Articles | Volume 14, issue 3
https://doi.org/10.5194/essd-14-1433-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-1433-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Resilient dataset of rain clusters with life cycle evolution during April to June 2016–2020 over eastern Asia based on observations from the GPM DPR and Himawari-8 AHI
Aoqi Zhang
School of Atmospheric Sciences, Sun Yat-sen University, and Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai,
519082, China
Chen Chen
School of Applied Economics, Renmin University of China, Beijing,
100872, China
Yilun Chen
CORRESPONDING AUTHOR
School of Atmospheric Sciences, Sun Yat-sen University, and Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai,
519082, China
Weibiao Li
School of Atmospheric Sciences, Sun Yat-sen University, and Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai,
519082, China
Shumin Chen
School of Atmospheric Sciences, Sun Yat-sen University, and Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai,
519082, China
Yunfei Fu
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei, 230026, China
Related authors
No articles found.
Zhenhao Wu, Jian Shang, Chunguan Cui, Peng Zhang, Songyan Gu, Lin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 17, 5137–5148, https://doi.org/10.5194/essd-17-5137-2025, https://doi.org/10.5194/essd-17-5137-2025, 2025
Short summary
Short summary
We have established a new dataset of rain cell precipitation parameters and visible-infrared and microwave signals by combining multi-instrument observation data from the Tropical Rainfall Measuring Mission (TRMM). The purpose of this dataset is to promote the three-dimensional studies of rain cell precipitation systems and to reveal the spatial and temporal variations in their scale, morphology, and intensity.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Xiaoyong Zhuge, Xiaolei Zou, Lu Yu, Xin Li, Mingjian Zeng, Yilun Chen, Bing Zhang, Bin Yao, Fei Tang, Fengjiao Chen, and Wanlin Kan
Earth Syst. Sci. Data, 16, 1747–1769, https://doi.org/10.5194/essd-16-1747-2024, https://doi.org/10.5194/essd-16-1747-2024, 2024
Short summary
Short summary
The Himawari-8/9 level-2 operational cloud product has a low spatial resolution and is available only during the daytime. To supplement this official dataset, a new dataset named the NJIAS Himawari-8/9 Cloud Feature Dataset (HCFD) was constructed. The NJIAS HCFD provides a comprehensive description of cloud features over the East Asia and west North Pacific regions for the years 2016–2022 by 30 retrieved cloud variables. The NJIAS HCFD has been demonstrated to outperform the official dataset.
Peizhen Li, Lei Zhong, Yaoming Ma, Yunfei Fu, Meilin Cheng, Xian Wang, Yuting Qi, and Zixin Wang
Atmos. Chem. Phys., 23, 9265–9285, https://doi.org/10.5194/acp-23-9265-2023, https://doi.org/10.5194/acp-23-9265-2023, 2023
Short summary
Short summary
In this paper, all-sky downwelling shortwave radiation (DSR) over the entire Tibetan Plateau (TP) at a spatial resolution of 1 km was estimated using an improved parameterization scheme. The influence of topography and different radiative attenuations were comprehensively taken into account. The derived DSR showed good agreement with in situ measurements. The accuracy was better than six other DSR products. The derived DSR also provided more reasonable and detailed spatial patterns.
Lilu Sun and Yunfei Fu
Earth Syst. Sci. Data, 13, 2293–2306, https://doi.org/10.5194/essd-13-2293-2021, https://doi.org/10.5194/essd-13-2293-2021, 2021
Short summary
Short summary
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We merged Tropical Rainfall Measuring Mission precipitation radar and visible and infrared scanner measurements with ERA5 reanalysis. The statistical results indicate this process has no unacceptable influence on the original data. The merged dataset can help in studying characteristics of and changes in cloud and precipitation systems and provides an opportunity for data analysis and model simulations.
Ziyu Huang, Lei Zhong, Yaoming Ma, and Yunfei Fu
Geosci. Model Dev., 14, 2827–2841, https://doi.org/10.5194/gmd-14-2827-2021, https://doi.org/10.5194/gmd-14-2827-2021, 2021
Short summary
Short summary
Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of regional climate models (RCMs). However, the biases of the driving fields over the Tibetan Plateau (TP) would possibly introduce extra biases when spectral nudging is applied. The results show that the precipitation simulations were significantly improved when limiting the application of spectral nudging toward the potential temperature and water vapor mixing ratio over the TP.
Cited articles
Aggarwal, P. K., Romatschke, U., Araguas-Araguas, L., Belachew, D.,
Longstaffe, F. J., Berg, P., Schumacher, C., and Funk, A.: Proportions of
convective and stratiform precipitation revealed in water isotope ratios,
Nat. Geosci., 9, 624–629, https://doi.org/10.1038/ngeo2739, 2016.
Ai, Y., Li, W., Meng, Z., and Li, J.: Life Cycle Characteristics of MCSs in
Middle East China Tracked by Geostationary Satellite and Precipitation
Estimates, Mon. Weather Rev., 144, 2517–2530, https://doi.org/10.1175/MWR-D-15-0197.1,
2016.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai,
Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y.,
Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama,
H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to
Himawari-8/9-Japan's New-Generation Geostationary Meteorological Satellites,
J. Meteorol. Soc. Jpn., 94, 151–183, 2016.
Bringi, V. N., Thurai, M., Nakagawa, K., Huang, G. J., Kobayashi, T.,
Adachi, A., Hanado, H., and Sekizawa, S.: Rainfall Estimation from C-Band
Polarimetric Radar in Okinawa, Japan: Comparisons with 2D-Video Disdrometer
and 400 MHz Wind Profiler, J. Meteorol. Soc. Jpn., 84, 705–724,
https://doi.org/10.2151/jmsj.84.705, 2006.
Chawla, I., Osuri, K. K., Mujumdar, P. P., and Niyogi, D.: Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin, Hydrol. Earth Syst. Sci., 22, 1095–1117, https://doi.org/10.5194/hess-22-1095-2018, 2018.
Chen, D., Guo, J., Yao, D., Lin, Y., Zhao, C., Min, M., Xu, H., Liu, L.,
Huang, X., Chen, T., and Zhai, P.: Mesoscale Convective Systems in the Asian
Monsoon Region From Advanced Himawari Imager: Algorithms and Preliminary
Results, J. Geophys. Res.-Atmos., 124, 2210–2234,
https://doi.org/10.1029/2018JD029707, 2019.
Chen, D., Guo, J., Yao, D., Feng, Z., and Lin, Y.: Elucidating the Life
Cycle of Warm-Season Mesoscale Convective Systems in Eastern China from the
Himawari-8 Geostationary Satellite, Remote Sens.-Basel, 12, 2307,
https://doi.org/10.3390/rs12142307, 2020.
Chen, Y. and Fu, Y.: Characteristics of VIRS Signals within Pixels of TRMM
PR for Warm Rain in the Tropics and Subtropics, J. Appl. Meteorol. Clim.,
56, 789–801, https://doi.org/10.1175/JAMC-D-16-0198.1, 2017.
Chen, Y., Fu, Y., Xian, T., and Pan, X.: Characteristics of cloud cluster
over the steep southern slopes of the Himalayas observed by CloudSat, Int.
J. Climatol., 37, 4043–4052, https://doi.org/10.1002/joc.4992, 2017.
Chen, Y., Chen, G., Cui, C., Zhang, A., Wan, R., Zhou, S., Wang, D., and Fu, Y.: Retrieval of the vertical evolution of the cloud effective radius from the Chinese FY-4 (Feng Yun 4) next-generation geostationary satellites, Atmos. Chem. Phys., 20, 1131–1145, https://doi.org/10.5194/acp-20-1131-2020, 2020a.
Chen, Y., Li, W., Chen, S., Zhang, A., and Fu, Y.: Linkage Between the
Vertical Evolution of Clouds and Droplet Growth Modes as Seen From FY-4A
AGRI and GPM DPR, Geophys. Res. Lett., 47, e2020GL088312, https://doi.org/10.1029/2020GL088312, 2020b.
Da, C.: Preliminary assessment of the Advanced Himawari Imager (AHI)
measurement onboard Himawari-8 geostationary satellite, Remote Sens. Lett.,
6, 637–646, 2015.
Feng, Z., Leung, L. R., Liu, N., Wang, J., Houze, R. A., Li, J., Hardin, J.
C., Chen, D., and Guo, J.: A Global High-Resolution Mesoscale Convective
System Database Using Satellite-Derived Cloud Tops, Surface Precipitation,
and Tracking, J. Geophys. Res.-Atmos., 126, e2020JD034202,
https://doi.org/10.1029/2020JD034202, 2021.
Feral, L., Mesnard, F., Sauvageot, H., Castanets, L., and Lemorton, J.: Rain cells shape and orientation distribution in south-west of France, Phys. Chem. Earth B, 25, 1073–1078, https://doi.org/10.1016/S1464-1909(00)00155-6, 2000.
Fiolleau, T. and Roca, R.: An Algorithm for the Detection and Tracking of
Tropical Mesoscale Convective Systems Using Infrared Images From
Geostationary Satellite, IEEE T. Geosci. Remote, 51, 4302–4315, 2013a.
Fiolleau, T. and Roca, R.: Composite life cycle of tropical mesoscale
convective systems from geostationary and low Earth orbit satellite
observations: method and sampling considerations, Q. J. Roy. Meteor. Soc.,
139, 941–953, https://doi.org/10.1002/qj.2174, 2013b.
Freitas, S. R., Grell, G. A., Molod, A., Thompson, M. A., Putman, W. M.,
Santos E Silva, C. M., and Souza, E. P.: Assessing the Grell-Freitas
Convection Parameterization in the NASA GEOS Modeling System, J. Adv. Model.
Earth Sy., 10, 1266–1289, https://doi.org/10.1029/2017MS001251, 2018.
Freud, E. and Rosenfeld, D.: Linear relation between convective cloud drop
number concentration and depth for rain initiation, J. Geophys.
Res.-Atmos., 117, D2207, https://doi.org/10.1029/2011JD016457, 2012.
Fu, Y., Liu, Q., Gao, Y., Hong, X., Zi, Y., Zheng, Y., Li, R., and Heng, Z.:
A feasible method for merging the TRMM microwave imager and precipitation
radar data, J. Quant. Spectrosc. Ra.,
122, 155–169, https://doi.org/10.1016/j.jqsrt.2012.08.028, 2013.
Fu, Y., Chen, Y., Zhang, X., Wang, Y., Li, R., Liu, Q., Zhong, L., Zhang,
Q., and Zhang, A.: Fundamental Characteristics of Tropical Rain Cell
Structures as Measured by TRMM PR, J. Meteorol. Res., 34,
1129–1150, https://doi.org/10.1007/s13351-020-0035-5, 2020.
Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., and Yacalis, G.: Could
Machine Learning Break the Convection Parameterization Deadlock?, Geophys.
Res. Lett., 45, 5742–5751, https://doi.org/10.1029/2018GL078202, 2018.
Gonzalez, R. C. and Thomason, M. G.: Syntactic pattern recognition: an
introduction, American Council on Education, 0826814506, 1978.
Hamada, A. and Takayabu, Y. N.: Improvements in Detection of Light Precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR), J. Atmos. Ocean. Tech., 33, 653–667, https://doi.org/10.1175/JTECH-D-15-0097.1, 2016.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803,
2020.
Houze, R. A.: Cloud dynamics, 2nd edn., Academic press, 9780123742667, 2014.
Houze, R. A., Rasmussen, K. L., Zuluaga, M. D., and Brodzik, S. R.: The
variable nature of convection in the tropics and subtropics: A legacy of 16
years of the Tropical Rainfall Measuring Mission satellite, Rev. Geophys.,
53, 994–1021, https://doi.org/10.1002/2015RG000488, 2015.
Iguchi, T., Seto, S., Meneghini, R., Yoshida, N., Awaka, J., Le, M., Chandrasekar, V., and Kubota, T.: GPM/DPR level-2 algorithm theoretical basis document, NASA Goddard Space Flight Center, https://gpm.nasa.gov/sites/default/files/document_files/ATBD_DPR_201811_with_Appendix3b_0.pdf (last access: 31 March 2022), 2010.
Iguchi, T., Seto, S., Meneghini, R., Yoshida, N., Awaka, J., Kubota, T.,
Kozu, T., Chandra, V., Le, M., Liao, L., Tanelli, S., and Durden, S.: An
overview of the precipitation retrieval algorithm for the Dual-frequency
Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM)
mission's core satellite, Conference on Earth Observing Missions and Sensors
– Development, Implementation, and Characterization II, Kyoto, JAPAN, edited by: Shimoda, H. and Xiong, X., https://doi.org/10.1117/12.977352, 2012.
Kumar, S., Castillo-Velarde, C. D., Flores Rojas, J. L., Moya-Álvarez,
A., Martínez Castro, D., Srivastava, S., and Silva, Y.: Precipitation
structure during various phases the life cycle of precipitating cloud
systems using geostationary satellite and space-based precipitation radar
over Peru, GISci. Remote Sens., 57, 1057–1082,
https://doi.org/10.1080/15481603.2020.1843846, 2020.
Lau, K. M. and Wu, H. T.: Climatology and changes in tropical oceanic
rainfall characteristics inferred from Tropical Rainfall Measuring Mission
(TRMM) data (1998–2009), J. Geophys. Res., 116, D17111,
https://doi.org/10.1029/2011JD015827, 2011.
Li, H., He, S., Fan, K., and Wang, H.: Relationship between the onset date
of the Meiyu and the South Asian anticyclone in April and the related
mechanisms, Clim. Dynam., 52, 209–226, https://doi.org/10.1007/s00382-018-4131-5, 2019.
Li, P., Moseley, C., Prein, A. F., Chen, H., Li, J., Furtado, K., and Zhou,
T.: Mesoscale Convective System Precipitation Characteristics over East
Asia. Part I: Regional Differences and Seasonal Variations, J. Climate, 33,
9271–9286, https://doi.org/10.1175/JCLI-D-20-0072.1, 2020.
Li, W., Zhang, F., Yu, Y., Iwabuchi, H., Shen, Z., Wang, G., and Zhang, Y.:
The semi-diurnal cycle of deep convective systems over Eastern China and its
surrounding seas in summer based on an automatic tracking algorithm, Clim.
Dynam., 56, 357–379, https://doi.org/10.1007/s00382-020-05474-1, 2021.
Liu, C. and Zipser, E. J.: The global distribution of largest, deepest, and
most intense precipitation systems, Geophys. Res. Lett., 42, 3591–3595,
https://doi.org/10.1002/2015GL063776, 2015.
Liu, C., Zipser, E. J., Cecil, D. J., Nesbitt, S. W., and Sherwood, S.: A
Cloud and Precipitation Feature Database from Nine Years of TRMM
Observations, J. Appl. Meteorol. Clim., 47, 2712–2728,
https://doi.org/10.1175/2008JAMC1890.1, 2008.
Machado, L. A. T. and Laurent, H.: The convective system area expansion
over amazonia and its relationships with convective system life duration and
high-level wind divergence, Mon. Weather Rev., 132, 714–725,
https://doi.org/10.1175/1520-0493(2004)132<0714:TCSAEO>2.0.CO;2,
2004.
Mapes, B. E. and Houze, R. A.: Cloud Clusters and Superclusters over the
Oceanic Warm Pool, Mon. Weather Rev., 121, 1398–1415,
https://doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2,
1993.
Min, M., Wu, C., Li, C., Liu, H., Xu, N., Wu, X., Chen, L., Wang, F., Sun,
F., Qin, D., Wang, X., Li, B., Zheng, Z., Cao, G., and Dong, L.: Developing
the Science Product Algorithm Testbed for Chinese Next-Generation
Geostationary Meteorological Satellites: Fengyun-4 Series, J. Meteorol.
Res., 31, 708–719, https://doi.org/10.1007/s13351-017-6161-z, 2017.
Min, Q., Li, R., Wu, X., and Fu, Y.: Retrieving latent heating vertical
structure from cloud and precipitation Profiles-Part I: Warm rain processes,
J. Quant. Spectrosc. Ra., 122, 31–46, https://doi.org/10.1016/j.jqsrt.2012.11.030, 2013.
Miura, T., Kojima, M., Furukawa, K., Hyakusoku, Y., Ishikiri, T., Kai, H.,
Iguchi, T., Hanado, H., Nakagawa, K., Meynart, R., Neeck, S. P., and
Shimoda, H.: Status of proto-flight model of the dual-frequency
precipitation radar for the global precipitation measurement, edited by: Meynart, R., Neeck, S. P., and Shimoda, H., 2012, 853309, https://doi.org/10.1117/12.974782,
2012.
Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and
Williams, C.: Global patterns of land-atmosphere fluxes of carbon dioxide,
latent heat, and sensible heat derived from eddy covariance, satellite, and
meteorological observations, J. Geophys. Res., 116, G00J07,
https://doi.org/10.1029/2010JG001566, 2011.
Morrison, H. and Milbrandt, J. A.: Parameterization of Cloud Microphysics
Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme
Description and Idealized Tests, J. Atmos. Sci., 72, 287–311,
https://doi.org/10.1175/JAS-D-14-0065.1, 2015.
Nelson, E. L. and L'Ecuyer, T. S.: Global Character of Latent Heat Release
in Oceanic Warm Rain Systems, J. Geophys. Res.-Atmos.,
123, 4797–4817, https://doi.org/10.1002/2017JD027844, 2018.
Nesbitt, S. W., Cifelli, R., and Rutledge, S. A.: Storm morphology and
rainfall characteristics of TRMM precipitation features, Mon. Weather Rev.,
134, 2702–2721, https://doi.org/10.1175/MWR3200.1, 2006.
Nishant, N., Sherwood, S. C., and Geoffroy, O.: Aerosol-induced modification
of organised convection and top-of-atmosphere radiation, NPJ climate and
atmospheric science, 2, 33, https://doi.org/10.1038/s41612-019-0089-1, 2019.
Oki, T. and Kanae, S.: Global hydrological cycles and world water
resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Rosenfeld, D., Woodley, W. L., Lerner, A., Kelman, G., and Lindsey, D. T.:
Satellite detection of severe convective storms by their retrieved vertical
profiles of cloud particle effective radius and thermodynamic phase, J. Geophys. Res., 113, D04208, https://doi.org/10.1029/2007JD008600, 2008.
Schumacher, R. S. and Rasmussen, K. L.: The formation, character and
changing nature of mesoscale convective systems, Nat. Rev. Earth
Environ., 1, 300–314, https://doi.org/10.1038/s43017-020-0057-7, 2020.
Sun, L. and Fu, Y.: A new merged dataset for analyzing clouds, precipitation and atmospheric parameters based on ERA5 reanalysis data and the measurements of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar and visible and infrared scanner, Earth Syst. Sci. Data, 13, 2293–2306, https://doi.org/10.5194/essd-13-2293-2021, 2021.
Vant-Hull, B., Rossow, W., and Pearl, C.: Global Comparisons of Regional
Life Cycle Properties and Motion of Multiday Convective Systems: Tropical
and Midlatitude Land and Ocean, J. Climate, 29, 5837–5858,
https://doi.org/10.1175/JCLI-D-15-0698.1, 2016.
Wall, C. J., Hartmann, D. L., Thieman, M. M., Smith, W. L., and Minnis, P.:
The Life Cycle of Anvil Clouds and the Top-of-Atmosphere Radiation Balance
over the Tropical West Pacific, J. Climate, 31, 10059–10080,
https://doi.org/10.1175/JCLI-D-18-0154.1, 2018.
Wall, C. J., Norris, J. R., Gasparini, B., Smith, W. L., Thieman, M. M., and
Sourdeval, O.: Observational Evidence that Radiative Heating Modifies the
Life Cycle of Tropical Anvil Clouds, J. Climate, 33, 8621–8640,
https://doi.org/10.1175/JCLI-D-20-0204.1, 2020.
Wang, X., Min, M., Wang, F., Guo, J., Li, B., and Tang, S.: Intercomparisons
of Cloud Mask Products Among Fengyun-4A, Himawari-8, and MODIS, IEEE T.
Geosci. Remote., 57, 8827–8839, https://doi.org/10.1109/TGRS.2019.2923247, 2019.
Wen, L., Zhao, K., Zhang, G., Xue, M., Zhou, B., Liu, S., and Chen, X.:
Statistical characteristics of raindrop size distributions observed in East
China during the Asian summer monsoon season using 2-D video disdrometer and
Micro Rain Radar data, J. Geophys. Res.-Atmos., 121,
2265–2282, https://doi.org/10.1002/2015JD024160, 2016.
Wilheit, T. and Kummerow, C. D.: Use of the TRMM-PR for Estimating the TMI
Beam Filling Correction, J. Meteorol. Soc. Japan
Ser. II, 87A, 255–263, https://doi.org/10.2151/jmsj.87A.255, 2009.
Yang, J., Zhang, Z., Wei, C., Lu, F., and Guo, Q.: Introducing the New
Generation of Chinese Geostationary Weather Satellites, Fengyun-4, B. Am.
Meteorol. Soc., 98, 1637–1658, https://doi.org/10.1175/BAMS-D-16-0065.1, 2017.
Yang, Y. X.: Resilient PNT Concept Frame, J. Geod.
Geoinform. Sci., 2, 1–7, https://doi.org/10.11947/j.JGGS.2019.0301, 2019.
Zhang, A., Fu, Y., Chen, Y., Liu, G., and Zhang, X.: Impact of the surface
wind flow on precipitation characteristics over the southern Himalayas: GPM
observations, Atmos. Res., 202, 10–22, https://doi.org/10.1016/j.atmosres.2017.11.001,
2018.
Zhang, A. Q. and Fu, Y. F.: Life Cycle Effects on the Vertical Structure of
Precipitation in East China Measured by Himawari-8 and GPM DPR, Mon. Weather
Rev., 146, 2183–2199, https://doi.org/10.1175/MWR-D-18-0085.1, 2018.
Zhang, A. Q., Chen, C., and Chen, Y. L.: An event-based precipitation
dataset with life cycle evolution using resilient algorithms (Version 3), Zenodo
[data set], https://doi.org/10.5281/zenodo.6198716, 2022.
Zhang, X., Shen, W., Zhuge, X., Yang, S., Chen, Y., Wang, Y., Chen, T., and
Zhang, S.: Statistical Characteristics of Mesoscale Convective Systems
Initiated over the Tibetan Plateau in Summer by Fengyun Satellite and
Precipitation Estimates, Remote Sens.-Basel, 13, 1652,
https://doi.org/10.3390/rs13091652, 2021.
Zhuge, X. and Zou, X.: Summertime Convective Initiation Nowcasting over
Southeastern China Based on Advanced Himawari Imager Observations, J. Meteorol. Soc. Japan. Ser. II, 96, 337–353,
https://doi.org/10.2151/jmsj.2018-041, 2018.
Short summary
We constructed an event-based precipitation dataset with life cycle evolution based on coordinated application of observations from spaceborne active precipitation radar and geostationary satellites. The dataset provides both three-dimensional structures of the precipitation system and its corresponding life cycle evolution. The dataset greatly reduces the data size and avoids complex data processing algorithms for studying the life cycle evolution of precipitation microphysics.
We constructed an event-based precipitation dataset with life cycle evolution based on...
Altmetrics
Final-revised paper
Preprint