Articles | Volume 13, issue 3
https://doi.org/10.5194/essd-13-969-2021
https://doi.org/10.5194/essd-13-969-2021
Data description paper
 | 
10 Mar 2021
Data description paper |  | 10 Mar 2021

Antarctic atmospheric boundary layer observations with the Small Unmanned Meteorological Observer (SUMO)

John J. Cassano, Melissa A. Nigro, Mark W. Seefeldt, Marwan Katurji, Kelly Guinn, Guy Williams, and Alice DuVivier

Related authors

Forcing for varying boundary layer stability across Antarctica
Mckenzie J. Dice, John J. Cassano, and Gina C. Jozef
Weather Clim. Dynam., 5, 369–394, https://doi.org/10.5194/wcd-5-369-2024,https://doi.org/10.5194/wcd-5-369-2024, 2024
Short summary
Quantifying the Impacts of Atmospheric Rivers on the Surface Energy Budget of the Arctic Based on Reanalysis
Chen Zhang, John J. Cassano, Mark Seefeldt, Hailong Wang, Weiming Ma, and Wen-wen Tung
EGUsphere, https://doi.org/10.5194/egusphere-2024-320,https://doi.org/10.5194/egusphere-2024-320, 2024
Short summary
An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024,https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Variations in boundary layer stability across Antarctica: a comparison between coastal and interior sites
Mckenzie J. Dice, John J. Cassano, Gina C. Jozef, and Mark Seefeldt
Weather Clim. Dynam., 4, 1045–1069, https://doi.org/10.5194/wcd-4-1045-2023,https://doi.org/10.5194/wcd-4-1045-2023, 2023
Short summary
Derivation and compilation of lower-atmospheric properties relating to temperature, wind, stability, moisture, and surface radiation budget over the central Arctic sea ice during MOSAiC
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023,https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary

Related subject area

Meteorology
Homogenized daily sunshine duration over China from 1961 to 2022
Yanyi He, Kaicun Wang, Kun Yang, Chunlüe Zhou, Changkun Shao, and Changjian Yin
Earth Syst. Sci. Data, 17, 1595–1611, https://doi.org/10.5194/essd-17-1595-2025,https://doi.org/10.5194/essd-17-1595-2025, 2025
Short summary
Observations of surface energy fluxes and meteorology in the seasonally snow-covered high-elevation East River watershed during SPLASH, 2021–2023
Christopher J. Cox, Janet M. Intrieri, Brian J. Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, and James M. Wilczak
Earth Syst. Sci. Data, 17, 1481–1499, https://doi.org/10.5194/essd-17-1481-2025,https://doi.org/10.5194/essd-17-1481-2025, 2025
Short summary
MDG625: a daily high-resolution meteorological dataset derived by a geopotential-guided attention network in Asia (1940–2023)
Zijiang Song, Zhixiang Cheng, Yuying Li, Shanshan Yu, Xiaowen Zhang, Lina Yuan, and Min Liu
Earth Syst. Sci. Data, 17, 1501–1514, https://doi.org/10.5194/essd-17-1501-2025,https://doi.org/10.5194/essd-17-1501-2025, 2025
Short summary
The SAIL dataset of marine atmospheric electric field observations over the Atlantic Ocean
Susana Barbosa, Nuno Dias, Carlos Almeida, Guilherme Amaral, António Ferreira, António Camilo, and Eduardo Silva
Earth Syst. Sci. Data, 17, 1393–1405, https://doi.org/10.5194/essd-17-1393-2025,https://doi.org/10.5194/essd-17-1393-2025, 2025
Short summary
Global projections of heat stress at high temporal resolution using machine learning
Pantelis Georgiades, Theo Economou, Yiannis Proestos, Jose Araya, Jos Lelieveld, and Marco Neira
Earth Syst. Sci. Data, 17, 1153–1171, https://doi.org/10.5194/essd-17-1153-2025,https://doi.org/10.5194/essd-17-1153-2025, 2025
Short summary

Cited articles

Ackley, S. F., Stammerjohn, S., Maksym, T., Smith, M., Cassano, J., Guest, P., Tison, J.-L., Delille, B., Loose, B., Sedwick, P., DePace, L., Roach, L., and Parno, J.: Sea-ice production and air/ice/ocean/biogeochemistry interactions in thee Ross Sea during the PIPERS 2017 autumn field campaign, Ann. Glaciol., 61, 181–195, https://doi.org/10.1017/aog.2020.31, 2020. 
Båserud, L., Reuder, J., Jonassen, M. O., Bonin, T. A., Chilson, P. B., Jimenez, M. A., and Durand, P.: Potential and limitations in estimating sensible heat flux profiles from consecutive temperature profiling by RPAS, Bound.-Lay. Meteorol., 174, 145–177, https://doi.org/10.1007/s10546-019-00478-9, 2020. 
Bonin, T., Chilson, P., Zielke B., and Fedorovich, E.: Observations of the early evening boundary-layer transition using a small unmanned aerial system, Bound.-Lay. Meteorol., 146, 119–132, https://doi.org/10.1007/s10546-012-9760-3, 2013. 
Cassano, J.: Observations of atmospheric boundary layer temperature profiles with a small unmanned aerial vehicle, Antarct. Sci., 26, 205–213, https://doi.org/10.1017/S0954102013000539, 2014. 
Cassano, J.: SUMO unmanned aerial system (UAS) atmospheric data, US Antarctic Program (USAP) Data Center, https://doi.org/10.15784/601054, 2017. 
Download
Short summary
Between January 2012 and June 2017, a small unmanned aerial system (sUAS), or drone, known as the Small Unmanned Meteorological Observer (SUMO), was used to observe the lowest 1000 m of the Antarctic atmosphere. During six Antarctic field campaigns, 116 SUMO flights were completed. These flights took place during all seasons over both permanent ice and ice-free locations on the Antarctic continent and over sea ice in the western Ross Sea providing unique observations of the Antarctic atmosphere.
Share
Altmetrics
Final-revised paper
Preprint