Articles | Volume 14, issue 7
https://doi.org/10.5194/essd-14-3293-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3293-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rescue and homogenization of 140 years of glacier mass balance data in Switzerland
Lea Geibel
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, 8049 Zürich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, 8049 Zürich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Claudia Kurzböck
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, 8049 Zürich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Elias Hodel
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, 8049 Zürich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Andreas Bauder
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, 8049 Zürich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Daniel Farinotti
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, 8049 Zürich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Related authors
No articles found.
Ian Delaney, Andrew J. Tedstone, Mauro A. Werder, and Daniel Farinotti
The Cryosphere, 19, 2779–2795, https://doi.org/10.5194/tc-19-2779-2025, https://doi.org/10.5194/tc-19-2779-2025, 2025
Short summary
Short summary
Sediment transport capacity depends on water velocity and channel width. In rivers, water discharge changes affect flow depth, width, and velocity. Yet, under glaciers, discharge variations alter velocity more than channel shape. Due to these differences, this study shows that sediment transport capacity under glaciers varies widely and peaks before water flow, creating a complex relationship. Understanding these dynamics helps interpret sediment discharge from glaciers in different climates.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Mauro Marty, Marijn van der Meer, Christian Ginzler, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2929, https://doi.org/10.5194/egusphere-2025-2929, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Our study provides daily mass balance estimates for every Swiss glacier from 2010–2024 using modelling, remote sensing observations, and machine learning. Over the period, Swiss glaciers lost nearly a quarter of their ice volume. The approach enables investigating the spatio-temporal variability of glacier mass balance in relation to the driving climatic factors.
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
Nat. Hazards Earth Syst. Sci., 25, 2045–2073, https://doi.org/10.5194/nhess-25-2045-2025, https://doi.org/10.5194/nhess-25-2045-2025, 2025
Short summary
Short summary
We studied eight glacier-adjacent landslides in Alaska and found that slope movement increased at four sites as the glacier retreated past the landslide area. Movement at other sites may be due to heavy precipitation or increased glacier thinning, and two sites showed little to no motion. We suggest that landslides near waterbodies may be especially vulnerable to acceleration, which we guess is due to faster retreat rates of water-terminating glaciers and changing water flow in the slope.
Inés Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 17, 1977–2006, https://doi.org/10.5194/essd-17-1977-2025, https://doi.org/10.5194/essd-17-1977-2025, 2025
Short summary
Short summary
Our research observes glacier mass changes worldwide from 1976 to 2024, revealing an alarming increase in melt, especially in the last decade and the record year of 2023. By combining field and satellite observations, we provide annual mass changes for all glaciers in the world, showing significant contributions to global sea level rise. This work underscores the need for ongoing local monitoring and global climate action to mitigate the effects of glacier loss and its broader environmental impacts.
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
The Cryosphere, 19, 1577–1597, https://doi.org/10.5194/tc-19-1577-2025, https://doi.org/10.5194/tc-19-1577-2025, 2025
Short summary
Short summary
In the present work, we provide a new ice thickness reconstruction of the Antarctic Peninsula Ice Sheet north of 70º S using inversion modeling. This model consists of two steps: the first uses basic assumptions of the rheology of the glacier, and the second uses mass conservation to improve the reconstruction where the assumptions made previously are expected to fail. Validation with independent data showed that our reconstruction improved compared to other reconstructions that are available.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
The Cryosphere, 19, 1491–1511, https://doi.org/10.5194/tc-19-1491-2025, https://doi.org/10.5194/tc-19-1491-2025, 2025
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 30 km2 of initial glacier cover.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
The Cryosphere, 19, 1469–1490, https://doi.org/10.5194/tc-19-1469-2025, https://doi.org/10.5194/tc-19-1469-2025, 2025
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice–bedrock interface. In 4 months of seismic records, we detect spatio-temporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modelling techniques. This low-velocity layer results from temporary water storage subglacially.
Kamilla Hauknes Sjursen, Jordi Bolibar, Marijn van der Meer, Liss Marie Andreassen, Julian Peter Biesheuvel, Thorben Dunse, Matthias Huss, Fabien Maussion, David R. Rounce, and Brandon Tober
EGUsphere, https://doi.org/10.5194/egusphere-2025-1206, https://doi.org/10.5194/egusphere-2025-1206, 2025
Short summary
Short summary
Understanding glacier mass changes is crucial for assessing freshwater availability in many regions of the world. We present the Mass Balance Machine, a machine learning model that learns from sparse measurements of glacier mass change to make predictions on unmonitored glaciers. Using data from Norway, we show that the model provides accurate estimates of mass changes at different spatiotemporal scales. Our findings show that machine learning can be a valuable tool to improve such predictions.
Marit van Tiel, Matthias Huss, Massimiliano Zappa, Tobias Jonas, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-404, https://doi.org/10.5194/egusphere-2025-404, 2025
Short summary
Short summary
The summer of 2022 was extremely warm and dry in Europe, severely impacting water availability. We calculated water balance anomalies for 88 glacierized catchments in Switzerland, showing that glaciers played a crucial role in alleviating the drought situation by melting at record rates, partially compensating for the lack of rain and snowmelt. By comparing 2022 with past extreme years, we show that while glacier meltwater remains essential during droughts, its contribution is declining.
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
The Cryosphere, 19, 805–826, https://doi.org/10.5194/tc-19-805-2025, https://doi.org/10.5194/tc-19-805-2025, 2025
Short summary
Short summary
Glacier retreat poses big challenges, making understanding how climate affects glaciers vital. But glacier measurements worldwide are limited. We created a simple machine-learning model called miniML-MB, which estimates annual changes in glacier mass in the Swiss Alps. As input, miniML-MB uses two climate variables: average temperature (May–Aug) and total precipitation (Oct–Feb). Our model can accurately predict glacier mass from 1961 to 2021 but struggles for extreme years (2022 and 2023).
Laura Gabriel, Marian Hertrich, Christophe Ogier, Mike Müller-Petke, Raphael Moser, Hansruedi Maurer, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3741, https://doi.org/10.5194/egusphere-2024-3741, 2025
Short summary
Short summary
Surface nuclear magnetic resonance (SNMR) is a geophysical technique directly sensitive to liquid water. We expand the limited applications of SNMR on glaciers by detecting water within Rhonegletscher, Switzerland. By carefully processing the data to reduce noise, we identified signals indicating a water layer near the base of the glacier, surrounded by ice with low water content. Our findings, validated by radar measurements, show SNMR's potential and limitations in studying water in glaciers.
Alexandra von der Esch, Matthias Huss, Marit van Tiel, Justine Berg, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3965, https://doi.org/10.5194/egusphere-2024-3965, 2025
Short summary
Short summary
Glaciers are vital water sources, especially in alpine regions. Using the Glacier Evolution Runoff Model (GERM), we examined how forcing data and model resolution impact glacio-hydrological model results. We find that precipitation biases greatly affect results, and coarse resolutions miss critical small-scale details. This highlights the trade-offs between computational efficiency and model accuracy, emphasizing the need for high-resolution data and precise calibration for reliable predictions.
Mette K. Gillespie, Liss M. Andreassen, Matthias Huss, Simon de Villiers, Kamilla H. Sjursen, Jostein Aasen, Jostein Bakke, Jan M. Cederstrøm, Hallgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd D. Nerhus, Torgeir O. Røthe, Eivind W. N. Støren, Kåre Øst, and Jacob C. Yde
Earth Syst. Sci. Data, 16, 5799–5825, https://doi.org/10.5194/essd-16-5799-2024, https://doi.org/10.5194/essd-16-5799-2024, 2024
Short summary
Short summary
We present an extensive ice thickness dataset from Jostedalsbreen ice cap that will serve as a baseline for future studies of regional climate-induced change. Results show that Jostedalsbreen currently (~2020) has a maximum ice thickness of ~630 m, a mean ice thickness of 154 ± 22 m and an ice volume of 70.6 ±10.2 km3. Ice of less than 50 m thickness covers two narrow regions of Jostedalsbreen, and the ice cap is likely to separate into three parts in a warming climate.
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024, https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Bastien Ruols, Johanna Klahold, Daniel Farinotti, and James Irving
EGUsphere, https://doi.org/10.5194/egusphere-2024-3074, https://doi.org/10.5194/egusphere-2024-3074, 2024
Short summary
Short summary
We demonstrate the use of a drone-based ground-penetrating radar (GPR) system to gather high-resolution, high-density 4D data over a near-terminus glacier collapse feature. We monitor the growth of an air cavity and the evolution of the subglacial drainage system, providing new insights into the dynamics of collapse events. This work highlights potential future applications of drone-based GPR for monitoring glaciers, in particular in regions which are inaccessible with surface-based methods.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Sebastian Hellmann, Melchior Grab, Cedric Patzer, Andreas Bauder, and Hansruedi Maurer
Solid Earth, 14, 805–821, https://doi.org/10.5194/se-14-805-2023, https://doi.org/10.5194/se-14-805-2023, 2023
Short summary
Short summary
Acoustic waves are suitable to analyse the physical properties of the subsurface. For this purpose, boreholes are quite useful to deploy a source and receivers in the target area to get a comprehensive high-resolution dataset. However, when conducting such experiments in a subsurface such as glaciers that continuously move, the boreholes get deformed. In our study, we therefore developed a method that allows an analysis of the ice while considering deformations.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Joël Borner, and Daniel Farinotti
The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, https://doi.org/10.5194/tc-17-1895-2023, 2023
Short summary
Short summary
Summer heat waves have a substantial impact on glacier melt as emphasized by the extreme summer of 2022. This study presents a novel approach for detecting extreme glacier melt events at the regional scale based on the combination of automatically retrieved point mass balance observations and modelling approaches. The in-depth analysis of summer 2022 evidences the strong correspondence between heat waves and extreme melt events and demonstrates their significance for seasonal melt.
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023, https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Short summary
Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of climate change. However, high-altitude regions significantly lack reliable observations, which is limiting the calibration of glaciological and hydrological models. We aim at improving knowledge on the spatio-temporal variations in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observations on glaciers with machine learning.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Tim Steffen, Matthias Huss, Rebekka Estermann, Elias Hodel, and Daniel Farinotti
Earth Surf. Dynam., 10, 723–741, https://doi.org/10.5194/esurf-10-723-2022, https://doi.org/10.5194/esurf-10-723-2022, 2022
Short summary
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas becoming ice free due to glacier retreat is one of the many consequences of this process. Here, we provide an estimate for the number, size, time of emergence, and sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to ~ 680 potential lakes could form over the course of the 21st century, with the potential to hold a total water volume of up to ~ 1.16 km3.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Short summary
In this study, we (1) acquire real-time information on point glacier mass balance with autonomous real-time cameras and (2) assimilate these observations into a mass balance model ensemble driven by meteorological input. For doing so, we use a customized particle filter that we designed for the specific purposes of our study. We find melt rates of up to 0.12 m water equivalent per day and show that our assimilation method has a higher performance than reference mass balance models.
Gregory Church, Andreas Bauder, Melchior Grab, and Hansruedi Maurer
The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021, https://doi.org/10.5194/tc-15-3975-2021, 2021
Short summary
Short summary
In this field study, we acquired a 3D radar survey over an active drainage network that transported meltwater through a Swiss glacier. We successfully imaged both englacial and subglacial pathways and were able to confirm long-standing glacier hydrology theory regarding meltwater pathways. The direction of these meltwater pathways directly impacts the glacier's velocity, and therefore more insightful field observations are needed in order to improve our understanding of this complex system.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Hannah R. Field, William H. Armstrong, and Matthias Huss
The Cryosphere, 15, 3255–3278, https://doi.org/10.5194/tc-15-3255-2021, https://doi.org/10.5194/tc-15-3255-2021, 2021
Short summary
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
Short summary
Recently, discussions have focused on the difference in limiting the increase in global average temperatures to below 1.0, 1.5, or 2.0 °C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. Our results show that the different temperature targets have important implications for the changes predicted until 2100.
Rebecca Gugerli, Matteo Guidicelli, Marco Gabella, Matthias Huss, and Nadine Salzmann
Adv. Sci. Res., 18, 7–20, https://doi.org/10.5194/asr-18-7-2021, https://doi.org/10.5194/asr-18-7-2021, 2021
Short summary
Short summary
To obtain reliable snowfall estimates in high mountain remains a challenge. This study uses daily snow water equivalent (SWE) estimates by a cosmic ray sensor on two Swiss glaciers to assess three
readily-available high-quality precipitation products. We find a large bias between in situ SWE and snowfall, which differs among the precipitation products, the two sites, the winter seasons and in situ meteorological conditions. All products have great potential for various applications in the Alps.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Gregory Church, Melchior Grab, Cédric Schmelzbach, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, https://doi.org/10.5194/tc-14-3269-2020, 2020
Short summary
Short summary
In this field study, we repeated ground-penetrating radar measurements over an active englacial channel network that transports meltwater through the glacier. We successfully imaged the englacial meltwater pathway and were able to delimitate the channel's shape. Meltwater from the glacier can impact the glacier's dynamics if it reaches the ice–bed interface, and therefore monitoring these englacial drainage networks is important to understand how these networks behave throughout a season.
Cited articles
Ambach, W., Eisner, H., Huber, J., and Schneider, H.: Strain rates of a 25 m
deep firn pit in an alpine glacier and a related constitutive equation of
temperate firn (Kesselwandferner, Oetztal Alps, 1983–1989), Zeitschrift
für Gletscherkunde und Glazialgeologie, 25, 187–198, 1989. a
Andreassen, L. M., Elvehøy, H., Kjøllmoen, B., and Belart, J. M. C.:
Glacier change in Norway since the 1960s – an overview of mass balance,
area, length and surface elevation changes, J. Glaciol., 66,
313–328, https://doi.org/10.1017/jog.2020.10, 2020. a
Bauder, A., Funk, M., and Gudmundsson, G. H.: The ice thickness distribution of
Unteraargletscher (Switzerland), Ann. Glaciol., 37, 331–336, 2003. a
Bauder, A., Funk, M., and Huss, M.: Ice volume changes of selected glaciers in
the Swiss Alps since the end of the 19th century, Ann. Glaciol.,
46, 145–149, https://doi.org/10.3189/172756407782871701, 2007. a
Bauder, A., Mazzotti, G., Berger, C., Langhammer, L., Griessinger, N., and
Jonas, T.: Winter Accumulation Measurements on Alpine Glaciers using Ground
Penetrating Radar, in: 2018 17th International Conference on Ground
Penetrating Radar (GPR), 18–21 June 2018, Rapperswil, 1–5, https://doi.org/10.1109/ICGPR.2018.8441559, 2018. a
Beedle, M. J., Menounos, B., and Wheate, R.: An evaluation of mass-balance
methods applied to Castle creek Glacier, British Columbia, Canada, J. Glaciol., 60, 262–276, https://doi.org/10.3189/2014jog13j091, 2014. a, b
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The concept of essential climate variables in support of climate
research, applications and policy, B. Am. Meteorol.
Soc., 95, 1431–1443, https://doi.org/10.1175/bams-d-13-00047.1, 2014. a, b
Bormann, K. J., Westra, S., Evans, J. P., and McCabe, M. F.: Spatial and
temporal variability in seasonal snow density, J. Hydrol., 484,
63–73, https://doi.org/10.1016/j.jhydrol.2013.01.032, 2013. a
Braithwaite, R. J.: Glacier mass balance: The first 50 years of international
monitoring, Prog. Phys. Geog., 26, 76–95,
https://doi.org/10.1191/0309133302pp326ra, 2002. a
Braithwaite, R. J.: Calculation of sensible-heat flux over a melting ice
surface using simple climate data and daily measurements of ablation, Ann. Glaciol., 50, 9–15, https://doi.org/10.3189/172756409787769726, 2009. a
Braun, L., Aellen, M., Funk, M., Hock, R., Rohrer, M., Steinegger, U.,
Kappenberger, G., and Mueller-Lemans, H.: Measurement and simulation of high
alpine water balance components in the Linth-Limmern head watershed
(north-eastern Switzerland), Zeitschrift für Gletscherkunde und
Glazialgeologie, 30, 161–185, 1994. a
Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal impacts
of glacier outburst floods, Global Planet. Change, 144, 1–16,
https://doi.org/10.1016/j.gloplacha.2016.07.001, 2016. a
Cogley, J., Hock, R., Rasmussen, L., Arendt, A., Bauder, A., Braithwaite, R.,
Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M.:
Glossary of glacier mass balance and related terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2,
UNESCO-IHP, Paris, 2011. a, b, c, d
Dunse, T., Schuler, T. V., Hagen, J. O., Eiken, T., Brandt, O., and
Høgda, K. A.: Recent fluctuations in the extent of the firn area of
Austfonna, Svalbard, inferred from GPR, Ann. Glaciol., 50, 155–162,
https://doi.org/10.3189/172756409787769780, 2009. a
Farinotti, D., Magnusson, J., Huss, M., and Bauder, A.: Snow accumulation
distribution inferred from time-lapse photography and simple modelling,
Hydrol. Process., 24, 2087–2097, https://doi.org/10.1002/hyp.7629, 2010. a
Fausto, R. S., Box, J. E., Vandecrux, B., van As, D., Steffen, K., MacFerrin,
M. J., Machguth, H., Colgan, W., Koenig, L. S., McGrath, D., Charalampidis,
C., and Braithwaite, R. J.: A Snow Density Dataset for Improving Surface
Boundary Conditions in Greenland Ice Sheet Firn Modeling, Front. Earth
Sci., 6, 51, https://doi.org/10.3389/feart.2018.00051, 2018. a
Fischer, M., Huss, M., and Hoelzle, M.: Surface elevation and mass changes of all Swiss glaciers 1980–2010, The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, 2015. a
Fitzpatrick, N., Radić, V., and Menounos, B.: Surface energy balance
closure and turbulent flux parameterisation on a mid-latitude mountain
glacier, Purcell Mountains, Canada, Front. Earth Sci., 5, 67,
https://doi.org/10.3389/feart.2017.00067, 2017. a
GLAMOS: The Swiss Glaciers, 2013/14 and 2014/15, Glaciological Report No. 135/136 of the Cryospheric Commission (EKK)
of the Swiss Academy of Sciences (SCNAT), edited by: Bauder, A., VAW/ETH Zurich,
https://doi.org/10.18752/glrep_135-136, 2017. a
GLAMOS: Swiss Glacier Point Mass Balance Observations, release 2021,
Glacier Monitoring Switzerland [data set], https://doi.org/10.18750/massbalance.point.2021.r2021,
2021. a
Gugerli, R., Salzmann, N., Huss, M., and Desilets, D.: Continuous and autonomous snow water equivalent measurements by a cosmic ray sensor on an alpine glacier, The Cryosphere, 13, 3413–3434, https://doi.org/10.5194/tc-13-3413-2019, 2019. a, b, c
Haeberli, W. and Hoelzle, M.: Application of inventory data for estimating
characteristics of and regional climate-change effects on mountain glaciers:
a pilot study with the European Alps, Ann. Glaciol., 21, 206–212,
1995. a
Helfricht, K., Kuhn, M., Keuschnig, M., and Heilig, A.: Lidar snow cover studies on glaciers in the Ötztal Alps (Austria): comparison with snow depths calculated from GPR measurements, The Cryosphere, 8, 41–57, https://doi.org/10.5194/tc-8-41-2014, 2014. a
Helfricht, K., Lehning, M., Sailer, R., and Kuhn, M.: Local extremes in the
LiDAR-derived snow cover of alpine glaciers, Geogr. Ann. A, 97, 721–736, https://doi.org/10.1111/geoa.12111, 2015. a
Holmlund, P., Jansson, P., and Pettersson, R.: A re-analysis of the 58 year
mass-balance record of Storglaciären, Sweden, Ann. Glaciol.,
42, 489–495, https://doi.org/10.3189/172756405781812547, 2005. a
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C.,
Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and
Kääb, A.: Accelerated global glacier mass loss in the early
twenty-first century, Nature, 592, 726–731,
https://doi.org/10.1038/s41586-021-03436-z, 2021. a
Huss, M. and Bauder, A.: 20th-century climate change inferred from four
long-term point observations of seasonal mass balance, Ann. Glaciol.,
50, 207–214, https://doi.org/10.3189/172756409787769645, 2009. a, b, c
Huss, M., Bauder, A., and Funk, M.: Homogenization of long-term mass balance
time series, Annals of Glaciology, 50, 198–206,
https://doi.org/10.3189/172756409787769627, 2009a. a
Huss, M., Funk, M., and Ohmura, A.: Strong Alpine glacier melt in the 1940s due
to enhanced solar radiation, Geophys. Res. Lett., 36, L23501,
https://doi.org/10.1029/2009GL040789, 2009b. a, b, c
Huss, M., Dhulst, L., and Bauder, A.: New long-term mass-balance series for the
Swiss Alps, J. Glaciol., 61, 551–562,
https://doi.org/10.3189/2015JoG15J015, 2015. a
Huss, M., Bauder, A., Linsbauer, A., Gabbi, J., Kappenberger, G., Steinegger,
U., and Farinotti, D.: More than a century of direct glacier mass-balance
observations on Claridenfirn, Switzerland, J. Glaciol., 67, 697–713,
https://doi.org/10.1017/jog.2021.22, 2021. a, b, c, d
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T.,
Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M.,
Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S.,
Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S.,
Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and
Baillie, J. E. M.: Importance and vulnerability of the world's water towers,
Nature, 577, 364–369, https://doi.org/10.1038/s41586-019-1822-y, 2019. a
Isotta, F. A., Begert, M., and Frei, C.: Long-Term Consistent Monthly
Temperature and Precipitation Grid Data Sets for Switzerland Over the Past
150 Years, J. Geophys. Res.-Atmos., 124, 3783–3799,
https://doi.org/10.1029/2018JD029910, 2019. a
Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent
from snow depth measurements in the Swiss Alps, J. Hydrol., 378,
161–167, https://doi.org/10.1016/j.jhydrol.2009.09.021, 2009. a, b
Kaser, G., Juen, I., Georges, C., Gomez, J., and Tamayo, W.: The
impact of glaciers on the runoff and the reconstruction of mass balance
history from hydrological data in the tropical Cordillera Blanca, Peru,
J. Hydrol., 282, 130–144, https://doi.org/10.1016/S0022-1694(03)00259-2,
2003. a, b, c
Kaser, G., Cogley, J. G., Dyurgerov, M. B., Meier, M. F., and Ohmura, A.: Mass
balance of glaciers and ice caps: Consensus estimates for 1961–2004,
Geophys. Res. Lett., 33, L19501, https://doi.org/10.1029/2006GL027511, 2006. a
Keenan, E., Wever, N., Dattler, M., Lenaerts, J. T. M., Medley, B., Kuipers Munneke, P., and Reijmer, C.: Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density, The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, 2021. a
Landmann, J. M., Künsch, H. R., Huss, M., Ogier, C., Kalisch, M., and Farinotti, D.: Assimilating near-real-time mass balance stake readings into a model ensemble using a particle filter, The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, 2021. a, b, c, d
Linsbauer, A., Huss, M., Hodel, E., Bauder, A., Fischer, M., Weidmann, Y.,
Bärtschi, H., and Schmassmann, E.: The New Swiss Glacier Inventory
SGI2016: From a Topographical to a Glaciological Dataset, Front.
Earth Sci., 9, 704189, https://doi.org/10.3389/feart.2021.704189, 2021. a
Litt, M., Shea, J., Wagnon, P., Steiner, J., Koch, I., Stigter, E., and
Immerzeel, W.: Glacier ablation and temperature indexed melt models in the
Nepalese Himalaya, Sci. Rep.-UK, 9, 5264, https://doi.org/10.1038/s41598-019-41657-5,
2019. a
López-Moreno, J., Fassnacht, S., Heath, J., Musselman, K., Revuelto, J.,
Latron, J., Morán-Tejeda, E., and Jonas, T.: Small scale spatial
variability of snow density and depth over complex alpine terrain:
Implications for estimating snow water equivalent, Adv. Water
Resour., 55, 40–52, https://doi.org/10.1016/j.advwatres.2012.08.010, 2013. a
Machguth, H., Eisen, O., Paul, F., and Hoelzle, M.: Strong spatial
variability of snow accumulation observed with helicopter-borne GPR on two
adjacent Alpine glaciers, Geophys. Res. Lett., 33, L13503,
https://doi.org/10.1029/2006GL026576, 2006. a, b, c
Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K.,
Huss, M., Immerzeel, W. W., Kraaijenbrink, P., Malles, J.-H., Maussion, F.,
Radić, V., Rounce, D. R., Sakai, A., Shannon, S., Wal, R., and
Zekollari, H.: Partitioning the Uncertainty of Ensemble Projections of Global
Glacier Mass Change, Earth's Future, 8, e2019EF001470,
https://doi.org/10.1029/2019ef001470, 2020. a
McGrath, D., Sass, L., O'Neel, S., Arendt, A., Wolken, G.,
Gusmeroli, A., Kienholz, C., and McNeil, C.: End-of-winter snow depth
variability on glaciers in Alaska, J. Geophys. Res.-Earth, 120, 1530–1550, https://doi.org/10.1002/2015JF003539, 2015. a, b
McGrath, D., Sass, L., O'Neel, S., McNeil, C., Candela, S. G., Baker, E. H., and Marshall, H.-P.: Interannual snow accumulation variability on glaciers derived from repeat, spatially extensive ground-penetrating radar surveys, The Cryosphere, 12, 3617–3633, https://doi.org/10.5194/tc-12-3617-2018, 2018. a
Ochwat, N. E., Marshall, S. J., Moorman, B. J., Criscitiello, A. S., and Copland, L.: Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer, The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021, 2021. a
Pelto, B. M., Menounos, B., and Marshall, S. J.: Multi-year evaluation of airborne geodetic surveys to estimate seasonal mass balance, Columbia and Rocky Mountains, Canada, The Cryosphere, 13, 1709–1727, https://doi.org/10.5194/tc-13-1709-2019, 2019. a
Pelto, M., Kavanaugh, J., and McNeil, C.: Juneau Icefield Mass Balance Program 1946–2011, Earth Syst. Sci. Data, 5, 319–330, https://doi.org/10.5194/essd-5-319-2013, 2013. a
Pelto, M. S.: The impact of sampling density on glacier mass balance
determination, Hydrol. Process., 14, 3215–3225,
https://doi.org/10.1002/1099-1085(20001230)14:18<3215::AID-HYP197>3.0.CO;2-E, 2000. a
Pulwicki, A., Flowers, G. E., Radić, V., and Bingham, D.: Estimating
winter balance and its uncertainty from direct measurements of snow depth and
density on alpine glaciers, J. Glaciol., 64, 781–795,
https://doi.org/10.1017/jog.2018.68, 2018. a
Senese, A., Maugeri, M., Meraldi, E., Verza, G. P., Azzoni, R. S., Compostella, C., and Diolaiuti, G.: Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy), The Cryosphere, 12, 1293–1306, https://doi.org/10.5194/tc-12-1293-2018, 2018. a
Sold, L., Huss, M., Hoelzle, M., Andereggen, H., Joerg, P. C., and
Zemp, M.: Methodological approaches to infer end-of-winter snow
distribution on alpine glaciers, J. Glaciol., 59, 1047–1059,
https://doi.org/10.3189/2013JoG13J015, 2013. a
Sold, L., Huss, M., Eichler, A., Schwikowski, M., and Hoelzle, M.: Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier, The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, 2015. a, b
Sold, L., Huss, M., Machguth, H., Joerg, P., Leysinger Vieli, G.,
Linsbauer, A., Salzmann, N., Zemp, M., and Hoelzle, M.: Mass balance
re-analysis of Findelengletscher, Switzerland; benefits of extensive snow
accumulation measurements, Front. Earth Sci., 4, 18,
https://doi.org/10.3389/feart.2016.00018, 2016. a, b, c, d, e
swisstopo: swissALTI3D, Das hoch aufgelöste Terrainmodell der Schweiz, Swiss Federal Office of Topography, Wabern,
https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html (last access: 15 July 2022), 2018. a
Thibert, E., Blanc, R., Vincent, C., and Eckert, N.: Glaciological and
volumetric mass balance measurements error analysis over 51 years for the
Sarennes glacier, French Alps, J. Glaciol., 54, 522–532,
https://doi.org/10.3189/002214308785837093, 2008. a
Thibert, E., Dkengne Sielenou, P., Vionnet, V., Eckert, N., and
Vincent, C.: Causes of Glacier Melt Extremes in the Alps Since 1949,
Geophys. Res. Lett., 45, 817–825, https://doi.org/10.1002/2017GL076333, 2018. a
Trewin, B., Cazenave, A., Howell, S., Huss, M., Isensee, K., Palmer, M. D.,
Tarasova, O., and Vermeulen, A.: Headline Indicators for Global Climate
Monitoring, B. Am. Meteorol. Soc., 102, E20–E37,
https://doi.org/10.1175/bams-d-19-0196.1, 2021. a
Van Tiel, M., Teuling, A. J., Wanders, N., Vis, M. J. P., Stahl, K., and Van Loon, A. F.: The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments, Hydrol. Earth Syst. Sci., 22, 463–485, https://doi.org/10.5194/hess-22-463-2018, 2018. a
Vincent, C.: Influence of climate change over the 20th Century on four
French glacier mass balances, J. Geophys. Res., 107, ACL 4-1–ACL 4-12,
https://doi.org/10.1029/2001JD000832, 2002. a
Vincent, C., Kappenberger, G., Valla, F., Bauder, A., Funk, M., and Meur,
E. L.: Ice ablation as evidence of climate change in the Alps over the 20th
century, J. Geophys. Res., 109, D10104,
https://doi.org/10.1029/2003JD003857, 2004. a, b
Vincent, C., Fischer, A., Mayer, C., Bauder, A., Galos, S. P.,
Funk, M., Thibert, E., Six, D., Braun, L., and Huss, M.: Common
climatic signal from glaciers in the European Alps over the last 50 years,
Geophys. Res. Lett., 44, 1376–1383, https://doi.org/10.1002/2016GL072094,
2017. a, b, c
WGMS: Global
Glacier Change Bulletin No. 4 (2018–2019), edited by: Zemp, M., Nussbaumer, S. U., Gärtner-Roer, I.,
Bannwart, J., Paul, F., and Hoelzle, M., ISC(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO,
World Glacier Monitoring Service, Zurich, Switzerland, 278 pp., publication based on database
version: https://doi.org/10.5904/wgms-fog-2021-05, 2021. a, b, c
Zekollari, H. and Huybrechts, P.: Statistical modelling of the surface
mass-balance variability of the Morteratsch glacier, Switzerland: strong
control of early melting season meteorological conditions, J.
Glaciol., 64, 275–288, https://doi.org/10.1017/jog.2018.18, 2018. a
Zemp, M., Hoelzle, M., and Haeberli, W.: Six decades of glacier mass-balance
observations: a review of the worldwide monitoring network, Ann.
Glaciol., 50, 101–111, https://doi.org/10.3189/172756409787769591, 2009. a
Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S. U., Moholdt, G., Mercer, A., Mayer, C., Joerg, P. C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, H., Elvehøy, H., and Andreassen, L. M.: Reanalysing glacier mass balance measurement series, The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, 2013. a, b
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle,
M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P.,
Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N.,
Cáceres, B. E., Casassa, G., Cobos, G., Dávila, L. R.,
Delgado Granados, H., Demuth, M. N., Espizua, L., Fischer, A.,
Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P.,
Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V.,
Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I.,
Sigursson, O., Soruco, A., Usubaliev, R., and Vincent, C.:
Historically unprecedented global glacier decline in the early 21st
century, J. Glaciol., 61, 745–762, https://doi.org/10.3189/2015JoG15J017,
2015. a, b, c, d
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun,
M., Machguth, H., Nussbaumer, S., Gärtner-Roer, I., Thomson, L., Paul,
F., Maussion, F., Kutuzov, S., and Cogley, J.: Global glacier mass changes
and their contributions to sea-level rise from 1961 to 2016, Nature, 568,
382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019. a
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series...
Altmetrics
Final-revised paper
Preprint