Articles | Volume 13, issue 8
https://doi.org/10.5194/essd-13-3979-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-3979-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Active rock glaciers of the contiguous United States: geographic information system inventory and spatial distribution patterns
Gunnar Johnson
CORRESPONDING AUTHOR
Environmental Science Department, Portland State University, Portland,
Oregon, 97201, USA
Heejun Chang
Geography Department, Portland State University, Portland, Oregon,
97201, USA
Andrew Fountain
Geology Department, Portland State University, Portland, Oregon,
97201, USA
Related authors
No articles found.
Elijah N. Boardman, Andrew G. Fountain, Joseph W. Boardman, Thomas H. Painter, Evan W. Burgess, Laura Wilson, and Adrian A. Harpold
The Cryosphere, 19, 3193–3225, https://doi.org/10.5194/tc-19-3193-2025, https://doi.org/10.5194/tc-19-3193-2025, 2025
Short summary
Short summary
Watersheds on the downwind side of a mountain range have deeper seasonal snow and more abundant glaciers due to topographic controls that favor wind drifting. Despite receiving less total snow, these drift-prone watersheds produce relatively more late-summer streamflow due to a combination of slow-melting snow drifts and mass loss from glaciers (and other perennial snow/ice features).
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024, https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Short summary
Glaciers in western North American outside of Alaska are often overlooked in global studies because their potential to contribute to changes in sea level is small. Nonetheless, these glaciers represent important sources of freshwater, especially during times of drought. We show that these glaciers lost mass at a rate of about 12 Gt yr-1 for about the period 2013–2021; the rate of mass loss over the period 2018–2022 was similar.
Andrew G. Fountain, Bryce Glenn, and Christopher Mcneil
Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, https://doi.org/10.5194/essd-15-4077-2023, 2023
Short summary
Short summary
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for future change, we inventoried the extent of glaciers and perennial snowfields across the western USA excluding Alaska. Using mostly aerial imagery, we digitized the outlines of all glaciers and perennial snowfields equal to or larger than 0.01 km2 using a geographical information system. We identified 1331 (366.52 km2) glaciers and 1176 (31.00 km2) snowfields.
Cited articles
Anderson, R., Anderson, L., Armstrong, W., Rossi, M., and Crump, S.: Glaciation of
alpine valleys: The glacier – debris-covered glacier – rock glacier
continuum, Geomorphology, 311, 127–142,
https://doi.org/10.1016/j.geomorph.2018.03.015, 2018.
Angillieri, M.: Application of frequency ratio and logistic regression to
active rock glacier occurrence in the Andes of San Juan, Argentina,
Geomorphology, 114, 396–405,
https://doi.org/10.1016/j.geomorph.2009.08.003, 2010.
Aoyama, M.: Rock glaciers in the northern Japanese Alps: Paleoenvironmental
implications since the Late Glacial, J. Quaternary Sci., 20, 471–484,
https://doi.org/10.1002/jqs.935, 2005.
Bajewsky, I. and Gardner, J.: Discharge and sediment-load characteristics of
the Hilda Rock-Glacier stream, Canadian Rocky Mountains, Alberta, Phys.
Geogr., 10, 295–306, https://doi.org/10.1080/02723646.1989.10642384, 1989.
Baroni, C., Carton, A., Seppi, R., and Harris, C.: Distribution and behaviour
of rock glaciers in the Adamello-Presanella Massif (Italian Alps),
Permafrost Periglac., 15, 243–259, https://doi.org/10.1002/ppp.497,
2004.
Barsch, D.: Rockglaciers: Indicators for the Present and Former Geoecology in
High Mountain Environments, Springer Series in Physical Environment,
Springer-Verlag Berlin Heidelberg, https://doi.org/10.1007/978-3-642-80093-1,
1996.
Berthling, I.: Beyond confusion: Rock glaciers as cryo-conditioned landforms,
Geomorphology, 131, 98–106, https://doi.org/10.1016/j.geomorph.2011.05.002,
2011.
Berthling, I. and Etzelmuller, B.: The concept of cryo-conditioning in
landscape evolution, Quaternary Res., 75, 378–384,
https://doi.org/10.1016/j.yqres.2010.12.011, 2011.
Bodin, X., Thibert, E., Fabre, D., Ribolini, A., Schoeneich, P., Francou,
B., Reynaud, L., and Fort, M.: Two decades of responses (1986–2006) to
climate by the Laurichard rock glacier, French Alps, Permafrost Periglac.,
20, 331–344, https://doi.org/10.1002/ppp.665, 2009.
Bodin, X., Rojas, F., and Brenning, A.: Status and evolution of the
cryosphere in the Andes of Santiago (Chile, 33.5∘ S),
Geomorphology, 118, 453–464,
https://doi.org/10.1016/j.geomorph.2010.02.016, 2010.
Bodin, X., Krysiecki, J., Schoeneich, P., Le Roux, O., Lorier, L., Echelard,
T., Peyron, M., and Walpersdorf, A.: The 2006 collapse of the Bérard Rock
Glacier (Southern French Alps), Permafrost Periglac., 28, 209–223,
https://doi.org/10.1002/ppp.1887, 2017.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012.
Bolch, T. and Gorbunov, A.: Characteristics and origin of rock glaciers in
Northern Tian Shan (Kazakhstan/Kyrgystan), Permafrost Periglac., 25,
320–332, https://doi.org/10.1002/ppp.1825, 2014.
Brardinoni, F., Scotti, R., Sailer, R., and Mair, V.: Evaluating sources of
uncertainty and variability in rock glacier inventories, Earth Surf. Proc.
Land., 44, 2450-2466, https://doi.org/10.1002/esp.4674,
2019.
Brenning, A.: Benchmarking classifiers to optimally integrate terrain
analysis and multispectral remote sensing in automatic rock glacier
detection, Remote Sens. Environ., 113, 239–247,
https://doi.org/10.1016/j.rse.2008.09.005, 2009.
Brenning, A., Long, S., and Fieguth, P.: Detecting rock glacier flow structures
using Gabor filters and IKONOS imagery, Remote Sens. Environ., 125, 227–237,
https://doi.org/10.1016/j.rse.2012.07.005, 2012.
Brighenti, S., Hotaling, S., Finn, D. S., Fountain A. G., Hayashi M., Herbst,
D., Saros, J. E., Tronstad, L. M., and Millar, C. I.: Rock glaciers and related
cold rocky landforms: Overlooked climate refugia for mountain biodiversity,
Glob. Change Biol., 27, 1504–1517, https://doi.org/10.1111/gcb.15510,
2021.
Burger, K., Degenhardt, J., and Giardino, J.: Engineering geomorphology of
rock glaciers, Geomorphology, 31, 93–132,
https://doi.org/10.1016/S0169-555X(99)00074-4, 1999.
Caccianiga, M., Andreis, C., Diolaiuti, G., D'Agata, C., Mihalcea, C., and
Smiraglia, C.: Alpine debris-covered glaciers as a habitat for plant life,
Holocene, 21, 1011–1020, https://doi.org/10.1177/0959683611400219, 2011.
Caine, N.: Recent hydrologic change in a Colorado alpine basin: An indicator
of permafrost thaw?, Ann. Glaciol.,
51, 130–134, https://doi.org/10.3189/172756411795932074, 2010.
Clark, D., Steig, E., Potter, N., and Gillespie, A.: Genetic variability of
rock glaciers, Geogr. Ann. A., 80, 175–182,
https://doi.org/10.1111/j.0435-3676.1998.00035.x, 1998.
Cliff, A. and Ord, K.: Evaluating the percentage points of a spatial
autocorrelation coefficient, Geogr. Anal., 3, 51–62,
https://doi.org/10.1111/j.1538-4632.1971.tb00347.x, 1971.
Colucci, R., Forte, E., Zebre, M., Maset, E., Zanettini, C., and Guglilmin,
M.: Is that a relict rock glacier?, Geomorphology, 330, 177-189,
https://doi.org/10.1016/j.geomorph.2019.02.002, 2019.
Cremonese, E., Gruber, S., Phillips, M., Pogliotti, P., Boeckli, L., Noetzli, J., Suter, C., Bodin, X., Crepaz, A., Kellerer-Pirklbauer, A., Lang, K., Letey, S., Mair, V., Morra di Cella, U., Ravanel, L., Scapozza, C., Seppi, R., and Zischg, A.: Brief Communication: ”An inventory of permafrost evidence for the European Alps”, The Cryosphere, 5, 651–657, https://doi.org/10.5194/tc-5-651-2011, 2011.
Degenhardt, J.: Development of tongue-shaped and multilobate rock glaciers in
alpine environments: Interpretations from ground penetrating radar surveys,
Geomorphology, 109, 94–107, https://doi.org/10.1016/j.geomorph.2009.02.020,
2009.
Delaloye, R., Reynard, E., and Wenker, L.: Rock Glaciers, Entremon, Valais,
Switzerland, Version 1. National Snow and Ice Data Center/World Data Center
for Glaciology, Digital Media [data set], available at: https://nsidc.org/data/GGD290/versions/1 (last access: 2019),
1998.
DiLuzio, M., Johnson, G., Daly, C., Eischeid, J., and Arnold, J.:
Constructing retrospective gridded daily precipitation and temperature
datasets for the conterminous United States, J. Appl. Meteorol. Clim., 47,
475–497, https://doi.org/10.1175/2007JAMC1356.1, 2008.
Duguay, M., Edmunds, A., Arenson, L., and Wainstein, P.: Quantifying the
significance of the hydrological contribution of a rock glacier – A review,
GEOQuebec 2015, 68th Canadian Geotechnical Conference, 7th Canadian
Permafrost Conference, 2015.
ESRI, ArcGIS Desktop: Release 10.4. Redlands, CA: Environmental Systems
Research Institute, 2017.
Etzelmuller, B., Farbot, H., Gudmundsson, A., Humlum, O., Tveito, O. E., and Bjornsson, H.: The Regional Distribution of Mountain Permafrost in Iceland, Permafrost Periglac., 18, 185–199, https://doi.org/10.1002/ppp.583, 2007.
Falaschi, D., Castro, M., Masiokas, M., Tadono, T., and Ahumada, A.: Rock
glacier inventory of the Valles Calchaquies Region (∼25∘ S), Salta, Argentina, derived from ALOS data, Permafrost
Periglac., 25, 69–75, https://doi.org/10.1002/ppp.1801, 2014.
Falaschi, D., Tadono, T., and Masiokas, M.: Rock Glaciers in the Patagonian
Andes: An inventory for the Monte San Lorenzo (Cerro Cochrane) Massif,
47∘ S, Geogr. Ann. A., 97, 769–777,
https://doi.org/10.1111/geoa.12113, 2015.
Fegel, T., Baron, J., Fountain, A., Johnson, G., and Hall, E.: The differing
biogeochemical and microbial signatures of glaciers and rock glaciers, J.
Geophys. Res.-Biogeo., 123, 919–932, https://doi.org/10.1002/2015JG003236,
2016.
Fountain, A., Glenn, B., and Basagic, H.: The geography of glaciers and
perennial snowfields in the American West, Arct. Antarct. Alp. Res., 49,
391–410, https://doi.org/10.1657/AAAR0017-003, 2017.
Francou, B., Fabre, D., Pouyaud, B., Jomelli, V., and Arnaud, Y.: Symptoms of
degradation in a tropical rock glacier, Bolivian Andes, Permafrost
Periglac., 10, 91–100,
https://doi.org/10.1002/(SICI)1099-1530(199901/03)10:13.0.CO;2-B, 1999.
Frauenfelder, H.: Regional-scale modeling of the occurrence and dynamics of
rock glaciers and the distribution of paleopermafrost, PhD Dissertation,
Geographisches Institut der Universitat Zurich, 2005.
Google Earth Pro: https://www.google.com/earth/versions/{#}download-pro, last access:
2019.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kaab, A.,
Kaufmann, V., Ladanyi, B., Matsuoka, N., Spingman, S., and Muhll, D.:
Permafrost creep and rock glacier dynamics, Permafrost Periglac., 14,
189–214, https://doi.org/10.1002/ppp.561, 2006.
Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto Liaudat, D., Hilbich, C., Hauck, C., and Schrott, L.: Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, 2021.
Harrington, J. S., Hayashi, M., and Kurylyk, B. L.: Influence of a rock glacier
spring on the stream energy budget and cold-water refuge in an alpine
stream, Hydrol. Process., 31, 4719–4733, https://doi.org/10.1002/hyp.11391, 2017.
Hayashi, M.: Alpine Hydrogeology: The Critical Role of Groundwater in
Sourcing the Headwaters of the World, Groundwater, 58, 498–510,
https://doi.org/10.1111/gwat.12965, 2020.
Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston,
J., Herold, N., Wickham, J., and Megown, K.: Completion of the 2011 National
Land Cover Database for the conterminous United States: Representing a
decade of land cover change information, Photogramm. Eng. Rem. S., 81,
345–354, https://doi.org/10.14358/PERS.81.5.345, 2015.
Humlum, O.: The geomorphic significance of rock glaciers: Estimates of rock
glacier debris volumes and headwall recession rates in West Greenland,
Geomorphology, 35, 41–67, https://doi.org/10.1016/S0169-555X(00)00022-2,
2000.
Imhof, M.: Modelling and verification of the permafrost distribution in the
Bernese Alps (Western Switzerland), Permafrost Periglac., 7, 267–280,
https://doi.org/10.1002/(SICI)1099-1530(199609)7:3<267::AID-PPP221>3.0.CO;2-L, 1996.
Iribarren, P. and Bodin, X.: Geomorphic consequences of two large glacier and
rock glacier destabilizations in the Central Chilean Andes, EGU General
Assembly 2010, EGU2010-7162-4, June 2010, Vienna, Austria, 2010.
Janke, J.: Colorado Front Range rock glaciers: Distribution and topographic
characteristics, Arct. Antarct. Alp. Res., 39, 74–83,
https://doi.org/10.1657/1523-0430(2007)39[74:CFRRGD]2.0.CO;2, 2007.
Janke, J. and Frauenfelder, R.: The relationship between rock glaciers and
contributing area parameters in the Front Range of Colorado, J. Quaternary
Sci., 23, 153–163, https://doi.org/10.1002/jqs.1133, 2008.
Janke, J., Bellisario, A., and Ferrando, F.: Classification of debris-covered
glaciers and rock glaciers in the Andes of central Chile, Geomorphology,
241, 98–121, https://doi.org/10.1016/j.geomorph.2015.03.034, 2015.
Johnson, G.: Active rock glacier inventory of the contiguous United States
(PSUARGI), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.918585, 2020.
Jones, D., Harrison, S., and Anderson, K.: Mountain glacier-to-rock glacier
transition, Global Planet. Change, 181, 1–13,
https://doi.org/10.1016/j.gloplacha.2019.102999, 2019a.
Jones, D., Harrison, S., Anderson, K., and Whalley, W.: Rock glaciers and
mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90,
https://doi.org/10.1016/j.earscirev.2019.04.001, 2019b.
Kaab, A. and Reichmuth, T.: Advance mechanisms of rock glaciers, Permafrost
Periglac., 16, 187–193, https://doi.org/10.1002/ppp.507, 2005.
Karl, T. and Koss, W.: Regional and national monthly, seasonal and annual
temperature weighted by area, 1895–1983, Historical Climatology Series
4–3, National Climatic Data Center, Asheville, NC, 1–38,
https://repository.library.noaa.gov/view/noaa/10238, 1984.
Kenner, R. and Magnusson, J.: Estimating the effect of different influencing
factors on rock glacier development in two regions in the Swiss Alps,
Permafrost Periglac., 28, 195–208, https://doi.org/10.1002/ppp.1910,
2017.
Knight, J., Harrison, S., and Jones, D.: Rock glaciers and the
geomorphological evolution of deglacierizing mountains, Geomorphology, 324,
14–24, https://doi.org/10.1016/j.geomorph.2018.09.020, 2019.
Kofler, C., Steger, S., Mair, V., Zebisch, M., Comiti, F., and
Schneiderbauer, S.: An inventory-driven rock glacier status model (intact vs.
relict) for South Tyrol, Eastern Italian Alps, Geomorphology, 350, 1–16,
https://doi.org/10.1016/j.geomorph.2019.106887, 2020.
Konrad, S., Humphrey, N., Steig, E., Clark, D., Potter, N., and Pfeffer, W.:
Rock glacier dynamics and paleoclimatic implications, Geology, 27,
1131–1134, https://doi.org/10.1130/0091-7613(1999)027<1131:RGDAPI>2.3.CO;2, 1999.
Lambiel, C. and Reynard, E.: Regional modeling of present, past and future
distribution of discontinuous permafrost based in a rock glacier inventory
in the Bagnes-Heremence area (western Swiss Alps), Norsk. Geogr. Tidsskr.,
55, 219–233, https://doi.org/10.1080/00291950152746559, 2001.
Liu, L., Millar, C. I., Westfall, R. D., and Zebker, H. A.: Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR, The Cryosphere, 7, 1109–1119, https://doi.org/10.5194/tc-7-1109-2013, 2013.
Lugon, R. and Stoffel, M.: Rock-glacier dynamics and magnitude-frequency
relations of debris flows in a high-elevation watershed: Ritigraben, Swiss
Alps, Global Planet. Change, 73, 202–210,
https://doi.org/10.1016/j.gloplacha.2010.06.004, 2010.
Magori, B., Urdea, P., and Onaca, A.: Distribution and characteristics of
rock glaciers in the Balkan Peninsula, Geogr. Ann. A, 102, 354-375,
https://doi.org/10.1080/04353676.2020.1809905, 2020.
Matthews, J., Nesje, A., and Linge, H.: Relict talus-foot rock glaciers at
Øyberget, Upper Ottadalen, Southern Norway: Schmidt Hammer exposure ages
and palaeoenvironmental implications, Permafrost Periglac., 24, 336–346,
https://doi.org/10.1002/ppp.1794, 2013.
Millar, C. and Westfall, R.: Rock glaciers and related periglacial landforms
in the Sierra Nevada, CA, U.S.A., inventory, distribution and climatic
relationships, Quatern. Int., 188, 90–104,
https://doi.org/10.1016/j.quaint.2007.06.004, 2008.
Millar, C. and Westfall, R.: Geographic, hydrological, and climatic
significance of rock glaciers in the Great Basin, U.S.A., Arct. Antarct.
Alp. Res., 51, 232–249, https://doi.org/10.1080/15230430.2019.1618666,
2019.
Millar, C., Westfall, R., and Delany, D.: Thermal and hydrologic attributes of
rock glaciers and periglacial talus landforms: Sierra Nevada, California,
U.S.A., Quatern. Int., 310, 169–180,
https://doi.org/10.1016/j.quaint.2012.07.019, 2013a.
Millar, C., Westfall, R., Evenden, A., Holmquist, J., Schmidt-Gengenbach,
J., Franklin, R., Nachlinger, J., and Delaney, D.: Potential climatic refugia
in semi-arid, temperate mountains: Plant and arthropod assemblages
associated with rock glaciers, talus slopes, and their forefield wetlands,
Sierra Nevada, California, U.S.A, Quatern. Int., 387, 106–121,
https://doi.org/10.1016/j.quaint.2013.11.003, 2013b.
NAIP (National Agricultural Imagery Program) National Agriculture Imagery
Program (NAIP) InformationSheet [data set], available at:
http://www.fsa.usda.gov/Internet/FSA_File/naip_info_sheet_2013.pdf (last access: 2019), 2012.
Navarro, F. and Magnusson, M.: Position paper of the International
Glaciological Society on standard practices regarding glacier inventories,
International Glaciological Society, available at:
https://www.igsoc.org/news/igs_villaba2col_engesp20171220.pdf (last access: 2019), 21 December 2017.
Nussear, K., Esque, T., Inman, R., Gass, L., Thomas, K., Wallace, C.,
Blainey, J., Miller, D., and Webb, R.: Modeling Habitat of the Desert
Tortoise (Gopherus agassizii) in the Mojave and Parts of the Sonoran Deserts
of California, Nevada, Utah, and Arizona, U.S. Geological Survey Open-File
Report 2009-1102, 2009.
Perucca, L. and Angillieri, M.: Glaciers and rock glaciers' distribution at
28∘ SL, Dry Andes of Argentina, and some considerations
about their hydrological significance, Environ. Earth Sci., 64,
2079–2089, https://doi.org/10.1007/s12665-011-1030-z, 2011.
Potter, N.: Ice-cored rock glacier, Galena Creek, Northern Absaroka
Mountains, Wyoming, Geol. Soc. Am. Bull., 83, 3025–3058,
https://doi.org/10.1130/0016-7606(1972)83[3025:IRGGCN]2.0.CO;2, 1972.
PRISM: Climate Group [data set], Oregon State University, available at:
http://prism.oregonstate.edu, last access: 2017.
Rangecroft, S., Harrison, S., Anderson, K., Magrath, J., Castel, A., and
Pacheco, P.: A first rock glacier inventory for the Bolivian Andes,
Permafrost Periglac., 25, 333–343, https://doi.org/10.1002/ppp.1816, 2014.
RGI Consortium, Randolph Glacier Inventory: A dataset of global glacier
outlines: Version 6.0, Technical Report, Global Land Ice Measurements from
Space, Boulder, Colorado, U.S.A., Digital Media,
https://doi.org/10.7265/N5-RGI-60, 2017.
Schmid, M.-O., Baral, P., Gruber, S., Shahi, S., Shrestha, T., Stumm, D., and Wester, P.: Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth, The Cryosphere, 9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015, 2015.
Scotti, R., Brardinoni, F., Albereti, S., Frattini, P., and Crosta, G.: A
regional inventory of rock glaciers and protalus ramparts in the central
Italian Alps, Geomorphology, 186, 136–149,
https://doi.org/10.1016/j.geomorph.2012.12.028, 2013.
Senn, A.: Large sample-size distribution of statistics used in testing for
spatial correlation, Geogr. Anal., 8, 175–184,
https://doi.org/10.1111/j.1538-4632.1976.tb01066.x, 1976.
Seppi, R., Carton, A., Zumiani, M., Dall'Amico, G., Zampedri, R., and Rigon,
R.: Inventory, distribution and topographic features of rock glaciers in the
southern region of the Eastern Italian Alps (Trentino), Geogr. Fis. Din.
Quat., 35, 185–197, https://doi.org/10.4461/GFDQ.2012.35.17, 2012.
Sorg, A., Kaab, A., Roesch, A., Bigler, C., and Stoffel, M.: Contrasting
responses of Central Asian rock glaciers to global warming, Sci. Rep.-UK, 5, 1–6,
https://doi.org/10.1038/srep08228, 2015.
Stenni, B., Genoni, L., Flora, O., and Guglielmin, M.: An oxygen isotope
record from the Foscagno rock-glacier ice core, Upper Valtellina, Italian
Central Alps, Holocene, 17, 1033–1039,
https://doi.org/10.1177/0959683607082438, 2007.
Sulejman, R.: Phytogeographic and syntaxonomic diversity of high mountain
vegetation in Dinaric Alps (Western Balkan, SE Europe), J. Mt. Sci., 8,
767–786, https://doi.org/10.1007/s11629-011-2047-1, 2011.
Tiefelsdorf, M.: The saddlepoint approximation of Moran's I's and Local
Moran's Ii's reference distributions and their numerical evaluation, Geogr.
Anal., 34, 187–206, https://doi.org/10.1111/j.1538-4632.2002.tb01084.x,
2002.
USGS: The National Elevation Dataset (NED) [data set], U.S. Geological Survey, Sioux
Falls, South Dakota,
available at: https://pubs.usgs.gov/fs/2009/3053/pdf/fs2009_3053.pdf, last access: 2017.
Wagner, T., Pleschberger, R., Kainz, S., Ribis, M., Kellerer-Pirklbauer, A.,
Krainer, K., Pilippitsch, R., and Winkler, G.: The first consistent inventory
of rock glaciers and their hydrological catchments of the Austrian Alps,
Austrian J. Earth Sc., 113, 1–23,
https://doi.org/10.17738/ajes.2020.0001, 2020a.
Wagner, T., Brodacz, A., Krainer, K., and Winkler, G.: Active rock glaciers
as shallow groundwater reservoirs, Austrian Alps, Grundwasser, 25, 215–230,
https://doi.org/10.1007/s00767-020-00455-x, 2020b.
Short summary
We present the Portland State University Active Rock Glacier Inventory (n = 10 343) for the contiguous United States, derived from manual classification of remote sensing imagery. This geospatial inventory will allow past rock glacier research findings to be spatially extrapolated, facilitating rock glacier research by identifying field study sites and serving as a valuable training set for the development of automated rock glacier identification methods applicable to other regional studies.
We present the Portland State University Active Rock Glacier Inventory (n = 10 343) for the...
Altmetrics
Final-revised paper
Preprint