Articles | Volume 13, issue 7
https://doi.org/10.5194/essd-13-3453-2021
https://doi.org/10.5194/essd-13-3453-2021
Data description paper
 | 
16 Jul 2021
Data description paper |  | 16 Jul 2021

A 1 km resolution soil organic carbon dataset for frozen ground in the Third Pole

Dong Wang, Tonghua Wu, Lin Zhao, Cuicui Mu, Ren Li, Xianhua Wei, Guojie Hu, Defu Zou, Xiaofan Zhu, Jie Chen, Junmin Hao, Jie Ni, Xiangfei Li, Wensi Ma, Amin Wen, Chengpeng Shang, Yune La, Xin Ma, and Xiaodong Wu

Related authors

Permafrost, active layer, and meteorological data (2010–2020) at the Mahan Mountain relict permafrost site of northeastern Qinghai–Tibet Plateau
Tonghua Wu, Changwei Xie, Xiaofan Zhu, Jie Chen, Wu Wang, Ren Li, Amin Wen, Dong Wang, Peiqing Lou, Chengpeng Shang, Yune La, Xianhua Wei, Xin Ma, Yongping Qiao, Xiaodong Wu, Qiangqiang Pang, and Guojie Hu
Earth Syst. Sci. Data, 14, 1257–1269, https://doi.org/10.5194/essd-14-1257-2022,https://doi.org/10.5194/essd-14-1257-2022, 2022
Short summary

Related subject area

Permafrost
Very high resolution aerial image orthomosaics, point clouds, and elevation datasets of select permafrost landscapes in Alaska and northwestern Canada
Tabea Rettelbach, Ingmar Nitze, Inge Grünberg, Jennika Hammar, Simon Schäffler, Daniel Hein, Matthias Gessner, Tilman Bucher, Jörg Brauchle, Jörg Hartmann, Torsten Sachs, Julia Boike, and Guido Grosse
Earth Syst. Sci. Data, 16, 5767–5798, https://doi.org/10.5194/essd-16-5767-2024,https://doi.org/10.5194/essd-16-5767-2024, 2024
Short summary
TPRoGI: a comprehensive rock glacier inventory for the Tibetan Plateau using deep learning
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024,https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Multisource Synthesized Inventory of CRitical Infrastructure and HUman-Impacted Areas in AlaSka (SIRIUS)
Soraya Kaiser, Julia Boike, Guido Grosse, and Moritz Langer
Earth Syst. Sci. Data, 16, 3719–3753, https://doi.org/10.5194/essd-16-3719-2024,https://doi.org/10.5194/essd-16-3719-2024, 2024
Short summary
The first hillslope thermokarst inventory for the permafrost region of the Qilian Mountains
Xiaoqing Peng, Guangshang Yang, Oliver W. Frauenfeld, Xuanjia Li, Weiwei Tian, Guanqun Chen, Yuan Huang, Gang Wei, Jing Luo, Cuicui Mu, and Fujun Niu
Earth Syst. Sci. Data, 16, 2033–2045, https://doi.org/10.5194/essd-16-2033-2024,https://doi.org/10.5194/essd-16-2033-2024, 2024
Short summary
An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau
Raul-David Şerban, Huijun Jin, Mihaela Şerban, Giacomo Bertoldi, Dongliang Luo, Qingfeng Wang, Qiang Ma, Ruixia He, Xiaoying Jin, Xinze Li, Jianjun Tang, and Hongwei Wang
Earth Syst. Sci. Data, 16, 1425–1446, https://doi.org/10.5194/essd-16-1425-2024,https://doi.org/10.5194/essd-16-1425-2024, 2024
Short summary

Cited articles

Amundson, R.: The Carbon Budget in Soils, Ann. Rev. Earth Planet. Sci., 29, 535–562, https://doi.org/10.1146/annurev.earth.29.1.535, 2001. 
Batjes, N. H.: Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks, Geoderma, 269, 61–68, https://doi.org/10.1016/j.geoderma.2016.01.034, 2016. 
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau, J. Geophys. Res.-Ea. Surf., 112, F02S03, https://doi.org/10.1029/2006JF000631, 2007. 
Cheng, G., Zhao, L., Li, R., Wu, X., Sheng, Y., Hu, G., Zou, D., Jin,, H., Li, X., and Wu, Q.: Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau, Chin. Sci. Bull., 64, 2783–2795, https://doi.org/10.1360/TB-2019-0191, 2019 (in Chinese). 
Ding, J., Li, F., Yang, G., Chen, L., Zhang, B., Liu, L., Fang, K., Qin, S., Chen, Y., Peng, Y., Ji, C., He, H., Smith, P., and Yang, Y.: The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores, Glob. Change Biol., 22, 2688–2701, https://doi.org/10.1111/gcb.13257, 2016. 
Download
Short summary
The Third Pole regions are important components in the global permafrost, and the detailed spatial soil organic carbon data are the scientific basis for environmental protection as well as the development of Earth system models. Based on multiple environmental variables and soil profile data, this study use machine-learning approaches to evaluate the SOC storage and spatial distribution at a depth interval of 0–3 m in the frozen ground area of the Third Pole region.
Altmetrics
Final-revised paper
Preprint