, NE Greenland, sampled in summer 2018
High temporal resolution records of the velocity of Hansbreen, a tidewater glacier in Svalbard
A high-resolution calving front data product for marine-terminating glaciers in Svalbard
Spatial and temporal variability of environmental proxies from the top 120 m of two ice cores in Dronning Maud Land (East Antarctica)
Inventory of glaciers and perennial snowfields of the conterminous USA
A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia
Unlocking archival maps of the Hornsund fjord area for monitoring glaciers of the Sørkapp Land peninsula, Svalbard
Antarctic Ice Sheet paleo-constraint database
Ice-core data used for the construction of the Greenland Ice-Core Chronology 2005 and 2021 (GICC05 and GICC21)
Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data
PRODEM: Annual summer DEMs (2019–present) of the marginal areas of the Greenland Ice Sheet
A new inventory of High Mountain Asia surging glaciers derived from multiple elevation datasets since the 1970s
Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years
Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020
Interdecadal glacier inventories in the Karakoram since the 1990s
Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020
Processing methodology for the ITS_LIVE Sentinel-1 ice velocity products
Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery
Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region
A new global dataset of mountain glacier centerlines and lengths
2000 years of annual ice core data from Law Dome, East Antarctica
Rescue and homogenization of 140 years of glacier mass balance data in Switzerland
Signe Hillerup Larsen, Daniel Binder, Anja Rutishauser, Bernhard Hynek, Robert Schjøtt Fausto, and Michele Citterio
Earth Syst. Sci. Data, 16, 4103–4118, https://doi.org/10.5194/essd-16-4103-2024, https://doi.org/10.5194/essd-16-4103-2024, 2024
Short summary
Short summary
The Greenland Ecosystem Monitoring programme has been running since 1995. In 2008, the Glaciological monitoring sub-program GlacioBasis was initiated at the Zackenberg site in northeast Greenland, with a transect of three weather stations on the A. P. Olsen Ice Cap. In 2022, the weather stations were replaced with a more standardized set up. Here, we provide the reprocessed and quality-checked data from 2008 to 2022, i.e., the first 15 years of continued monitoring.
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024, https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well-documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024, https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Short summary
In the 1970s, more than 177 000 km of observations were acquired from airborne radar over the Greenland ice sheet. The radar data contain information on not only the thickness of the ice, but also the properties of the ice itself. This information was recorded on film rolls and subsequently stored. In this study, we document the digitization of these film rolls that shed new and unprecedented detailed light on the Greenland ice sheet 50 years ago.
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024, https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024, https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
Short summary
Our study uses deep learning to produce a new high-resolution calving front dataset for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, containing 124 919 terminus traces. This dataset offers insights into understanding calving mechanisms and can help improve glacier frontal ablation estimates as a component of the integrated mass balance assessment.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Andrew G. Fountain, Bryce Glenn, and Christopher Mcneil
Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, https://doi.org/10.5194/essd-15-4077-2023, 2023
Short summary
Short summary
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for future change, we inventoried the extent of glaciers and perennial snowfields across the western USA excluding Alaska. Using mostly aerial imagery, we digitized the outlines of all glaciers and perennial snowfields equal to or larger than 0.01 km2 using a geographical information system. We identified 1331 (366.52 km2) glaciers and 1176 (31.00 km2) snowfields.
Finu Shrestha, Jakob F. Steiner, Reeju Shrestha, Yathartha Dhungel, Sharad P. Joshi, Sam Inglis, Arshad Ashraf, Sher Wali, Khwaja M. Walizada, and Taigang Zhang
Earth Syst. Sci. Data, 15, 3941–3961, https://doi.org/10.5194/essd-15-3941-2023, https://doi.org/10.5194/essd-15-3941-2023, 2023
Short summary
Short summary
A new inventory of glacial lake outburst floods (GLOFs) in High Mountain Asia found 697 events, causing 906 deaths, 3 times more than previously reported. This study provides insights into the contributing factors behind GLOFs on a regional scale and highlights the need for interdisciplinary approaches, including scientific communities and local knowledge, to understand GLOF risks in Asia. This study allows integration with other datasets, enabling future local and regional risk assessments.
Justyna Dudek and Michał Pętlicki
Earth Syst. Sci. Data, 15, 3869–3889, https://doi.org/10.5194/essd-15-3869-2023, https://doi.org/10.5194/essd-15-3869-2023, 2023
Short summary
Short summary
In our research, we evaluate the potential of archival maps of Hornsund fjord area, southern Spitsbergen, published by the Polish Academy of Sciences for studying glacier changes. Our analysis concerning glaciers in the north-western part of the Sørkapp Land peninsula revealed that, in the period 1961–2010, a maximum lowering of their surface was about 100 m for the largest land-terminating glaciers and over 120 m for glaciers terminating in the ocean (above the line marking their 1984 extents).
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine S. Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo M. Vinther
Earth Syst. Sci. Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, https://doi.org/10.5194/essd-15-3351-2023, 2023
Short summary
Short summary
Timescales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the timescales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Mai Winstrup, Heidi Ranndal, Signe Hillerup Larsen, Sebastian Bjerregaard Simonsen, Kenneth David Mankoff, Robert Schjøtt Fausto, and Louise Sandberg Sørensen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-224, https://doi.org/10.5194/essd-2023-224, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Surface topography across the marginal zone of the Greenland Ice Sheet is constantly evolving. We here present four 500-meter resolution annual (2019–2022) summer DEMs (PRODEMs) of the Greenland ice sheet marginal zone, capturing all outlet glaciers of the ice sheet. The PRODEMs are based on fusion of CryoSat-2 radar altimetry and ICESat-2 laser altimetry. With their high spatial and temporal resolution, the PRODEMs will enable detailed studies of the changes in marginal ice sheet elevations.
Lei Guo, Jia Li, Amaury Dehecq, Zhiwei Li, Xin Li, and Jianjun Zhu
Earth Syst. Sci. Data, 15, 2841–2861, https://doi.org/10.5194/essd-15-2841-2023, https://doi.org/10.5194/essd-15-2841-2023, 2023
Short summary
Short summary
We established a new inventory of surging glaciers across High Mountain Asia based on glacier elevation changes and morphological changes during 1970s–2020. A total of 890 surging and 336 probably or possibly surging glaciers were identified. Compared to the most recent inventory, this one incorporates 253 previously unidentified surging glaciers. Our results demonstrate a more widespread surge behavior in HMA and find that surging glaciers are prone to have steeper slopes than non-surging ones.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Muchu Lesi, Yong Nie, Dan Hirsh Shugar, Jida Wang, Qian Deng, Huayong Chen, and Jianrong Fan
Earth Syst. Sci. Data, 14, 5489–5512, https://doi.org/10.5194/essd-14-5489-2022, https://doi.org/10.5194/essd-14-5489-2022, 2022
Short summary
Short summary
The China–Pakistan Economic Corridor plays a vital role in foreign trade and faces threats from water shortage and water-related hazards. An up-to-date glacial lake dataset with critical parameters is basic for water resource and flood risk research, which is absent from the corridor. This study created a glacial lake dataset in 2020 from Landsat and Sentinel images from 1990–2000, using a threshold-based mapping method. Our dataset has the potential to be widely applied.
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-2022, https://doi.org/10.5194/essd-14-5111-2022, 2022
Short summary
Short summary
This work describes NASA MEaSUREs ITS_LIVE project's Version 2 Sentinel-1 image-pair ice velocity product and processing methodology. We show the refined offset tracking algorithm, autoRIFT, calibration for Sentinel-1 geolocation biases and correction of the ionosphere streaking problems. Validation was performed over three typical test sites covering the globe by comparing with other similar global and regional products.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Mohd Soheb, Alagappan Ramanathan, Anshuman Bhardwaj, Millie Coleman, Brice R. Rea, Matteo Spagnolo, Shaktiman Singh, and Lydia Sam
Earth Syst. Sci. Data, 14, 4171–4185, https://doi.org/10.5194/essd-14-4171-2022, https://doi.org/10.5194/essd-14-4171-2022, 2022
Short summary
Short summary
This study provides a multi-temporal inventory of glaciers in the Ladakh region. The study records data on 2257 glaciers (>0.5 km2) covering an area of ~7923 ± 106 km2 which is equivalent to ~89 % of the total glacierised area of the Ladakh region. It will benefit both the scientific community and the administration of the Union Territory of Ladakh, in developing efficient mitigation and adaptation strategies by improving the projections of change on timescales relevant to policymakers.
Dahong Zhang, Gang Zhou, Wen Li, Shiqiang Zhang, Xiaojun Yao, and Shimei Wei
Earth Syst. Sci. Data, 14, 3889–3913, https://doi.org/10.5194/essd-14-3889-2022, https://doi.org/10.5194/essd-14-3889-2022, 2022
Short summary
Short summary
The length of a glacier is a key determinant of its geometry; glacier centerlines are crucial inputs for many glaciological applications. Based on the European allocation theory, we present a new global dataset that includes the centerlines and lengths of 198 137 mountain glaciers. The accuracy of the glacier centerlines was 89.68 %. The constructed dataset comprises 17 sub-datasets which contain the centerlines and lengths of glacier tributaries.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Cited articles
Arp, C. D., Jones, B. M., and Grosse, G.: Recent lake ice-out phenology
within and among lake districts of Alaska, U.S.A., Limnol. Oceanogr., 58,
2013–2028, https://doi.org/10.4319/lo.2013.58.6.2013, 2013.
Bellerby, T., Taberner, M., Wilmshurst, A., Beaumont, M., Barrett, E.,
Scott, J., and Durbin, C.: Retrieval of land and sea brightness temperatures
from mixed coastal pixels in passive microwave data, IEEE T. Geosci.
Remote, 36, 1844–1851, https://doi.org/10.1109/36.729355, 1998.
Belward, A., Bourassa, M., Dowell, M., Briggs, S., Dolman, H., Holmlund, K.,
and Verstraete, M.: The Global Observing System for Climate: Implementation
Needs, Ref. Number GCOS-200 315, https://library.wmo.int/opac/doc_num.php?explnum_id=3417 (last access: 1 December 2021), 2016.
Bennartz, R.: On the use of SSM/I measurements in coastal regions, J. Atmos.
Ocean. Tech., 16, 417–431, https://doi.org/10.1175/1520-0426(1999)016<0417:OTUOSI>2.0.CO;2, 1999.
Benson, B., Magnuson, J., and Sharma, S.: Global Lake and River Ice Phenology
Database, Version 1, NSIDC Natl. Snow Ice Data Center [data set], Boulder, https://doi.org/10.7265/N5W66HP8, 2000
(updated 2020).
Benson, B. J., Magnuson, J. J., Jensen, O. P., Card, V. M., Hodgkins, G.,
Korhonen, J., Livingstone, D. M., Stewart, K. M., Weyhenmeyer, G. A., and
Granin, N. G.: Extreme events, trends, and variability in Northern
Hemisphere lake-ice phenology (1855–2005), Climate Change, 112, 299–323,
https://doi.org/10.1007/s10584-011-0212-8, 2012.
Brodzik, M. J., Long, D. G., Hardman, M. A., Paget, A., and Armstrong, R.:
MEaSUREs Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid
2.0 Brightness Temperature ESDR, Version 1, NASA National Snow and Ice Data
Center Distributed Active Archive Center [data set], 0–24, https://doi.org/10.5067/MEASURES/CRYOSPHERE/NSIDC-0630.001, 2020.
Brown, L. C. and Duguay, C. R.: The response and role of ice cover in
lake-climate interactions, Prog. Phys. Geogr., 34, 671–704,
https://doi.org/10.1177/0309133310375653, 2010.
Cai, Y., Ke, C.-Q., and Duan, Z.: Monitoring ice variations in Qinghai Lake
from 1979 to 2016 using passive microwave remote sensing data, Sci. Total
Environ., 607–608, 120–131, https://doi.org/10.1016/j.scitotenv.2017.07.027, 2017.
Cai, Y., Ke, C.-Q., Li, X., Zhang, G., Duan, Z., and Lee, H.: Variations of
Lake Ice Phenology on the Tibetan Plateau From 2001 to 2017 Based on MODIS
Data, J. Geophys. Res.-Atmos., 124, 825–843, https://doi.org/10.1029/2018JD028993, 2019.
Cai, Y., Duguay, C. R., and Ke, C.-Q.: Lake ice phenology in the Northern
Hemisphere extracted from SMMR, SSM/I and SSMIS data from 1979 to 2020,
PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.937904, 2021.
Chaouch, N., Temimi, M., Romanov, P., Cabrera, R., Mckillop, G., and
Khanbilvardi, R.: An automated algorithm for river ice monitoring over the
Susquehanna River using the MODIS data, Hydrol. Process., 28, 62–73,
https://doi.org/10.1002/hyp.9548, 2014.
Crétaux, J. -F., Merchant, C. J., Duguay, C., Simis, S., Calmettes, B., Bergé-Nguyen, M., Wu, Y., Zhang, D., Carrea, L., Liu, X., Selmes, N., and Warren, M.: ESA Lakes Climate Change Initiative (Lakes_cci): Lake products, Version 1.0. Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/3c324bb4ee394d0d876fe2e1db217378, 2020.
Dörnhöfer, K. and Oppelt, N.: Remote sensing for lake research and
monitoring – Recent advances, Ecol. Indic., 64, 105–122,
https://doi.org/10.1016/j.ecolind.2015.12.009, 2016.
Du, J. and Kimball, J. S.: Daily Lake Ice Phenology Time Series Derived from AMSR-E and AMSR2, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/HT4NQO7ZJF7M, 2018.
Du, J., Kimball, J. S., Duguay, C., Kim, Y., and Watts, J. D.: Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015, The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017, 2017.
Duguay, C. R. and Lafleur, P. M.: Determining depth and ice thickness of
shallow sub-Arctic lakes using space-borne optical and SAR data, Int. J.
Remote Sens., 24, 475–489, https://doi.org/10.1080/01431160304992, 2003.
Duguay, C. R., Pultz, T. J., Lafleur, P. M., and Drai, D.: RADARSAT
backscatter characteristics of ice growing on shallow sub-Arctic lakes,
Churchill, Manitoba, Canada, Hydrol. Process., 16, 1631–1644,
https://doi.org/10.1002/hyp.1026, 2002.
Duguay, C. R., Prowse, T. D., Bonsal, B. R., Brown, R. D., Lacroix, M. P.,
and Ménard, P.: Recent trends in Canadian lake ice cover, Hydrol.
Process., 20, 781–801, https://doi.org/10.1002/hyp.6131, 2006.
Duguay, C. R., Bernier, M., Gauthier, Y., and Kouraev, A.: Remote sensing of
lake and river ice, in: Remote Sensing of the Cryosphere, edited by: Tedesco
M., Wiley-Blackwell, Oxford, UK, 273–306,
https://doi.org/10.1002/9781118368909.ch12, 2015.
Engram, M., Arp, C. D., Jones, B. M., Ajadi, O. A., and Meyer, F. J.:
Analyzing floating and bedfast lake ice regimes across Arctic Alaska using
25 years of space-borne SAR imagery, Remote Sens. Environ., 209,
660–676, https://doi.org/10.1016/j.rse.2018.02.022, 2018.
Geldsetzer, T., Van Der Sanden, J., and Brisco, B.: Monitoring lake ice
during spring melt using RADARSAT-2 SAR, Can. J. Remote Sens., 36,
S391–S400, https://doi.org/10.5589/m11-001, 2010.
Hall, D. K., Riggs, G. A., Foster, J. L., and Kumar, S. V.: Development and
evaluation of a cloud-gap-filled MODIS daily snow-cover product, Remote
Sens. Environ., 114, 496–503, https://doi.org/10.1016/j.rse.2009.10.007, 2010.
Helfrich, S. R., McNamara, D., Ramsay, B. H., Baldwin, T., and Kasheta, T.:
Enhancements to, and forthcoming developments in the Interactive Multisensor
Snow and Ice Mapping System (IMS), Hydrol. Process., 21, 1576–1586,
https://doi.org/10.1002/hyp.6720, 2007.
Jeffries, M. O., Morris, K., Weeks, W. F., and Wakabayashi, H.: Structural
and stratigraphic features and ERS 1 synthetic aperture radar backscatter
characteristics of ice growing on shallow lakes in NW Alaska, winter
1991–1992, J. Geophys. Res., 99, 22459–22471, 1994.
Jiang, J. M. and You, X. T.: Where and when did an abrupt climatic change
occur in China during the last 43 years?, Theor. Appl. Climatol., 55,
33–39, https://doi.org/10.1007/BF00864701, 1996.
Kang, K.-K., Duguay, C. R., and Howell, S. E. L.: Estimating ice phenology on large northern lakes from AMSR-E: algorithm development and application to Great Bear Lake and Great Slave Lake, Canada, The Cryosphere, 6, 235–254, https://doi.org/10.5194/tc-6-235-2012, 2012.
Ke, C.-Q., Tao, A.-Q., and Jin, X.: Variability in the ice phenology of Nam
Co Lake in central Tibet from scanning multichannel microwave radiometer and
special sensor microwave/imager: 1978 to 2013, J. Appl. Remote Sens., 7,
073477, https://doi.org/10.1117/1.jrs.7.073477, 2013.
Knoll, L. B., Sharma, S., Denfeld, B. A., Flaim, G., Hori, Y., Magnuson, J.
J., Straile, D., and Weyhenmeyer, G. A.: Consequences of lake and river ice
loss on cultural ecosystem services, Limnol. Oceanogr., 4, 119–131,
https://doi.org/10.1002/lol2.10116, 2019.
Kropáček, J., Maussion, F., Chen, F., Hoerz, S., and Hochschild, V.: Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data, The Cryosphere, 7, 287–301, https://doi.org/10.5194/tc-7-287-2013, 2013.
Latifovic, R. and Pouliot, D.: Analysis of climate change impacts on lake
ice phenology in Canada using the historical satellite data record, Remote
Sens. Environ., 106, 492–507, https://doi.org/10.1016/j.rse.2006.09.015, 2007.
Livingstone, D. M.: Break-up dates of Alpine lakes as proxy data for local
and regional mean surface air temperatures, Climatic Change, 37, 407–439,
https://doi.org/10.1023/A:1005371925924, 1997.
Long, D. G. and Brodzik, M. J.: Optimum Image Formation for Spaceborne
Microwave Radiometer Products, IEEE T. Geosci. Remote, 54, 2763–2779,
https://doi.org/10.1109/TGRS.2015.2505677, 2016.
Magnuson, J. J. and Lathrop, R. C.: Lake ice: winter beauty, value, changes
and a threatened future, LakeLine, 43, 18–27,
https://lter.limnology.wisc.edu (last access: 15 April 2021), 2014.
Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone,
D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V., Kuusisto, E., Granin,
N. G., Prowse, T. D., Stewart, K. M., and Vuglinski, V. S.: Historical trends
in lake and river ice cover in the Northern Hemisphere, Science, 289,
1743–1746, https://doi.org/10.1126/science.289.5485.1743, 2000.
Maslanik, J. A. and Barry, R. G.: Lake ice formation and breakup as an indicator of climate change: Potential for monitoring using remote sensing techniques, The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources, International Association of Hydrological Sciences Press, IAHS Publ. No. 168, 153–161, 1987.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016 (data available at: https://www.hydrosheds.org/page/hydrolakes, last access: 3 December 2019).
Mishra, V., Cherkauer, K. A., Bowling, L. C., and Huber, M.: Lake Ice
phenology of small lakes: Impacts of climate variability in the Great Lakes
region, Global Planet. Change, 76, 166–185,
https://doi.org/10.1016/j.gloplacha.2011.01.004, 2011.
Morris, K., Jeffries, M. O., and Weeks, W. F.: Ice processes and growth
history on Arctic and sub-Arctic lakes using ERS-1 SAR data, Polar Rec. (Gr.
Brit)., 31, 115–128, https://doi.org/10.1017/S0032247400013619, 1995.
Murfitt, J. and Duguay, C. R.: 50 years of lake ice research from active
microwave remote sensing: Progress and prospects, Remote Sens. Environ.,
264, 112616, https://doi.org/10.1016/j.rse.2021.112616, 2021.
NOAA Great Lakes Environmental Research Laboratory: Historical Great Lakes Ice Cover [data set], Digital media, https://www.glerl.noaa.gov/data/ice/#historical (last access: 23 November 2021), 2021.
Nonaka, T., Matsunaga, T., and Hoyano, A.: Estimating ice breakup dates on
Eurasian lakes using water temperature trends and threshold surface
temperatures derived from MODIS data, Int. J. Remote Sens., 28,
2163–2179, https://doi.org/10.1080/01431160500391957, 2007.
Pour, H. K., Duguay, C. R., Martynov, A., and Brown, L. C.: Simulation of
surface temperature and ice cover of large northern lakes with 1-D models: A
comparison with MODIS satellite data and in situ measurements, Tellus A, 64, 17614, https://doi.org/10.3402/tellusa.v64i0.17614, 2012.
Prowse, T., Alfredsen, K., Beltaos, S., Bonsal, B. R., Bowden, W. B.,
Duguay, C. R., Korhola, A., McNamara, J., Vincent, W. F., Vuglinsky, V.,
Walter Anthony, K. M., and Weyhenmeyer, G. A.: Effects of changes in arctic
lake and river ice, Ambio, 40, 63–74,
https://doi.org/10.1007/s13280-011-0217-6, 2011.
Sharma, S., Magnuson, J. J., Batt, R. D., Winslow, L. A., Korhonen, J., and
Aono, Y.: Direct observations of ice seasonality reveal changes in climate
over the past 320–570 years, Sci. Rep.-UK, 6, 1–11,
https://doi.org/10.1038/srep25061, 2016.
Sharma, S., Blagrave, K., Magnuson, J. J., O'Reilly, C. M., Oliver, S.,
Batt, R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., and
Woolway, R. I.: Widespread loss of lake ice around the Northern Hemisphere
in a warming world, Nat. Clim. Change, 9, 227–231,
https://doi.org/10.1038/s41558-018-0393-5, 2019.
Šmejkalová, T., Edwards, M. E., and Dash, J.: Arctic lakes show
strong decadal trend in earlier spring ice-out, Sci. Rep.-UK, 6, 1–8,
https://doi.org/10.1038/srep38449, 2016.
Su, L., Che, T., and Dai, L.: Variation in ice phenology of large lakes over
the northern hemisphere based on passive microwave remote sensing data,
Remote Sens., 13, 1389, https://doi.org/10.3390/rs13071389, 2021.
Surdu, C. M., Duguay, C. R., and Fernández Prieto, D.: Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations, The Cryosphere, 10, 941–960, https://doi.org/10.5194/tc-10-941-2016, 2016.
Weber, H., Riffler, M., Nõges, T., and Wunderle, S.: Lake ice phenology
from AVHRR data for European lakes: An automated two-step extraction method,
Remote Sens. Environ., 174, 329–340, https://doi.org/10.1016/j.rse.2015.12.014, 2016.
Weyhenmeyer, G. A., Livingstone, D. M., Meili, M., Jensen, O., Benson, B.,
and Magnuson, J. J.: Large geographical differences in the sensitivity of
ice-covered lakes and rivers in the Northern Hemisphere to temperature
changes, Glob. Change Biol., 17, 268–275,
https://doi.org/10.1111/j.1365-2486.2010.02249.x, 2011.
Woolway, R. I. and Merchant, C. J.: Worldwide alteration of lake mixing
regimes in response to climate change, Nat. Geosci., 12, 271–276,
https://doi.org/10.1038/s41561-019-0322-x, 2019.
Wu, Y., Duguay, C. R., and Xu, L.: Assessment of machine learning classifiers
for global lake ice cover mapping from MODIS TOA reflectance data, Remote
Sens. Environ., 253, 112206, https://doi.org/10.1016/j.rse.2020.112206, 2021.
Xiao, D. and Li, J.: Spatial and temporal characteristics of the decadal
abrupt changes of global atmosphere-ocean system in the 1970s, J. Geophys.
Res.-Atmos., 112, 1–18, https://doi.org/10.1029/2007JD008956, 2007.
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude...
Altmetrics
Final-revised paper
Preprint