Articles | Volume 13, issue 8
https://doi.org/10.5194/essd-13-3979-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-3979-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Active rock glaciers of the contiguous United States: geographic information system inventory and spatial distribution patterns
Gunnar Johnson
CORRESPONDING AUTHOR
Environmental Science Department, Portland State University, Portland,
Oregon, 97201, USA
Heejun Chang
Geography Department, Portland State University, Portland, Oregon,
97201, USA
Andrew Fountain
Geology Department, Portland State University, Portland, Oregon,
97201, USA
Related authors
No articles found.
Andrew G. Fountain, Bryce Glenn, and Christopher Mcneil
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-369, https://doi.org/10.5194/essd-2022-369, 2023
Preprint under review for ESSD
Short summary
Short summary
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for future change we inventoried the extent of glaciers and perennial snowfields across the western USA excluding Alaska. Using mostly aerial imagery we digitized the outlines of all glaciers and perennial snowfields equal to or larger than 0.01 km2 using a geographical information system. We identified 1331 (366.52 km2) glaciers and 1776 (31.00 km2).
Adrian Howkins, Stephen M. Chignell, Poppie Gullett, Andrew G. Fountain, Melissa Brett, and Evelin Preciado
Earth Syst. Sci. Data, 12, 1117–1122, https://doi.org/10.5194/essd-12-1117-2020, https://doi.org/10.5194/essd-12-1117-2020, 2020
Short summary
Short summary
Historical data have much to offer current research activities and environmental management in Antarctica, but such information is often widely scattered and difficult to access. We addressed this need in the McMurdo Dry Valleys by compiling over 5000 historical photographs, maps, oral interviews, and other archival resources into a user-friendly digital archive. This can be used to identify benchmarks for understanding change over time, as well as the date and extent of past human activities.
Andrew G. Fountain, Juan C. Fernandez-Diaz, Maciej Obryk, Joseph Levy, Michael Gooseff, David J. Van Horn, Paul Morin, and Ramesh Shrestha
Earth Syst. Sci. Data, 9, 435–443, https://doi.org/10.5194/essd-9-435-2017, https://doi.org/10.5194/essd-9-435-2017, 2017
Short summary
Short summary
We present detailed surface elevation measurements for the McMurdo Dry Valleys, Antarctica, and surroundings, derived from aerial lidar surveys flown in the austral summer of 2014–2015 as part of an effort to understand landscape changes over the past decade. Lidar return density varied from 2 to > 10 returns per square meter with an average of about 5 returns per square meter. vertical and horizontal accuracies are estimated to be 7 cm and 3 cm, respectively.
H. Chang, P. Thiers, N. R. Netusil, J. A. Yeakley, G. Rollwagen-Bollens, S. M. Bollens, and S. Singh
Hydrol. Earth Syst. Sci., 18, 1383–1395, https://doi.org/10.5194/hess-18-1383-2014, https://doi.org/10.5194/hess-18-1383-2014, 2014
Related subject area
Glaciology
Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020
Ice-core data used for the construction of the Greenland Ice-Core Chronology 2005 and 2021 (GICC05 and GICC21)
Interdecadal glacier inventories in the Karakoram since the 1990s
Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020
Ice core chemistry database: an Antarctic compilation of sodium and sulphate records spanning the past 2000 years
Processing methodology for the ITS_LIVE Sentinel-1 ice velocity products
Antarctic Bedmap data: FAIR sharing of 60 years of ice bed, surface and thickness data
Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery
Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region
A new global dataset of mountain glacier centerlines and lengths
Elevation change of the Antarctic Ice Sheet: 1985 to 2020
2000 years of annual ice core data from Law Dome, East Antarctica
A 41-year (1979–2019) passive-microwave-derived lake ice phenology data record of the Northern Hemisphere
Rescue and homogenization of 140 years of glacier mass balance data in Switzerland
A decade of glaciological and meteorological observations in the Arctic (Werenskioldbreen, Svalbard)
A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan Plateau glaciers
The Greenland Firn Compaction Verification and Reconnaissance (FirnCover) dataset, 2013–2019
Black carbon and organic carbon dataset over the Third Pole
A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry
An inventory of supraglacial lakes and channels across the West Antarctic Ice Sheet
Greenland ice sheet mass balance from 1840 through next week
Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data
GIS dataset: geomorphological record of terrestrial-terminating ice streams, southern sector of the Baltic Ice Stream Complex, last Scandinavian Ice Sheet, Poland
A 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observations
Mass balances of Yala and Rikha Samba glaciers, Nepal, from 2000 to 2017
Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data
Greenland ice velocity maps from the PROMICE project
The AntSMB dataset: a comprehensive compilation of surface mass balance field observations over the Antarctic Ice Sheet
Glacier changes in the Chhombo Chhu Watershed of the Tista basin between 1975 and 2018, the Sikkim Himalaya, India
Hydrometeorological, glaciological and geospatial research data from the Peyto Glacier Research Basin in the Canadian Rockies
Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017
More dynamic than expected: an updated survey of surging glaciers in the Pamir
Worldwide version-controlled database of glacier thickness observations
Greenland liquid water discharge from 1958 through 2019
Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images
A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2
Greenland Ice Sheet solid ice discharge from 1986 through March 2020
Temporal inventory of glaciers in the Suru sub-basin, western Himalaya: impacts of regional climate variability
Historical porosity data in polar firn
Sval_Imp: a gridded forcing dataset for climate change impact research on Svalbard
Glaciers and climate of the Upper Susitna basin, Alaska
Age stratigraphy in the East Antarctic Ice Sheet inferred from radio-echo sounding horizons
Greenland Ice Sheet solid ice discharge from 1986 through 2017
Long-term records of glacier surface velocities in the Ötztal Alps (Austria)
A high-resolution image time series of the Gorner Glacier – Swiss Alps – derived from repeated unmanned aerial vehicle surveys
Geology datasets in North America, Greenland and surrounding areas for use with ice sheet models
The SUMup dataset: compiled measurements of surface mass balance components over ice sheets and sea ice with analysis over Greenland
A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges
Subglacial topography, ice thickness, and bathymetry of Kongsfjorden, northwestern Svalbard
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine Schøtt Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo Vinther
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-361, https://doi.org/10.5194/essd-2022-361, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Time scales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the time scales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Muchu Lesi, Yong Nie, Dan Hirsh Shugar, Jida Wang, Qian Deng, Huayong Chen, and Jianrong Fan
Earth Syst. Sci. Data, 14, 5489–5512, https://doi.org/10.5194/essd-14-5489-2022, https://doi.org/10.5194/essd-14-5489-2022, 2022
Short summary
Short summary
The China–Pakistan Economic Corridor plays a vital role in foreign trade and faces threats from water shortage and water-related hazards. An up-to-date glacial lake dataset with critical parameters is basic for water resource and flood risk research, which is absent from the corridor. This study created a glacial lake dataset in 2020 from Landsat and Sentinel images from 1990–2000, using a threshold-based mapping method. Our dataset has the potential to be widely applied.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara Khodzher, Ludmila Golobokova, and Alexey Ekaykin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-368, https://doi.org/10.5194/essd-2022-368, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
The concentration of sodium and sulphate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulphate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past, and how they have influenced the climate of Antarctica over the past 2000 years.
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-2022, https://doi.org/10.5194/essd-14-5111-2022, 2022
Short summary
Short summary
This work describes NASA MEaSUREs ITS_LIVE project's Version 2 Sentinel-1 image-pair ice velocity product and processing methodology. We show the refined offset tracking algorithm, autoRIFT, calibration for Sentinel-1 geolocation biases and correction of the ionosphere streaking problems. Validation was performed over three typical test sites covering the globe by comparing with other similar global and regional products.
Alice C. Frémand, Peter Fretwell, Julien Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesido Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Daniel Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Per Holmlund, Nicholas Holschuh, John W. Holt, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlinghem, Jeremie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Mette Riger-Kusk, Eric Rignot, David M. Rippin, Andres Rivera, Jason Roberts, Neil Ross, Antonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-355, https://doi.org/10.5194/essd-2022-355, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Mohd Soheb, Alagappan Ramanathan, Anshuman Bhardwaj, Millie Coleman, Brice R. Rea, Matteo Spagnolo, Shaktiman Singh, and Lydia Sam
Earth Syst. Sci. Data, 14, 4171–4185, https://doi.org/10.5194/essd-14-4171-2022, https://doi.org/10.5194/essd-14-4171-2022, 2022
Short summary
Short summary
This study provides a multi-temporal inventory of glaciers in the Ladakh region. The study records data on 2257 glaciers (>0.5 km2) covering an area of ~7923 ± 106 km2 which is equivalent to ~89 % of the total glacierised area of the Ladakh region. It will benefit both the scientific community and the administration of the Union Territory of Ladakh, in developing efficient mitigation and adaptation strategies by improving the projections of change on timescales relevant to policymakers.
Dahong Zhang, Gang Zhou, Wen Li, Shiqiang Zhang, Xiaojun Yao, and Shimei Wei
Earth Syst. Sci. Data, 14, 3889–3913, https://doi.org/10.5194/essd-14-3889-2022, https://doi.org/10.5194/essd-14-3889-2022, 2022
Short summary
Short summary
The length of a glacier is a key determinant of its geometry; glacier centerlines are crucial inputs for many glaciological applications. Based on the European allocation theory, we present a new global dataset that includes the centerlines and lengths of 198 137 mountain glaciers. The accuracy of the glacier centerlines was 89.68 %. The constructed dataset comprises 17 sub-datasets which contain the centerlines and lengths of glacier tributaries.
Johan Nilsson, Alex S. Gardner, and Fernando S. Paolo
Earth Syst. Sci. Data, 14, 3573–3598, https://doi.org/10.5194/essd-14-3573-2022, https://doi.org/10.5194/essd-14-3573-2022, 2022
Short summary
Short summary
The longest observational record available to study the mass balance of the Earth’s ice sheets comes from satellite altimeters. This record consists of multiple satellite missions with different measurements and quality, and it must be cross-calibrated and integrated into a consistent record for scientific use. Here, we present a novel approach for generating such a record providing a seamless record of elevation change for the Antarctic Ice Sheet that spans the period 1985 to 2020.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Dariusz Ignatiuk, Małgorzata Błaszczyk, Tomasz Budzik, Mariusz Grabiec, Jacek A. Jania, Marta Kondracka, Michał Laska, Łukasz Małarzewski, and Łukasz Stachnik
Earth Syst. Sci. Data, 14, 2487–2500, https://doi.org/10.5194/essd-14-2487-2022, https://doi.org/10.5194/essd-14-2487-2022, 2022
Short summary
Short summary
This paper presents details of the glaciological and meteorological dataset (2009–2020) from the Werenskioldbreen (Svalbard). These high-quality and long-term observational data already have been used to assess hydrological models and glaciological studies. The objective of releasing these data is to improve their usage for calibration and validation of the remote sensing products and models, as well as to increase data reuse.
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Michael J. MacFerrin, C. Max Stevens, Baptiste Vandecrux, Edwin D. Waddington, and Waleed Abdalati
Earth Syst. Sci. Data, 14, 955–971, https://doi.org/10.5194/essd-14-955-2022, https://doi.org/10.5194/essd-14-955-2022, 2022
Short summary
Short summary
The vast majority of the Greenland ice sheet's surface is covered by pluriannual snow, also called firn, that accumulates year after year and is compressed into glacial ice. The thickness of the firn layer changes through time and responds to the surface climate. We present continuous measurement of the firn compaction at various depths for eight sites. The dataset will help to evaluate firn models, interpret ice cores, and convert remotely sensed ice sheet surface height change to mass loss.
Shichang Kang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, Lekhendra Tripathee, Tanguang Gao, Hewen Niu, Xinyue Zhong, Xintong Chen, Zhaofu Hu, Xiaofei Li, Yang Li, Bigyan Neupane, Fangping Yan, Dipesh Rupakheti, Chaman Gul, Wei Zhang, Guangming Wu, Ling Yang, Zhaoqing Wang, and Chaoliu Li
Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, https://doi.org/10.5194/essd-14-683-2022, 2022
Short summary
Short summary
The Tibetan Plateau is important to the Earth’s climate. However, systematically observed data here are scarce. To perform more integrated and in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts on cryospheric change, systematic data of black carbon and organic carbon from the atmosphere, glaciers, snow cover, precipitation, and lake sediment cores over the plateau based on the Atmospheric Pollution and Cryospheric Change program are provided.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022, https://doi.org/10.5194/essd-14-535-2022, 2022
Short summary
Short summary
Accurate knowledge of the Antarctic grounding zone is important for mass balance calculation, ice sheet stability assessment, and ice sheet model projections. Here we present the first ICESat-2-derived high-resolution grounding zone product of the Antarctic Ice Sheet, including three important boundaries. This new data product will provide more comprehensive insights into ice sheet instability, which is valuable for both the cryosphere and sea level science communities.
Diarmuid Corr, Amber Leeson, Malcolm McMillan, Ce Zhang, and Thomas Barnes
Earth Syst. Sci. Data, 14, 209–228, https://doi.org/10.5194/essd-14-209-2022, https://doi.org/10.5194/essd-14-209-2022, 2022
Short summary
Short summary
We identify 119 km2 of meltwater area over West Antarctica in January 2017. In combination with Stokes et al., 2019, this forms the first continent-wide assessment helping to quantify the mass balance of Antarctica and its contribution to global sea level rise. We apply thresholds for meltwater classification to satellite images, mapping the extent and manually post-processing to remove false positives. Our study provides a high-fidelity dataset to train and validate machine learning methods.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Peter Friedl, Thorsten Seehaus, and Matthias Braun
Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, https://doi.org/10.5194/essd-13-4653-2021, 2021
Short summary
Short summary
Consistent and continuous data on glacier surface velocity are important inputs to time series analyses, numerical ice dynamic modeling and glacier mass flux computations. We present a new data set of glacier surface velocities derived from Sentinel-1 radar satellite data that covers 12 major glaciated regions outside the polar ice sheets. The data comprise continuously updated scene-pair velocity fields, as well as monthly and annually averaged velocity mosaics at 200 m spatial resolution.
Izabela Szuman, Jakub Z. Kalita, Marek W. Ewertowski, Chris D. Clark, Stephen J. Livingstone, and Leszek Kasprzak
Earth Syst. Sci. Data, 13, 4635–4651, https://doi.org/10.5194/essd-13-4635-2021, https://doi.org/10.5194/essd-13-4635-2021, 2021
Short summary
Short summary
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice Sheet, controlling ice sheet drainage and collapse. Our mapping effort, based on a lidar DEM, resulted in a dataset containing 5461 landforms over an area of 65 000 km2, which allows for reconstruction of the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian ice sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka.
Mengzhen Qi, Yan Liu, Jiping Liu, Xiao Cheng, Yijing Lin, Qiyang Feng, Qiang Shen, and Zhitong Yu
Earth Syst. Sci. Data, 13, 4583–4601, https://doi.org/10.5194/essd-13-4583-2021, https://doi.org/10.5194/essd-13-4583-2021, 2021
Short summary
Short summary
A total of 1975 annual calving events larger than 1 km2 were detected on the Antarctic ice shelves from August 2005 to August 2020. The average annual calved area was measured as 3549.1 km2, and the average calving rate was measured as 770.3 Gt yr-1. Iceberg calving is most prevalent in West Antarctica, followed by the Antarctic Peninsula and Wilkes Land in East Antarctica. This annual iceberg calving dataset provides consistent and precise calving observations with the longest time coverage.
Dorothea Stumm, Sharad Prasad Joshi, Tika Ram Gurung, and Gunjan Silwal
Earth Syst. Sci. Data, 13, 3791–3818, https://doi.org/10.5194/essd-13-3791-2021, https://doi.org/10.5194/essd-13-3791-2021, 2021
Short summary
Short summary
Glacier mass change data are valuable as a climate indicator and help to verify simulations of glaciological and hydrological processes. Data from the Himalaya are rare; hence, we established monitoring programmes on two glaciers in the Nepal Himalaya. We measured annual mass changes on Yala and Rikha Samba glaciers from 2011 to 2017 and calculated satellite-based mass changes from 2000 to 2012 for Yala Glacier. Both glaciers are shrinking, following the general trend in the Himalayas.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Anne Solgaard, Anders Kusk, John Peter Merryman Boncori, Jørgen Dall, Kenneth D. Mankoff, Andreas P. Ahlstrøm, Signe B. Andersen, Michele Citterio, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, https://doi.org/10.5194/essd-13-3491-2021, 2021
Short summary
Short summary
The PROMICE Ice Velocity product is a time series of Greenland Ice Sheet ice velocity mosaics spanning September 2016 to present. It is derived from Sentinel-1 SAR data and has a spatial resolution of 500 m. Each mosaic spans 24 d (two Sentinel-1 cycles), and a new one is posted every 12 d (every Sentinel-1A cycle). The spatial comprehensiveness and temporal consistency make the product ideal for monitoring and studying ice-sheet-wide ice discharge and dynamics of glaciers.
Yetang Wang, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Shugui Hou, and Cunde Xiao
Earth Syst. Sci. Data, 13, 3057–3074, https://doi.org/10.5194/essd-13-3057-2021, https://doi.org/10.5194/essd-13-3057-2021, 2021
Short summary
Short summary
Accurate observation of surface mass balance (SMB) under climate change is essential for the reliable present and future assessment of Antarctic contribution to global sea level. This study presents a new quality-controlled dataset of Antarctic SMB observations at different temporal resolutions and is the first ice-sheet-scale compilation of multiple types of measurements. The dataset can be widely applied to climate model validation, remote sensing retrievals, and data assimilation.
Arindam Chowdhury, Milap Chand Sharma, Sunil Kumar De, and Manasi Debnath
Earth Syst. Sci. Data, 13, 2923–2944, https://doi.org/10.5194/essd-13-2923-2021, https://doi.org/10.5194/essd-13-2923-2021, 2021
Short summary
Short summary
This is an integrated watershed-based study of glacier change across the Chhombo Chhu Watershed in the Sikkim Himalaya, 1975–2018. This glacier analysis comprised 74 glaciers with a total area of 44.8 ± 1.5 km2 including 64 debris-free glaciers with an area of 28.4 ± 1.1 km2 (63.4 % of total glacier area) in 2018. Mean glacier area of the watershed stands at 0.61 km2, with dominance of small-sized glaciers. Our mapping revealed that there has been a glacier area recession of 17.9 ± 1.7 km2.
Dhiraj Pradhananga, John W. Pomeroy, Caroline Aubry-Wake, D. Scott Munro, Joseph Shea, Michael N. Demuth, Nammy Hang Kirat, Brian Menounos, and Kriti Mukherjee
Earth Syst. Sci. Data, 13, 2875–2894, https://doi.org/10.5194/essd-13-2875-2021, https://doi.org/10.5194/essd-13-2875-2021, 2021
Short summary
Short summary
This paper presents hydrological, meteorological, glaciological and geospatial data of Peyto Glacier Basin in the Canadian Rockies. They include high-resolution DEMs derived from air photos and lidar surveys and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin and understanding the hydrological responses of the basin to both glacier and climate change.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Franz Goerlich, Tobias Bolch, and Frank Paul
Earth Syst. Sci. Data, 12, 3161–3176, https://doi.org/10.5194/essd-12-3161-2020, https://doi.org/10.5194/essd-12-3161-2020, 2020
Short summary
Short summary
This work indicates all glaciers in the Pamir that surged between 1988 and 2018 as revealed by different remote sensing data, mainly Landsat imagery. We found ~ 200 surging glaciers for the entire mountain range and detected the minimum and maximum extents of most of them. The smallest surging glacier is ~ 0.3 km2. This inventory is important for further research on the surging behaviour of glaciers and has to be considered when processing glacier changes (mass, area) of the region.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Short summary
This work partitions regional climate model (RCM) runoff from the MAR and RACMO RCMs to hydrologic outlets at the ice margin and coast. Temporal resolution is daily from 1959 through 2019. Spatial grid is ~ 100 m, resolving individual streams. In addition to discharge at outlets, we also provide the streams, outlets, and basin geospatial data, as well as a script to query and access the geospatial or time series discharge data from the data files.
Xin Wang, Xiaoyu Guo, Chengde Yang, Qionghuan Liu, Junfeng Wei, Yong Zhang, Shiyin Liu, Yanlin Zhang, Zongli Jiang, and Zhiguang Tang
Earth Syst. Sci. Data, 12, 2169–2182, https://doi.org/10.5194/essd-12-2169-2020, https://doi.org/10.5194/essd-12-2169-2020, 2020
Short summary
Short summary
The theoretical and methodological bases for all processing steps including glacial lake definition and classification and lake boundary delineation are discussed based on satellite remote sensing data and GIS techniques. The relative area errors of each lake in 2018 varied 1 %–79 % with average relative area errors of ±13.2 %. In high-mountain Asia, 30 121 glacial lakes with a total area of 2080.12 ± 2.28 km2 were catalogued in 2018 with a 15.2 % average rate of increase in area in 1990–2018.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, and Clovis Galiez
Earth Syst. Sci. Data, 12, 1973–1983, https://doi.org/10.5194/essd-12-1973-2020, https://doi.org/10.5194/essd-12-1973-2020, 2020
Short summary
Short summary
We present a dataset of annual glacier mass changes for all the 661 glaciers in the French Alps for the 1967–2015 period, reconstructed using deep learning (i.e. artificial intelligence). We estimate an average annual mass loss of –0.69 ± 0.21 m w.e., the highest being in the Chablais, Ubaye and Champsaur massifs and the lowest in the Mont Blanc, Oisans and Haute Tarentaise ranges. This dataset can be of interest to hydrology and ecology studies on glacierized catchments in the French Alps.
Frank Paul, Philipp Rastner, Roberto Sergio Azzoni, Guglielmina Diolaiuti, Davide Fugazza, Raymond Le Bris, Johanna Nemec, Antoine Rabatel, Mélanie Ramusovic, Gabriele Schwaizer, and Claudio Smiraglia
Earth Syst. Sci. Data, 12, 1805–1821, https://doi.org/10.5194/essd-12-1805-2020, https://doi.org/10.5194/essd-12-1805-2020, 2020
Short summary
Short summary
We have used Sentinel-2 satellite data from 2015 and 2016 to create a new glacier inventory for the European Alps. Outlines from earlier national inventories were used to guide manual corrections (e.g. ice in shadow or under debris cover) of the automatically mapped clean ice. We mapped 4395 glaciers, covering 1806 km2, an area loss of about 14 % (or −1.2 % per year) compared to the last inventory of 2003. We conclude that glacier shrinkage in the Alps has continued unabated since the mid-1980s.
Kenneth D. Mankoff, Anne Solgaard, William Colgan, Andreas P. Ahlstrøm, Shfaqat Abbas Khan, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 1367–1383, https://doi.org/10.5194/essd-12-1367-2020, https://doi.org/10.5194/essd-12-1367-2020, 2020
Short summary
Short summary
We have produced an open and reproducible estimate of Greenland Ice Sheet solid ice discharge from 1986 to 2020. Our results show three modes at the the total ice sheet scale: steady discharge from 1986 through 2000, increasing discharge from 2000 through 2005, and steady discharge from 2005 through 2019. The behavior of individual sectors and glaciers is more complicated. This work was done to provide a 100 % reproducible estimate to help constrain mass balance and sea-level-rise estimates.
Aparna Shukla, Siddhi Garg, Manish Mehta, Vinit Kumar, and Uma Kant Shukla
Earth Syst. Sci. Data, 12, 1245–1265, https://doi.org/10.5194/essd-12-1245-2020, https://doi.org/10.5194/essd-12-1245-2020, 2020
Short summary
Short summary
This research presents an updated glacier inventory (2017) of the Suru sub-basin, western Himalaya, India, which is useful for glacier-modelling studies. Glaciers here occur in two major Himalayan ranges: the Ladakh Range and the Greater Himalayan Range (GHR). Temporal glacier changes (46 years) suggest an overall degenerating pattern and a transitional response between the Karakoram and GHR glaciers. Local climate variability and unique topography induce heterogeneity in glacier response.
Kévin Fourteau, Laurent Arnaud, Xavier Faïn, Patricia Martinerie, David M. Etheridge, Vladimir Lipenkov, and Jean-Marc Barnola
Earth Syst. Sci. Data, 12, 1171–1177, https://doi.org/10.5194/essd-12-1171-2020, https://doi.org/10.5194/essd-12-1171-2020, 2020
Short summary
Short summary
Measurements of the porosity of three polar firns were conducted in the 1990s by Jean-Marc Barnola using the method of gas pycnometry. From these data, a parametrization of firn pore closure was produced and used in different published articles. However, the data have not been published in their own right yet. We have made the data publicly accessible on the PANGAEA database and here propose describing how they were obtained and used to produce the pore closure parametrization.
Thomas Vikhamar Schuler and Torbjørn Ims Østby
Earth Syst. Sci. Data, 12, 875–885, https://doi.org/10.5194/essd-12-875-2020, https://doi.org/10.5194/essd-12-875-2020, 2020
Short summary
Short summary
Atmospheric variables needed to force terrestrial process models (permafrost, glacier mass balance, seasonal snow, surface energy balance) have been downscaled from the ERA-40 and ERA-Interim reanalyses using methodology described in the accompanying paper. The gridded dataset has a horizontal resolution of 1 km and covers the entire Svalbard archipelago. The data have a temporal resolution of 6 h and cover the entire ERA-40 period (1957–2002) and the ERA-Interim period (1979–2017).
Andrew Bliss, Regine Hock, Gabriel Wolken, Erin Whorton, Caroline Aubry-Wake, Juliana Braun, Alessio Gusmeroli, Will Harrison, Andrew Hoffman, Anna Liljedahl, and Jing Zhang
Earth Syst. Sci. Data, 12, 403–427, https://doi.org/10.5194/essd-12-403-2020, https://doi.org/10.5194/essd-12-403-2020, 2020
Short summary
Short summary
Extensive field observations were conducted in the Upper Susitna basin in central Alaska in 2012–2014. This paper describes the weather, glacier mass balance, snow cover, and soils of the basin. We found that temperatures over the glacier are cooler than over land at the same elevation. The glaciers have been losing mass faster in recent years than in the 1980s. Measurements of glacier mass change with traditional methods closely matched radar measurements.
Anna Winter, Daniel Steinhage, Timothy T. Creyts, Thomas Kleiner, and Olaf Eisen
Earth Syst. Sci. Data, 11, 1069–1081, https://doi.org/10.5194/essd-11-1069-2019, https://doi.org/10.5194/essd-11-1069-2019, 2019
Kenneth D. Mankoff, William Colgan, Anne Solgaard, Nanna B. Karlsson, Andreas P. Ahlstrøm, Dirk van As, Jason E. Box, Shfaqat Abbas Khan, Kristian K. Kjeldsen, Jeremie Mouginot, and Robert S. Fausto
Earth Syst. Sci. Data, 11, 769–786, https://doi.org/10.5194/essd-11-769-2019, https://doi.org/10.5194/essd-11-769-2019, 2019
Short summary
Short summary
We have produced an open and reproducible estimate of Greenland Ice Sheet solid ice discharge from 1986 through 2017. Our results show three modes at the total ice-sheet scale: steady discharge from 1986 through 2000, increasing discharge from 2000 through 2005, and steady discharge from 2005 through 2017. The behavior of individual sectors and glaciers is more complicated. This work was done to provide a 100 % reproducible estimate to help constrain mass balance and sea-level rise estimates.
Martin Stocker-Waldhuber, Andrea Fischer, Kay Helfricht, and Michael Kuhn
Earth Syst. Sci. Data, 11, 705–715, https://doi.org/10.5194/essd-11-705-2019, https://doi.org/10.5194/essd-11-705-2019, 2019
Lionel Benoit, Aurelie Gourdon, Raphaël Vallat, Inigo Irarrazaval, Mathieu Gravey, Benjamin Lehmann, Günther Prasicek, Dominik Gräff, Frederic Herman, and Gregoire Mariethoz
Earth Syst. Sci. Data, 11, 579–588, https://doi.org/10.5194/essd-11-579-2019, https://doi.org/10.5194/essd-11-579-2019, 2019
Short summary
Short summary
This dataset provides a collection of 10 cm resolution orthomosaics and digital elevation models of the Gornergletscher glacial system (Switzerland). Raw data have been acquired every 2 weeks by intensive UAV surveys and cover the summer 2017. A careful photogrammetric processing ensures the geometrical coherence of the whole dataset.
Evan J. Gowan, Lu Niu, Gregor Knorr, and Gerrit Lohmann
Earth Syst. Sci. Data, 11, 375–391, https://doi.org/10.5194/essd-11-375-2019, https://doi.org/10.5194/essd-11-375-2019, 2019
Short summary
Short summary
The speed of ice sheet flow is largely controlled by the strength of the ice–bed interface. We present three datasets on the geological properties of regions in North America, Greenland and Iceland that were covered by Quaternary ice sheets. These include the grain size of glacial sediments, the continuity of sediment cover and bedrock geology. Simple ice modelling experiments show that altering the basal strength of the ice sheet on the basis of these datasets impacts ice thickness.
Lynn Montgomery, Lora Koenig, and Patrick Alexander
Earth Syst. Sci. Data, 10, 1959–1985, https://doi.org/10.5194/essd-10-1959-2018, https://doi.org/10.5194/essd-10-1959-2018, 2018
Short summary
Short summary
The SUMup dataset is a standardized, expandable, community dataset of Arctic and Antarctic observations of surface mass balance components, including snow/firn density, snow accumulation on land ice, and snow depth on sea ice. The measurements in this dataset were compiled from field notes, papers, technical reports, and digital files. We use these observations to monitor change in the polar regions and evaluate model output as well as remote sensing measurements.
Nico Mölg, Tobias Bolch, Philipp Rastner, Tazio Strozzi, and Frank Paul
Earth Syst. Sci. Data, 10, 1807–1827, https://doi.org/10.5194/essd-10-1807-2018, https://doi.org/10.5194/essd-10-1807-2018, 2018
Short summary
Short summary
Knowledge about the size and location of glaciers is essential to understand impacts of climatic changes on the natural environment. Therefore, we have produced an inventory of all glaciers in some of the largest glacierized mountain regions worldwide. Many large glaciers are covered by a rock (debris) layer, which also changes their reaction to climatic changes. Thus, we have also mapped this debris layer for all glaciers. We have mapped almost 28000 glaciers covering ~35000 km2.
Katrin Lindbäck, Jack Kohler, Rickard Pettersson, Christopher Nuth, Kirsty Langley, Alexandra Messerli, Dorothée Vallot, Kenichi Matsuoka, and Ola Brandt
Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, https://doi.org/10.5194/essd-10-1769-2018, 2018
Short summary
Short summary
Tidewater glaciers terminate directly into the sea and the glacier fronts are important feeding areas for birds and marine mammals. Svalbard tidewater glaciers are retreating, which will affect fjord circulation and ecosystems when glacier fronts end on land. In this paper, we present digital maps of ice thickness and topography under five tidewater glaciers in Kongsfjorden, northwestern Svalbard, which will be useful in studies of future glacier changes in the area.
Cited articles
Anderson, R., Anderson, L., Armstrong, W., Rossi, M., and Crump, S.: Glaciation of
alpine valleys: The glacier – debris-covered glacier – rock glacier
continuum, Geomorphology, 311, 127–142,
https://doi.org/10.1016/j.geomorph.2018.03.015, 2018.
Angillieri, M.: Application of frequency ratio and logistic regression to
active rock glacier occurrence in the Andes of San Juan, Argentina,
Geomorphology, 114, 396–405,
https://doi.org/10.1016/j.geomorph.2009.08.003, 2010.
Aoyama, M.: Rock glaciers in the northern Japanese Alps: Paleoenvironmental
implications since the Late Glacial, J. Quaternary Sci., 20, 471–484,
https://doi.org/10.1002/jqs.935, 2005.
Bajewsky, I. and Gardner, J.: Discharge and sediment-load characteristics of
the Hilda Rock-Glacier stream, Canadian Rocky Mountains, Alberta, Phys.
Geogr., 10, 295–306, https://doi.org/10.1080/02723646.1989.10642384, 1989.
Baroni, C., Carton, A., Seppi, R., and Harris, C.: Distribution and behaviour
of rock glaciers in the Adamello-Presanella Massif (Italian Alps),
Permafrost Periglac., 15, 243–259, https://doi.org/10.1002/ppp.497,
2004.
Barsch, D.: Rockglaciers: Indicators for the Present and Former Geoecology in
High Mountain Environments, Springer Series in Physical Environment,
Springer-Verlag Berlin Heidelberg, https://doi.org/10.1007/978-3-642-80093-1,
1996.
Berthling, I.: Beyond confusion: Rock glaciers as cryo-conditioned landforms,
Geomorphology, 131, 98–106, https://doi.org/10.1016/j.geomorph.2011.05.002,
2011.
Berthling, I. and Etzelmuller, B.: The concept of cryo-conditioning in
landscape evolution, Quaternary Res., 75, 378–384,
https://doi.org/10.1016/j.yqres.2010.12.011, 2011.
Bodin, X., Thibert, E., Fabre, D., Ribolini, A., Schoeneich, P., Francou,
B., Reynaud, L., and Fort, M.: Two decades of responses (1986–2006) to
climate by the Laurichard rock glacier, French Alps, Permafrost Periglac.,
20, 331–344, https://doi.org/10.1002/ppp.665, 2009.
Bodin, X., Rojas, F., and Brenning, A.: Status and evolution of the
cryosphere in the Andes of Santiago (Chile, 33.5∘ S),
Geomorphology, 118, 453–464,
https://doi.org/10.1016/j.geomorph.2010.02.016, 2010.
Bodin, X., Krysiecki, J., Schoeneich, P., Le Roux, O., Lorier, L., Echelard,
T., Peyron, M., and Walpersdorf, A.: The 2006 collapse of the Bérard Rock
Glacier (Southern French Alps), Permafrost Periglac., 28, 209–223,
https://doi.org/10.1002/ppp.1887, 2017.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012.
Bolch, T. and Gorbunov, A.: Characteristics and origin of rock glaciers in
Northern Tian Shan (Kazakhstan/Kyrgystan), Permafrost Periglac., 25,
320–332, https://doi.org/10.1002/ppp.1825, 2014.
Brardinoni, F., Scotti, R., Sailer, R., and Mair, V.: Evaluating sources of
uncertainty and variability in rock glacier inventories, Earth Surf. Proc.
Land., 44, 2450-2466, https://doi.org/10.1002/esp.4674,
2019.
Brenning, A.: Benchmarking classifiers to optimally integrate terrain
analysis and multispectral remote sensing in automatic rock glacier
detection, Remote Sens. Environ., 113, 239–247,
https://doi.org/10.1016/j.rse.2008.09.005, 2009.
Brenning, A., Long, S., and Fieguth, P.: Detecting rock glacier flow structures
using Gabor filters and IKONOS imagery, Remote Sens. Environ., 125, 227–237,
https://doi.org/10.1016/j.rse.2012.07.005, 2012.
Brighenti, S., Hotaling, S., Finn, D. S., Fountain A. G., Hayashi M., Herbst,
D., Saros, J. E., Tronstad, L. M., and Millar, C. I.: Rock glaciers and related
cold rocky landforms: Overlooked climate refugia for mountain biodiversity,
Glob. Change Biol., 27, 1504–1517, https://doi.org/10.1111/gcb.15510,
2021.
Burger, K., Degenhardt, J., and Giardino, J.: Engineering geomorphology of
rock glaciers, Geomorphology, 31, 93–132,
https://doi.org/10.1016/S0169-555X(99)00074-4, 1999.
Caccianiga, M., Andreis, C., Diolaiuti, G., D'Agata, C., Mihalcea, C., and
Smiraglia, C.: Alpine debris-covered glaciers as a habitat for plant life,
Holocene, 21, 1011–1020, https://doi.org/10.1177/0959683611400219, 2011.
Caine, N.: Recent hydrologic change in a Colorado alpine basin: An indicator
of permafrost thaw?, Ann. Glaciol.,
51, 130–134, https://doi.org/10.3189/172756411795932074, 2010.
Clark, D., Steig, E., Potter, N., and Gillespie, A.: Genetic variability of
rock glaciers, Geogr. Ann. A., 80, 175–182,
https://doi.org/10.1111/j.0435-3676.1998.00035.x, 1998.
Cliff, A. and Ord, K.: Evaluating the percentage points of a spatial
autocorrelation coefficient, Geogr. Anal., 3, 51–62,
https://doi.org/10.1111/j.1538-4632.1971.tb00347.x, 1971.
Colucci, R., Forte, E., Zebre, M., Maset, E., Zanettini, C., and Guglilmin,
M.: Is that a relict rock glacier?, Geomorphology, 330, 177-189,
https://doi.org/10.1016/j.geomorph.2019.02.002, 2019.
Cremonese, E., Gruber, S., Phillips, M., Pogliotti, P., Boeckli, L., Noetzli, J., Suter, C., Bodin, X., Crepaz, A., Kellerer-Pirklbauer, A., Lang, K., Letey, S., Mair, V., Morra di Cella, U., Ravanel, L., Scapozza, C., Seppi, R., and Zischg, A.: Brief Communication: ”An inventory of permafrost evidence for the European Alps”, The Cryosphere, 5, 651–657, https://doi.org/10.5194/tc-5-651-2011, 2011.
Degenhardt, J.: Development of tongue-shaped and multilobate rock glaciers in
alpine environments: Interpretations from ground penetrating radar surveys,
Geomorphology, 109, 94–107, https://doi.org/10.1016/j.geomorph.2009.02.020,
2009.
Delaloye, R., Reynard, E., and Wenker, L.: Rock Glaciers, Entremon, Valais,
Switzerland, Version 1. National Snow and Ice Data Center/World Data Center
for Glaciology, Digital Media [data set], available at: https://nsidc.org/data/GGD290/versions/1 (last access: 2019),
1998.
DiLuzio, M., Johnson, G., Daly, C., Eischeid, J., and Arnold, J.:
Constructing retrospective gridded daily precipitation and temperature
datasets for the conterminous United States, J. Appl. Meteorol. Clim., 47,
475–497, https://doi.org/10.1175/2007JAMC1356.1, 2008.
Duguay, M., Edmunds, A., Arenson, L., and Wainstein, P.: Quantifying the
significance of the hydrological contribution of a rock glacier – A review,
GEOQuebec 2015, 68th Canadian Geotechnical Conference, 7th Canadian
Permafrost Conference, 2015.
ESRI, ArcGIS Desktop: Release 10.4. Redlands, CA: Environmental Systems
Research Institute, 2017.
Etzelmuller, B., Farbot, H., Gudmundsson, A., Humlum, O., Tveito, O. E., and Bjornsson, H.: The Regional Distribution of Mountain Permafrost in Iceland, Permafrost Periglac., 18, 185–199, https://doi.org/10.1002/ppp.583, 2007.
Falaschi, D., Castro, M., Masiokas, M., Tadono, T., and Ahumada, A.: Rock
glacier inventory of the Valles Calchaquies Region (∼25∘ S), Salta, Argentina, derived from ALOS data, Permafrost
Periglac., 25, 69–75, https://doi.org/10.1002/ppp.1801, 2014.
Falaschi, D., Tadono, T., and Masiokas, M.: Rock Glaciers in the Patagonian
Andes: An inventory for the Monte San Lorenzo (Cerro Cochrane) Massif,
47∘ S, Geogr. Ann. A., 97, 769–777,
https://doi.org/10.1111/geoa.12113, 2015.
Fegel, T., Baron, J., Fountain, A., Johnson, G., and Hall, E.: The differing
biogeochemical and microbial signatures of glaciers and rock glaciers, J.
Geophys. Res.-Biogeo., 123, 919–932, https://doi.org/10.1002/2015JG003236,
2016.
Fountain, A., Glenn, B., and Basagic, H.: The geography of glaciers and
perennial snowfields in the American West, Arct. Antarct. Alp. Res., 49,
391–410, https://doi.org/10.1657/AAAR0017-003, 2017.
Francou, B., Fabre, D., Pouyaud, B., Jomelli, V., and Arnaud, Y.: Symptoms of
degradation in a tropical rock glacier, Bolivian Andes, Permafrost
Periglac., 10, 91–100,
https://doi.org/10.1002/(SICI)1099-1530(199901/03)10:13.0.CO;2-B, 1999.
Frauenfelder, H.: Regional-scale modeling of the occurrence and dynamics of
rock glaciers and the distribution of paleopermafrost, PhD Dissertation,
Geographisches Institut der Universitat Zurich, 2005.
Google Earth Pro: https://www.google.com/earth/versions/{#}download-pro, last access:
2019.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kaab, A.,
Kaufmann, V., Ladanyi, B., Matsuoka, N., Spingman, S., and Muhll, D.:
Permafrost creep and rock glacier dynamics, Permafrost Periglac., 14,
189–214, https://doi.org/10.1002/ppp.561, 2006.
Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto Liaudat, D., Hilbich, C., Hauck, C., and Schrott, L.: Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, 2021.
Harrington, J. S., Hayashi, M., and Kurylyk, B. L.: Influence of a rock glacier
spring on the stream energy budget and cold-water refuge in an alpine
stream, Hydrol. Process., 31, 4719–4733, https://doi.org/10.1002/hyp.11391, 2017.
Hayashi, M.: Alpine Hydrogeology: The Critical Role of Groundwater in
Sourcing the Headwaters of the World, Groundwater, 58, 498–510,
https://doi.org/10.1111/gwat.12965, 2020.
Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston,
J., Herold, N., Wickham, J., and Megown, K.: Completion of the 2011 National
Land Cover Database for the conterminous United States: Representing a
decade of land cover change information, Photogramm. Eng. Rem. S., 81,
345–354, https://doi.org/10.14358/PERS.81.5.345, 2015.
Humlum, O.: The geomorphic significance of rock glaciers: Estimates of rock
glacier debris volumes and headwall recession rates in West Greenland,
Geomorphology, 35, 41–67, https://doi.org/10.1016/S0169-555X(00)00022-2,
2000.
Imhof, M.: Modelling and verification of the permafrost distribution in the
Bernese Alps (Western Switzerland), Permafrost Periglac., 7, 267–280,
https://doi.org/10.1002/(SICI)1099-1530(199609)7:3<267::AID-PPP221>3.0.CO;2-L, 1996.
Iribarren, P. and Bodin, X.: Geomorphic consequences of two large glacier and
rock glacier destabilizations in the Central Chilean Andes, EGU General
Assembly 2010, EGU2010-7162-4, June 2010, Vienna, Austria, 2010.
Janke, J.: Colorado Front Range rock glaciers: Distribution and topographic
characteristics, Arct. Antarct. Alp. Res., 39, 74–83,
https://doi.org/10.1657/1523-0430(2007)39[74:CFRRGD]2.0.CO;2, 2007.
Janke, J. and Frauenfelder, R.: The relationship between rock glaciers and
contributing area parameters in the Front Range of Colorado, J. Quaternary
Sci., 23, 153–163, https://doi.org/10.1002/jqs.1133, 2008.
Janke, J., Bellisario, A., and Ferrando, F.: Classification of debris-covered
glaciers and rock glaciers in the Andes of central Chile, Geomorphology,
241, 98–121, https://doi.org/10.1016/j.geomorph.2015.03.034, 2015.
Johnson, G.: Active rock glacier inventory of the contiguous United States
(PSUARGI), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.918585, 2020.
Jones, D., Harrison, S., and Anderson, K.: Mountain glacier-to-rock glacier
transition, Global Planet. Change, 181, 1–13,
https://doi.org/10.1016/j.gloplacha.2019.102999, 2019a.
Jones, D., Harrison, S., Anderson, K., and Whalley, W.: Rock glaciers and
mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90,
https://doi.org/10.1016/j.earscirev.2019.04.001, 2019b.
Kaab, A. and Reichmuth, T.: Advance mechanisms of rock glaciers, Permafrost
Periglac., 16, 187–193, https://doi.org/10.1002/ppp.507, 2005.
Karl, T. and Koss, W.: Regional and national monthly, seasonal and annual
temperature weighted by area, 1895–1983, Historical Climatology Series
4–3, National Climatic Data Center, Asheville, NC, 1–38,
https://repository.library.noaa.gov/view/noaa/10238, 1984.
Kenner, R. and Magnusson, J.: Estimating the effect of different influencing
factors on rock glacier development in two regions in the Swiss Alps,
Permafrost Periglac., 28, 195–208, https://doi.org/10.1002/ppp.1910,
2017.
Knight, J., Harrison, S., and Jones, D.: Rock glaciers and the
geomorphological evolution of deglacierizing mountains, Geomorphology, 324,
14–24, https://doi.org/10.1016/j.geomorph.2018.09.020, 2019.
Kofler, C., Steger, S., Mair, V., Zebisch, M., Comiti, F., and
Schneiderbauer, S.: An inventory-driven rock glacier status model (intact vs.
relict) for South Tyrol, Eastern Italian Alps, Geomorphology, 350, 1–16,
https://doi.org/10.1016/j.geomorph.2019.106887, 2020.
Konrad, S., Humphrey, N., Steig, E., Clark, D., Potter, N., and Pfeffer, W.:
Rock glacier dynamics and paleoclimatic implications, Geology, 27,
1131–1134, https://doi.org/10.1130/0091-7613(1999)027<1131:RGDAPI>2.3.CO;2, 1999.
Lambiel, C. and Reynard, E.: Regional modeling of present, past and future
distribution of discontinuous permafrost based in a rock glacier inventory
in the Bagnes-Heremence area (western Swiss Alps), Norsk. Geogr. Tidsskr.,
55, 219–233, https://doi.org/10.1080/00291950152746559, 2001.
Liu, L., Millar, C. I., Westfall, R. D., and Zebker, H. A.: Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR, The Cryosphere, 7, 1109–1119, https://doi.org/10.5194/tc-7-1109-2013, 2013.
Lugon, R. and Stoffel, M.: Rock-glacier dynamics and magnitude-frequency
relations of debris flows in a high-elevation watershed: Ritigraben, Swiss
Alps, Global Planet. Change, 73, 202–210,
https://doi.org/10.1016/j.gloplacha.2010.06.004, 2010.
Magori, B., Urdea, P., and Onaca, A.: Distribution and characteristics of
rock glaciers in the Balkan Peninsula, Geogr. Ann. A, 102, 354-375,
https://doi.org/10.1080/04353676.2020.1809905, 2020.
Matthews, J., Nesje, A., and Linge, H.: Relict talus-foot rock glaciers at
Øyberget, Upper Ottadalen, Southern Norway: Schmidt Hammer exposure ages
and palaeoenvironmental implications, Permafrost Periglac., 24, 336–346,
https://doi.org/10.1002/ppp.1794, 2013.
Millar, C. and Westfall, R.: Rock glaciers and related periglacial landforms
in the Sierra Nevada, CA, U.S.A., inventory, distribution and climatic
relationships, Quatern. Int., 188, 90–104,
https://doi.org/10.1016/j.quaint.2007.06.004, 2008.
Millar, C. and Westfall, R.: Geographic, hydrological, and climatic
significance of rock glaciers in the Great Basin, U.S.A., Arct. Antarct.
Alp. Res., 51, 232–249, https://doi.org/10.1080/15230430.2019.1618666,
2019.
Millar, C., Westfall, R., and Delany, D.: Thermal and hydrologic attributes of
rock glaciers and periglacial talus landforms: Sierra Nevada, California,
U.S.A., Quatern. Int., 310, 169–180,
https://doi.org/10.1016/j.quaint.2012.07.019, 2013a.
Millar, C., Westfall, R., Evenden, A., Holmquist, J., Schmidt-Gengenbach,
J., Franklin, R., Nachlinger, J., and Delaney, D.: Potential climatic refugia
in semi-arid, temperate mountains: Plant and arthropod assemblages
associated with rock glaciers, talus slopes, and their forefield wetlands,
Sierra Nevada, California, U.S.A, Quatern. Int., 387, 106–121,
https://doi.org/10.1016/j.quaint.2013.11.003, 2013b.
NAIP (National Agricultural Imagery Program) National Agriculture Imagery
Program (NAIP) InformationSheet [data set], available at:
http://www.fsa.usda.gov/Internet/FSA_File/naip_info_sheet_2013.pdf (last access: 2019), 2012.
Navarro, F. and Magnusson, M.: Position paper of the International
Glaciological Society on standard practices regarding glacier inventories,
International Glaciological Society, available at:
https://www.igsoc.org/news/igs_villaba2col_engesp20171220.pdf (last access: 2019), 21 December 2017.
Nussear, K., Esque, T., Inman, R., Gass, L., Thomas, K., Wallace, C.,
Blainey, J., Miller, D., and Webb, R.: Modeling Habitat of the Desert
Tortoise (Gopherus agassizii) in the Mojave and Parts of the Sonoran Deserts
of California, Nevada, Utah, and Arizona, U.S. Geological Survey Open-File
Report 2009-1102, 2009.
Perucca, L. and Angillieri, M.: Glaciers and rock glaciers' distribution at
28∘ SL, Dry Andes of Argentina, and some considerations
about their hydrological significance, Environ. Earth Sci., 64,
2079–2089, https://doi.org/10.1007/s12665-011-1030-z, 2011.
Potter, N.: Ice-cored rock glacier, Galena Creek, Northern Absaroka
Mountains, Wyoming, Geol. Soc. Am. Bull., 83, 3025–3058,
https://doi.org/10.1130/0016-7606(1972)83[3025:IRGGCN]2.0.CO;2, 1972.
PRISM: Climate Group [data set], Oregon State University, available at:
http://prism.oregonstate.edu, last access: 2017.
Rangecroft, S., Harrison, S., Anderson, K., Magrath, J., Castel, A., and
Pacheco, P.: A first rock glacier inventory for the Bolivian Andes,
Permafrost Periglac., 25, 333–343, https://doi.org/10.1002/ppp.1816, 2014.
RGI Consortium, Randolph Glacier Inventory: A dataset of global glacier
outlines: Version 6.0, Technical Report, Global Land Ice Measurements from
Space, Boulder, Colorado, U.S.A., Digital Media,
https://doi.org/10.7265/N5-RGI-60, 2017.
Schmid, M.-O., Baral, P., Gruber, S., Shahi, S., Shrestha, T., Stumm, D., and Wester, P.: Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth, The Cryosphere, 9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015, 2015.
Scotti, R., Brardinoni, F., Albereti, S., Frattini, P., and Crosta, G.: A
regional inventory of rock glaciers and protalus ramparts in the central
Italian Alps, Geomorphology, 186, 136–149,
https://doi.org/10.1016/j.geomorph.2012.12.028, 2013.
Senn, A.: Large sample-size distribution of statistics used in testing for
spatial correlation, Geogr. Anal., 8, 175–184,
https://doi.org/10.1111/j.1538-4632.1976.tb01066.x, 1976.
Seppi, R., Carton, A., Zumiani, M., Dall'Amico, G., Zampedri, R., and Rigon,
R.: Inventory, distribution and topographic features of rock glaciers in the
southern region of the Eastern Italian Alps (Trentino), Geogr. Fis. Din.
Quat., 35, 185–197, https://doi.org/10.4461/GFDQ.2012.35.17, 2012.
Sorg, A., Kaab, A., Roesch, A., Bigler, C., and Stoffel, M.: Contrasting
responses of Central Asian rock glaciers to global warming, Sci. Rep.-UK, 5, 1–6,
https://doi.org/10.1038/srep08228, 2015.
Stenni, B., Genoni, L., Flora, O., and Guglielmin, M.: An oxygen isotope
record from the Foscagno rock-glacier ice core, Upper Valtellina, Italian
Central Alps, Holocene, 17, 1033–1039,
https://doi.org/10.1177/0959683607082438, 2007.
Sulejman, R.: Phytogeographic and syntaxonomic diversity of high mountain
vegetation in Dinaric Alps (Western Balkan, SE Europe), J. Mt. Sci., 8,
767–786, https://doi.org/10.1007/s11629-011-2047-1, 2011.
Tiefelsdorf, M.: The saddlepoint approximation of Moran's I's and Local
Moran's Ii's reference distributions and their numerical evaluation, Geogr.
Anal., 34, 187–206, https://doi.org/10.1111/j.1538-4632.2002.tb01084.x,
2002.
USGS: The National Elevation Dataset (NED) [data set], U.S. Geological Survey, Sioux
Falls, South Dakota,
available at: https://pubs.usgs.gov/fs/2009/3053/pdf/fs2009_3053.pdf, last access: 2017.
Wagner, T., Pleschberger, R., Kainz, S., Ribis, M., Kellerer-Pirklbauer, A.,
Krainer, K., Pilippitsch, R., and Winkler, G.: The first consistent inventory
of rock glaciers and their hydrological catchments of the Austrian Alps,
Austrian J. Earth Sc., 113, 1–23,
https://doi.org/10.17738/ajes.2020.0001, 2020a.
Wagner, T., Brodacz, A., Krainer, K., and Winkler, G.: Active rock glaciers
as shallow groundwater reservoirs, Austrian Alps, Grundwasser, 25, 215–230,
https://doi.org/10.1007/s00767-020-00455-x, 2020b.
Short summary
We present the Portland State University Active Rock Glacier Inventory (n = 10 343) for the contiguous United States, derived from manual classification of remote sensing imagery. This geospatial inventory will allow past rock glacier research findings to be spatially extrapolated, facilitating rock glacier research by identifying field study sites and serving as a valuable training set for the development of automated rock glacier identification methods applicable to other regional studies.
We present the Portland State University Active Rock Glacier Inventory (n = 10 343) for the...