Articles | Volume 13, issue 12
https://doi.org/10.5194/essd-13-5617-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-5617-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Plankton Lifeform Extraction Tool: a digital tool to increase the discoverability and usability of plankton time-series data
The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
Kevin Paxman
The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
Carolyn A. Graves
Centre for Environment Fisheries and Aquaculture Science
(Cefas), Weymouth, UK
Mathew Arnold
The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
Luis Felipe Artigas
Université du Littoral Côte d'Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d'Océanologie et de Géosciences, Wimereux, France
Angus Atkinson
Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
Anaïs Aubert
Muséum National d'Histoire Naturelle (MNHN), CRESCO, 38 UMS
Patrinat, Dinard, France
Malcolm Baptie
Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire mL1 4WQ, UK
Beth Bear
Centre for Environment Fisheries and Aquaculture Science (Cefas),
Lowestoft, UK
Jacob Bedford
Marine Conservation Research Group, University of Plymouth, Drake
Circus, Plymouth, PL4 8AA, UK
Michael Best
The Environment Agency, Kingfisher House, Goldhay Way, Peterborough,
PE4 6HL, UK
Eileen Bresnan
Marine Scotland Science, Marine Laboratory, 375 Victoria Road,
Aberdeen, AB11 9DB, UK
Rachel Brittain
The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
Derek Broughton
The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
Alexandre Budria
Muséum National d'Histoire Naturelle (MNHN), CRESCO, 38 UMS
Patrinat, Dinard, France
Department of Coastal Systems, NIOZ Royal Netherlands Institute for
Sea Research, Den Burg, Texel, the Netherlands
Kathryn Cook
National Oceanography Centre, European Way, Southampton, S014 3ZH,
UK
Michelle Devlin
Centre for Environment Fisheries and Aquaculture Science (Cefas),
Lowestoft, UK
George Graham
The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
Nick Halliday
The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
Pierre Hélaouët
The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
Marie Johansen
Swedish Meteorological and Hydrological Institute, Sven Kallfelts
gata 15, 426 71 Västra Frölunda, Gothenburg, Sweden
David G. Johns
The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
Margarita Machairopoulou
Marine Scotland Science, Marine Laboratory, 375 Victoria Road,
Aberdeen, AB11 9DB, UK
April McKinney
Fisheries and Aquatic Ecosystems Branch, Agri-Food and Biosciences
Institute, 18a Newforge Lane, Belfast BT9 5PX, UK
Adam Mellor
Fisheries and Aquatic Ecosystems Branch, Agri-Food and Biosciences
Institute, 18a Newforge Lane, Belfast BT9 5PX, UK
Alex Milligan
Centre for Environment Fisheries and Aquaculture Science (Cefas),
Lowestoft, UK
Sophie Pitois
Centre for Environment Fisheries and Aquaculture Science (Cefas),
Lowestoft, UK
Isabelle Rombouts
Muséum National d'Histoire Naturelle (MNHN), CRESCO, 38 UMS
Patrinat, Dinard, France
Cordula Scherer
Trinity Centre for Environmental Humanities, Department of History,
School of Histories and Humanities, Trinity College, University of Dublin, Dublin, Ireland
Paul Tett
Scottish Association for Marine Science, Scottish Marine Institute,
Oban, PA37 1QA, UK
Claire Widdicombe
Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
Abigail McQuatters-Gollop
Marine Conservation Research Group, University of Plymouth, Drake
Circus, Plymouth, PL4 8AA, UK
Related authors
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Kévin Robache, Zéline Hubert, Clémentine Gallot, Alexandre Epinoux, Arnaud P. Louchart, Jean-Valéry Facq, Alain Lefebvre, Michel Répécaud, Vincent Cornille, Florine Verhaeghe, Yann Audinet, Laurent Brutier, François G. Schmitt, and Luis Felipe Artigas
Ocean Sci., 21, 1787–1811, https://doi.org/10.5194/os-21-1787-2025, https://doi.org/10.5194/os-21-1787-2025, 2025
Short summary
Short summary
By deploying an automated flow cytometer at a coastal monitoring station in France, we tracked phytoplankton changes every 2 h during spring (2021 and 2022) and summer (2022). Our study revealed distinct seasonal shifts, e.g., with diatoms and haptophytes in spring. Rare weather events rapidly altered community composition. We found that most variability occurred on short timescales, underscoring the importance of high-frequency monitoring for understanding marine phytoplankton dynamics.
Zéline Hubert, Arnaud P. Louchart, Kévin Robache, Alexandre Epinoux, Clémentine Gallot, Vincent Cornille, Muriel Crouvoisier, Sébastien Monchy, and Luis Felipe Artigas
Ocean Sci., 21, 679–700, https://doi.org/10.5194/os-21-679-2025, https://doi.org/10.5194/os-21-679-2025, 2025
Short summary
Short summary
This study provides the first assessment of decadal changes in the whole phytoplankton community, addressed by flow cytometry, in the highly productive waters of the Strait of Dover. A significant surface seawater temperature increase of 1°C, associated with an important change in the nutrient concentration and balance, has triggered a change in the phytoplankton communities, characterized by a higher total abundance and an increasing proportion of the smallest cells (picroeukaryotes and picocyanobacteria).
Zéline Hubert, Aurélie Libeau, Clémentine Gallot, Vincent Cornille, Muriel Crouvoisier, Eric Lecuyer, and Luis Felipe Artigas
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-131, https://doi.org/10.5194/essd-2025-131, 2025
Preprint under review for ESSD
Short summary
Short summary
Long-term phytoplankton monitoring is key to understanding marine systems. This study presents a decade of observations along a coastal-offshore transect in the Strait of Dover using automated in vivo methods. Since 2012, phytoplankton groups have been analyzed via multi-spectral fluorometry and flow cytometry, alongside biogeochemical and hydrological measurements. This dataset offers valuable insights into phytoplankton dynamics and environmental drivers in a temperate coastal system.
Paul Dees, Friederike Fröb, Beatriz Arellano-Nava, David G. Johns, and Christoph Heinze
EGUsphere, https://doi.org/10.5194/egusphere-2025-470, https://doi.org/10.5194/egusphere-2025-470, 2025
Short summary
Short summary
In this paper we describe a novel methodology to automate the estimation of ecological regime shift probability in a single time series. We have applied this new methodology to the continuous plankton recorder dataset in the North Sea, and shown how the model is able to estimate the likelihood of a regime shift using abundance data of multiple phytoplankton and zooplankton species.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Richard Renshaw, Eileen Bresnan, Susan Kay, Robert McEwan, Peter I. Miller, and Paul Tett
State Planet, 1-osr7, 13, https://doi.org/10.5194/sp-1-osr7-13-2023, https://doi.org/10.5194/sp-1-osr7-13-2023, 2023
Short summary
Short summary
There were two unusual blooms in Scottish waters in summer 2021. Both turned the sea a turquoise colour visible from space, typical of coccolithophore blooms. We use reanalysis and satellite data to examine the environment that led to these blooms. We suggest unusual weather was a contributory factor in both cases.
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
Xabier Davila, Anna Rubio, Luis Felipe Artigas, Ingrid Puillat, Ivan Manso-Narvarte, Pascal Lazure, and Ainhoa Caballero
Ocean Sci., 17, 849–870, https://doi.org/10.5194/os-17-849-2021, https://doi.org/10.5194/os-17-849-2021, 2021
Short summary
Short summary
The ocean is a turbulent system, full of meandering currents and fronts of various scales. These processes can influence the distribution of microscopic algae or phytoplankton by upwelling deep, nutrient-rich waters to the sunlit surface or by actively gathering and accumulating them. Our results suggest that, at the surface, salinity is the main conditioning factor for phytoplankton distribution. However, at the subsurface, oceanic currents influence phytoplankton distribution the most.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Rebecca M. Wright, Corinne Le Quéré, Erik Buitenhuis, Sophie Pitois, and Mark J. Gibbons
Biogeosciences, 18, 1291–1320, https://doi.org/10.5194/bg-18-1291-2021, https://doi.org/10.5194/bg-18-1291-2021, 2021
Short summary
Short summary
Jellyfish have been included in a global ocean biogeochemical model for the first time. The global mean jellyfish biomass in the model is within the observational range. Jellyfish are found to play an important role in the plankton ecosystem, influencing community structure, spatiotemporal dynamics and biomass. The model raises questions about the sensitivity of the zooplankton community to jellyfish mortality and the interactions between macrozooplankton and jellyfish.
Cited articles
Atkinson, A., Harmer, R. A., Widdicombe, C. E., McEvoy, A. J., Smyth, T. J.,
Cummings, D. G., Somerfield, P. J., Maud, J. L., and McConville, K.:
Questioning the role of phenology shifts and trophic mismatching in a
planktonic food web, Prog. Oceanogr., 137, 498–512,
https://doi.org/10.1016/j.pocean.2015.04.023, 2015.
Atkinson, A., Lilley, M. K. S., Hirst, A. G., McEvoy, A. J., Tarran, G. A.,
Widdicombe, C., Fileman, E. S., Woodward, E. M. S., Schmidt, K., Smyth, T.
J., and Somerfield, P. J.: Increasing nutrient stress reduces the efficiency
of energy transfer through planktonic size spectra, Limnol. Oceanogr.,
66, 422–437, https://doi.org/10.1002/lno.11613, 2021.
Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A., and Edwards, M.:
Reorganization of North Atlantic marine copepod biodiversity and climate,
Supplementary Material, Science, 296, 1692–1694,
https://doi.org/10.1126/science.1071329, 2002.
Beaugrand, G., Edwards, M., and Legendre, L.: Marine biodiversity, ecosystem
functioning, and carbon cycles, P. Natl. Acad. Sci. USA, 107,
10120–10124, https://doi.org/10.1073/pnas.0913855107, 2010.
Bedford, J., Ostle, C., Johns, D. G., Atkinson, A., Best, M., Bresnan, E.,
Machairopoulou, M., Graves, C. A., Devlin, M., Milligan, A., Pitois, S.,
Mellor, A., Tett, P., and Mcquatters-gollop, A.: Lifeform indicators reveal
large-scale shifts in plankton across the North-West European shelf, Glob.
Change Biol., 2019, 1–16, https://doi.org/10.1111/gcb.15066, 2020a.
Bedford, J., Ostle, C., Johns, D. G., Budria, A., and Mcquatters-gollop, A.:
The influence of temporal scale selection on pelagic habitat biodiversity
indicators, Ecol. Indic., 114, 106311,
https://doi.org/10.1016/j.ecolind.2020.106311, 2020b.
Boyes, S. J. and Elliott, M.: Brexit: The marine governance horrendogram
just got more horrendous!, Mar. Pollut. Bull., 111, 41–44,
https://doi.org/10.1016/j.marpolbul.2016.08.020, 2016.
Bresnan, E., Cook, K., Hindson, J., Hughes, S., Lacaze, J.-P., Walsham, P.,
Webster, L., and Turrell W. R.: The Scottish Coastal Observatory 1997–2013,
Part 2: Description of Scotland's Coastal Waters, Scottish Mar. Freshw. Sci.
Rep., 7, 278 pp., 2016.
Capuzzo, E., Lynam, C. P., Barry, J., Stephens, D., Forster, R. M.,
Greenwood, N., McQuatters-Gollop, A., Silva, T., van Leeuwen, S. M., and
Engelhard, G. H.: A decline in primary production in the North Sea over 25
years, associated with reductions in zooplankton abundance and fish stock
recruitment, Glob. Change Biol., 24, e352–e364, https://doi.org/10.1111/gcb.13916,
2018.
CEFAS: 2000 to date North, Irish & Celtic Seas Centre for Environment,
Fisheries and Aquaculture Science Smartbuoy Marine Monitoring, The Archive
for Marine Species and Habitats Data (DASSH) [data set],
https://doi.org/10.17031/1634, 2019.
Chiba, S., Batten, S., Martin, C. S., Ivory, S., Miloslavich, P., and
Weatherdon, L. V: Zooplankton monitoring to contribute towards addressing
global biodiversity conservation challenges, J. Plankton Res., 40, 509–518, https://doi.org/10.1093/plankt/fby030, 2018.
Cibic, T., Comici, C., Bussani, A., and Del Negro, P.: Benthic diatom
response to changing environmental conditions, Estuar. Coast. Shelf S.,
115, 158–169, https://doi.org/10.1016/j.ecss.2012.03.033, 2012.
CPR and Johns, D. G.: Continuous Plankton Recorder Survey (CPR Survey), The
Marine Biological Association of the UK, CPR Survey [data set],
https://doi.org/10.17031/1629, 2019.
Daufresne, M., Lengfellner, K., and Sommer, U.: Global warming benefits the
small in aquatic ecosystems, P. Natl. Acad. Sci. USA, 106,
12788–12793, https://doi.org/10.1073/pnas.0902080106, 2009.
Devlin, M., Barry, J., Painting, S., and Best, M.: Extending the
phytoplankton tool kit for the UK Water Framework Directive: Indicators of
phytoplankton community structure, Hydrobiologia, 633, 151–168,
https://doi.org/10.1007/s10750-009-9879-5, 2009.
Devlin, M., Best, M., Bresnan, E., Scanlan, C., and Baptie, M.: Water
Framework Directive: The development and status of phytoplankton tools for
ecological assessment of coastal and transitional waters, Water Framework Directive – United Kingdom Technical Advisory Group (WFD-UKTAG), 94 pp.,
2012.
EA: Phytoplankton Dataset provided by the Environment Agency (EA) 2000–2017, The Archive for Marine Species and Habitats Data (DASSH) [data set],
https://doi.org/10.17031/1635, 2019.
Edwards, K. F., Klausmeier, C. A., and Litchman, E.: Nutrient utilization
traits of phytoplankton, Ecology, 96, 2311–2311, https://doi.org/10.1890/14-2252.1,
2015.
Edwards, M. and Richardson, A. J.: Impact of climate change on marine
pelagic phenology and trophic mismatch, Nature, 430, 881–884,
https://doi.org/10.1038/nature02808, 2004.
EU: Directive 2000/60/EC of the European Parliament and of the Council of 23
October 2000 establishing a framework for community action in the field of
water policy, Off. J. Eur. Commun., 327, 1–72, 2000.
Falkowski, P.: Ocean Science: The power of plankton, Nature, 483,
S17–S20, https://doi.org/10.1038/483S17a, 2012.
Fanjul, A., Villate, F., Uriarte, I., Iriarte, A., Atkinson, A., and Cook,
K.: Zooplankton variability at four monitoring sites of the Northeast
Atlantic Shelves differing in latitude and trophic status, J. Plankton Res.,
39, 891–909, https://doi.org/10.1093/plankt/fbx054, 2017.
Fanjul, A., Iriarte, A., Villate, F., Uriarte, I., Artiach, M., Atkinson, A.,
and Cook, K.: Latitude, distance offshore and local environmental features
as modulators of zooplankton assemblages across the NE Atlantic Shelves
Province, J. Plankton Res., 41, 293–308, https://doi.org/10.1093/plankt/fbz015,
2019.
Flynn, K. J., Stoecker, D. K., Mitra, A., Raven, J. A., Glibert, P. M.,
Hansen, P. J., Granéli, E., and Burkholder, J. M.: Misuse of the
phytoplankton-zooplankton dichotomy: The need to assign organisms as
mixotrophs within plankton functional types, J. Plankton Res., 35, 3–11,
https://doi.org/10.1093/plankt/fbs062, 2013.
Flynn, K. J., Mitra, A., Anestis, K., Anschütz, A. A., Calbet, A.,
Ferreira, G. D., Gypens, N., Hansen, P. J., John, U., Martin, J. L.,
Mansour, J. S., Maselli, M., Medić, N., Norlin, A., Not, F., Pitta, P.,
Romano, F., Saiz, E., Schneider, L. K., Stolte, W., and Traboni, C.:
Mixotrophic protists and a new paradigm for marine ecology: Where does
plankton research go now?, J. Plankton Res., 41, 375–391,
https://doi.org/10.1093/plankt/fbz026, 2019.
Glover, D., Jenkins, W., and Doney, S.: Modeling methods for marine science,
Cambridge University Press, 2005.
Gowen, R. J., Mcquatters-gollop, A., Tett, P., Best, M., Bresnan, E.,
Castellani, C., Cook, K., Forster, R. M., Scherer, C., and Mckinney, A.: The
Development of UK Pelagic (Plankton) Indicators and Targets for the MSFD,
Ecosystems, 2011, 1–41, https://doi.org/10.13140/RG.2.1.5181.1920, 2011.
Gowen, R. J., Tett, P., and Smayda, T. J.: Phytoplankton and the balance of
nature: An opinion, Estuar. Coast. Shelf S., 113, 317–323,
https://doi.org/10.1016/j.ecss.2012.08.009, 2012.
Gowen, R. J., Collos, Y., Tett, P., Scherer, C., Bec, B., Abadie, E., Allen,
M., and O'Brien, T.: Response of diatom and dinoflagellate lifeforms to
reduced phosphorus loading: A case study in the Thau lagoon, France, Estuar.
Coast. Shelf S., 162, 45–52, https://doi.org/10.1016/j.ecss.2015.03.033, 2015.
Grattepanche, J. D., Breton, E., Brylinski, J. M., Lecuyer, E., and
Christaki, U.: Succession of primary producers and micrograzers in a coastal
ecosystem dominated by Phaeocystis globosa blooms, J. Plankton Res., 33,
37–50, https://doi.org/10.1093/plankt/fbq097, 2011.
Greenwood, N.: Utilizing eutrophication assessment directives from
transitional to marine systems in the Thames estuary and Liverpool Bay, UK,
Front. Mar. Sci., 6, 116, https://doi.org/10.3389/fmars.2019.00116, 2019.
Hallegraeff, G., Enevoldsen, H., and Zingone, A.: Global harmful algal bloom
status reporting, Harmful Algae, 102, 101992, https://doi.org/10.1016/j.hal.2021.101992, 2021.
Hinder, S. L., Hays, G. C., Edwards, M., Roberts, E. C., Walne, A. W., and
Gravenor, M. B.: Changes in marine dinoflagellate and diatom abundance under
climate change, Nat. Clim. Change, 2, 271–275, https://doi.org/10.1038/nclimate1388,
2012.
Kirby, R. R., Beaugrand, G., and Lindley, J. A.: Climate-induced effects on
the meroplankton and the benthic-pelagic ecology of the North Sea, Limnol.
Oceanogr., 53, 1805–1815, https://doi.org/10.4319/lo.2008.53.5.1805, 2008.
Klais, R., Norros, V., Lehtinen, S., Tamminen, T., and Olli, K.: Community
assembly and drivers of phytoplankton functional structure, Funct. Ecol.,
31, 760–767, https://doi.org/10.1111/1365-2435.12784, 2017.
Kulk, G., Platt, T., Dingle, J., Jackson, T., Jönsson, B. F., Bouman, H.
A., Babin, M., Brewin, R. J. W., Doblin, M., Estrada, M., Figueiras, F. G.,
Furuya, K., González-Benítez, N., Gudfinnsson, H. G., Gudmundsson,
K., Huang, B., Isada, T., Kovač, Ž., Lutz, V. A., Marañón,
E., Raman, M., Richardson, K., Rozema, P. D., van de Poll, W. H., Segura,
V., Tilstone, G. H., Uitz, J., van Dongen-Vogels, V., Yoshikawa, T., and
Sathyendranath, S.: Primary production, an index of climate change in the
ocean: Satellite-based estimates over two decades, Remote Sens., 12, 826, https://doi.org/10.3390/rs12050826, 2020.
Laplace-Treyture, C., Derot, J., Prévost, E., Le Mat, A., and Jamoneau,
A.: Phytoplankton morpho-functional trait dataset from French water-bodies,
Sci. Data, 8, 1–9, https://doi.org/10.1038/s41597-021-00814-0, 2021.
Margalef, R.: Life-forms of phytoplankton as survival alternatives in an
unstable environment, Oceanol. Acta, 1, 493–509, 1978.
MBA: 1924–2013 MBA L4 and E1 Young Fish Survey, The Archive for Marine
Species and Habitats Data (DASSH) [data set],
https://doi.org/10.17031/1636, 2019.
McQuatters-Gollop, A., Johns, D. G., Bresnan, E., Skinner, J., Rombouts, I.,
Stern, R., Aubert, A., Johansen, M., Bedford, J., and Knights, A.: From
microscope to management: The critical value of plankton taxonomy to marine
policy and biodiversity conservation, Mar. Policy, 83, 1–10,
https://doi.org/10.1016/j.marpol.2017.05.022, 2017.
McQuatters-Gollop, A., Atkinson, A., Aubert, A., Bedford, J., Best, M.,
Bresnan, E., Cook, K., Devlin, M., Gowen, R., and Johns, D. G.: Plankton
lifeforms as a biodiversity indicator for regional-scale assessment of
pelagic habitats for policy, Ecol. Indic., 101, 913–925, 2019.
Morishita, J.: What is the ecosystem approach for fisheries management?,
Mar. Policy, 32, 19–26, https://doi.org/10.1016/j.marpol.2007.04.004, 2008.
MSS: Phyto and zooplankton records provided by Marine Science Scotland (MSS)
from Loch Ewe, Scalloway, Scapa and Stonehaven. The Archive for Marine
Species and Habitats Data (DASSH) [data set],
https://doi.org/10.17031/1637, 2019.
O'Brien, T. D., Lorenzoni, L., Isensee, K., and Valdés, L.: What are
Marine Ecological Time Series telling us about the ocean? A status report.
IOC-UNESCO, IOC, OC-UNESCO, IOC, July, 297, available at:
http://igmets.net/report (last access: 22 November 2021), 2017.
OSPAR: Changes in Phytoplankton and Zooplankton Communities, Intermediate
Assessment 2017, available at:
https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-2017/biodiversity-status/habitats/changes-phytoplankton-and-zooplankton-communities/ (last access: 22 November 2021), 2017.
Ostle, C., Paxman, K., Graves, C. A., Arnold, M.,, Artigas, F. L., Atkinson, A., Aubert, A., Baptie, M., Bear, B., Bedford, J., Best, M., Bresnan, E., Brittain, R., Broughton, D., Budria, A., Cook, K., Devlin, M., Graham, G., Halliday, N., Hélaouët, P., Johansen, M., Johns, D. G., Lear, D., Machairopoulou, M., McKinney, A., Mellor, A., Milligan, A., Pitois, S., Rombouts, I., Scherer, C., Tett, P., Widdicombe, C., and McQuatters-Gollop, A.: Plankton Lifeform Extraction Tool, DASSH [data set], available at: https://www.dassh.ac.uk/lifeforms/, last access: 22 November 2021.
PML: 1992 – Ongoing Plymouth Marine Laboratory (PML) Zooplankton and
Phytoplankton data collected at L4, The Archive for Marine Species and
Habitats Data (DASSH) [data set], https://doi.org/10.17031/1632, 2019.
Raybaud, V., Heroin, D., Raud, T., J.-M. B., Stemmann, L., and Sautour, B.:
Census and analysis of zooplankton metadata of the French coasts since 1955,
J. Oceanogr. Res. Data, 4, 11–37, 2011.
Reid, P. C., Hari, R. E., Beaugrand, G., Livingstone, D. M., Marty, C.,
Straile, D., Barichivich, J., Goberville, E., Adrian, R., Aono, Y., Brown,
R., Foster, J., Groisman, P., Hélaouët, P., Hsu, H. H., Kirby, R.,
Knight, J., Kraberg, A., Li, J., Lo, T. T., Myneni, R. B., North, R. P.,
Pounds, J. A., Sparks, T., Stübi, R., Tian, Y., Wiltshire, K. H., Xiao,
D., and Zhu, Z.: Global impacts of the 1980s regime shift, Glob. Change
Biol., 22, 682–703, https://doi.org/10.1111/gcb.13106, 2016.
Richardson, A. J.: In hot water: zooplankton and climate change, Ices J.
Mar. Sci., 65, 279–295, 2008.
Richardson, A. J., Walne, A. W., and John, A. W. G.: Using continuous
plankton recorder data, Prog. Oceanogr., 68, 27–74,
https://doi.org/10.1016/j.pocean.2005.09.011, 2006.
Richardson, A. J., Bakun, A., Hays, G. C., and Gibbons, M. J.: The jellyfish
joyride: causes, consequences and management responses to a more gelatinous
future, Trends Ecol. Evol., 24, 312–322, https://doi.org/10.1016/j.tree.2009.01.010,
2009.
SAMS: Plankton dataset provided by Scottish Association for Marine Science
(SAMS) from the Lorn Pelagic Observatory (LPO), The Archive for Marine
Species and Habitats Data (DASSH) [data set],
https://doi.org/10.17031/nz24-br35, 2020.
Scherer, C.: Developing and testing an index of change in microplankton
community structure in temperate shelf seas, Edinburgh Napier University,
ISNI: 0000 0004 2721 3014, 2012.
Scherer, C., Gowen, R. J., Tett, P., Atkinson, A., Baptie, M., Best, M.,
Bresnan, E., Cook, K., Forster, R., Keeble, S., and Mcquatters-gollop, A.:
Development of a UK Integrated Plankton Monitoring Programme – A final
report of the Lifeform and State Space project Prepared for The Department
of Environment, Food and Rural Affairs, December, London, UK, https://doi.org/10.13140RG.2.1.1511.1765, 2014.
Scherer, C., Gowen, R. J., and Tett, P.: Assessing the State of the Pelagic
Habitat: A Case Study of Plankton and Its Environment in the Western Irish
Sea, Front. Mar. Sci., 3, 236, https://doi.org/10.3389/fmars.2016.00236, 2016.
Schmidt, K., Birchill, A. J., Atkinson, A., Brewin, R. J. W., Clark, J. R.,
Hickman, A. E., Johns, D. G., Lohan, M. C., Milne, A., Pardo, S., Polimene,
L., Smyth, T. J., Tarran, G. A., Widdicombe, C. E., Woodward, E. M. S., and
Ussher, S. J.: Increasing picocyanobacteria success in shelf waters
contributes to long-term food web degradation, Glob. Change Biol., 26,
5574–5587, https://doi.org/10.1111/gcb.15161, 2020.
SEPA: Photo- and Zooplankton dataset provided by Scottish Environment
Protection Agency (SEPA) collected from the Forth and Clyde, The Archive for
Marine Species and Habitats Data (DASSH) [data set],
https://doi.org/10.17031/b84a-7951, 2020.
SMHI: 1987–2015 Swedish Meteorological and Hydrological Institute (SMHI)
Plankton Swedish West Coast, The Archive for Marine Species and Habitats
Data (DASSH) [data set], https://doi.org/10.17031/1633, 2019.
Southward, A. J., Langmead, O., Hardman-Mountford, N. J., Aiken, J., Boalch,
G. T., Dando, P. R., Genner, M. J., Joint, I., Kendall, M. A., Halliday, N.
C., Harris, R. P., Leaper, R., Mieszkowska, N., Pingree, R. D., Richardson,
A. J., Sims, D. W., Smith, T., Walne, A. W., and Hawkins, S. J.: Long-term
oceanographic and ecological research in the western English Channel, Adv.
Mar. Biol., 47, 1–105, https://doi.org/10.1016/S0065-2881(04)47001-1, 2004.
Tett, P., Gowen, R., Mills, D., Fernandes, T., Gilpin, L., Huxham, M.,
Kennington, K., Read, P., Service, M., Wilkinson, M., and Malcolm, S.:
Defining and detecting undesirable disturbance in the context of marine
eutrophication, Mar. Pollut. Bull., 55, 282–297,
https://doi.org/10.1016/j.marpolbul.2006.08.028, 2007.
Tett, P., Carreira, C., Mills, D. K., Van Leeuwen, S., Foden, J., Bresnan,
E., and Gowen, R. J.: Use of a Phytoplankton Community Index to assess the
health of coastal waters, ICES J. Mar. Sci., 65, 1475–1482,
https://doi.org/10.1093/icesjms/fsn161, 2008.
Tett, P., Gowen, R., Painting, S., Elliott, M., Foster, R., Mills, D., Bresnan, E., Capuzzo, E., Fernandes, T., Foden, J., Geider, R., Gilpin, L.,
Huxham, M., McQuatters-Gollop, A., Malcolm, S., Saux-Picart, S., Platt, T.,
Racault, M.-F., and Sathyendranath, M.: A framework for understanding marine
ecosystem health, Mar. Ecol. Prog. Ser., 494, 1–27, https://doi.org/10.335410.3354/meps10539, 2013.
UK Pelagic Habitats Expert Group: Plankton lifeform traits master list (v4),
The Archive for Marine Species and Habitats Data (DASSH) [data set],
https://doi.org/10.17031/1709, 2020.
Uriarte, I., Villate, F., Iriarte, A., Fanjul, Á., Atkinson, A., and
Cook, K.: Opposite phenological responses of zooplankton to climate along a
latitudinal gradient through the European Shelf, ICES J. Mar. Sci., 78, 2643, https://doi.org/10.1093/icesjms/fsab008, 2021.
Utermöhl, H.: Zurvervollkommnung der quantitativen Phytoplankton
Methodik, Mittl. Int. Verein Theor. Angew. Limnol., 9, 1–38, 1958.
Wasmund, N., Kownacka, J., Göbel, J., Jaanus, A., Johansen, M.,
Jurgensone, I., Lehtinen, S., and Powilleit, M.: The diatom/dinoflagellate
index as an indicator of ecosystem changes in the Baltic Sea 1. principle
and handling instruction, Front. Mar. Sci., 4, 153,
https://doi.org/10.3389/FMARS.2017.00022, 2017.
Wells, M. L., Karlson, B., Wulff, A., Kudela, R., Trick, C., Asnaghi, V.,
Berdalet, E., Cochlan, W., Davidson, K., De Rijcke, M., Dutkiewicz, S.,
Hallegraeff, G., Flynn, K. J., Legrand, C., Paerl, H., Silke, J., Suikkanen,
S., Thompson, P., and Trainer, V. L.: Future HAB science: Directions and
challenges in a changing climate, Harmful Algae, 91, 101632,
https://doi.org/10.1016/j.hal.2019.101632, 2020.
Weston, K., Greenwood, N., Fernand, L., Pearce, D. J., and Sivyer, D. B.:
Environmental controls on phytoplankton community composition in the Thames
plume, UK, J. Sea Res., 60, 246–254, https://doi.org/10.1016/j.seares.2008.09.003,
2008.
Widdicombe, C. E., Eloire, D., Harbour, D., Harris, R. P., and Somerfield, P. J.: Long-term phytoplankton community dynamics in the Western English Channel, J. Plankton Res., 32, 643–655, 2010.
Wilkinson, M., Dumontier, M., and Aalbersberg, I.: The FAIR Guiding
Principles for scientific data management and stewardship, Sci. Data,
3, 1–9, 2016.
WoRMS Editorial Board: World Register of Marine Species, https://doi.org/10.14284/170,
2020.
Zingone, A., Harrison, P. J., Kraberg, A., Lehtinen, S., McQuatters-Gollop,
A., O'Brien, T., Sun, J., and Jakobsen, H. H.: Increasing the quality,
comparability and accessibility of phytoplankton species composition
time-series data, Estuar. Coast. Shelf S., 162, 151–160,
https://doi.org/10.1016/j.ecss.2015.05.024, 2015.
Short summary
Plankton form the base of the marine food web and are sensitive indicators of environmental change. The Plankton Lifeform Extraction Tool brings together disparate plankton datasets into a central database from which it extracts abundance time series of plankton functional groups, called
lifeforms, according to shared biological traits. This tool has been designed to make complex plankton datasets accessible and meaningful for policy, public interest, and scientific discovery.
Plankton form the base of the marine food web and are sensitive indicators of environmental...
Altmetrics
Final-revised paper
Preprint